लॉग सेमीरिंग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Semiring arising in tropical analysis}}
{{Short description|Semiring arising in tropical analysis}}
गणित में, [[उष्णकटिबंधीय विश्लेषण]] के क्षेत्र में, लॉग [[मोटी हो जाओ|सेमीरिंग]] [[लघुगणकीय पैमाने]] पर सेमिरिंग संरचना है, जो [[विस्तारित वास्तविक संख्या|विस्तारित वास्तविक संख्याओं]] को लघुगणक के रूप में मानते हुए प्राप्त किया जाता है। अर्थात्, जोड़ और गुणन के संचालन को [[संयुग्मन (समूह सिद्धांत)]] द्वारा परिभाषित किया गया है: वास्तविक संख्याओं का घातांक, एक सकारात्मक (या शून्य) संख्या प्राप्त करना, इन संख्याओं को वास्तविक संख्याओं पर साधारण बीजगणितीय संचालन के साथ जोड़ना या गुणा करना, और फिर लेना प्रारंभिक घातांक को उलटने के लिए लघुगणक इस तरह के संचालन को, उदाहरण के लिए, लघुगणक जोड़, आदि के रूप में भी जाना जाता है। सदैव की तरह उष्णकटिबंधीय विश्लेषण में, संचालन को ⊕ और ⊗ द्वारा चिह्नित किया जाता है, जिससे उन्हें सामान्य जोड़ + और गुणन × (या ⋅) से अलग किया जा सके। ये ऑपरेशन आधार की पसंद पर निर्भर करते हैं; {{mvar|''b''}} प्रतिपादक और लघुगणक के लिए ({{math|''b''}} [[लघुगणक इकाई]] का एक विकल्प है), जो एक स्केल फ़ैक्टर से मेल खाता है, और 1 के अतिरिक्त किसी भी सकारात्मक आधार के लिए अच्छी तरह से परिभाषित है; एक आधार का उपयोग करना {{math|''b'' < 1}} एक नकारात्मक चिह्न का उपयोग करने और प्रतिलोम {{math|1/''b'' > 1}} का उपयोग करने के बराबर है।{{efn|Since <math>b^{-x} = \left(b^{-1}\right)^x=(1/b)^x</math>}} यदि योग्य नहीं है, तो आधार को पारंपरिक रूप से {{mvar|''e''}} या {{math|1/''e''}} लिया जाता है, जो {{mvar|''e''}} एक नकारात्मक के साथ मेल खाता है।
गणित में, [[उष्णकटिबंधीय विश्लेषण]] के क्षेत्र में, लॉग [[मोटी हो जाओ|सेमीरिंग]] [[लघुगणकीय पैमाने]] पर सेमिरिंग संरचना है, जो [[विस्तारित वास्तविक संख्या|विस्तारित वास्तविक संख्याओं]] को लघुगणक के रूप में मानते हुए प्राप्त किया जाता है। अर्थात्, जोड़ और गुणन के संचालन को [[संयुग्मन (समूह सिद्धांत)]] द्वारा परिभाषित किया गया है: वास्तविक संख्याओं का घातांक, धनात्मक (या शून्य) संख्या प्राप्त करना, इन संख्याओं को वास्तविक संख्याओं पर साधारण बीजगणितीय संचालन के साथ जोड़ना या गुणा करना, और फिर लेना प्रारंभिक घातांक को उलटने के लिए लघुगणक इस तरह के संचालन को, उदाहरण के लिए, लघुगणक जोड़, आदि के रूप में भी जाना जाता है। सदैव की तरह उष्णकटिबंधीय विश्लेषण में, संचालन को ⊕ और ⊗ द्वारा चिह्नित किया जाता है, जिससे उन्हें सामान्य जोड़ + और गुणन × (या ⋅) से अलग किया जा सके। ये ऑपरेशन आधार की पसंद पर निर्भर करते हैं; {{mvar|''b''}} प्रतिपादक और लघुगणक के लिए ({{math|''b''}} [[लघुगणक इकाई]] का विकल्प है), जो पैमाना फ़ैक्टर से मेल खाता है, और 1 के अतिरिक्त किसी भी धनात्मक आधार के लिए अच्छी तरह से परिभाषित है; आधार का उपयोग करना {{math|''b'' < 1}} नकारात्मक चिह्न का उपयोग करने और प्रतिलोम {{math|1/''b'' > 1}} का उपयोग करने के बराबर है।{{efn|Since <math>b^{-x} = \left(b^{-1}\right)^x=(1/b)^x</math>}} यदि योग्य नहीं है, तो आधार को पारंपरिक रूप से {{mvar|''e''}} या {{math|1/''e''}} लिया जाता है, जो {{mvar|''e''}} नकारात्मक के साथ मेल खाता है।


लॉग सेमिरिंग में [[उष्णकटिबंधीय]] सेमिरिंग की सीमा (उष्णकटिबंधीयकरण, डीक्वांटाइजेशन) के रूप में होती है क्योंकि आधार {{tmath|b \to \infty}} अनंत तक जाता है ([[मैक्स-प्लस सेमिरिंग]]) या शून्य {{tmath|b \to 0}} तक ([[न्यूनतम]] [[मिन-प्लस सेमी-रिंग]]), और इस प्रकार उष्णकटिबंधीय सेमिरिंग के [[विरूपण सिद्धांत]] (परिमाणीकरण) के रूप में देखा जा सकता है। विशेष रूप से, अतिरिक्त ऑपरेशन, लॉगऐड (कई शब्दों के लिए, [[लॉगसम ऍक्स्प]]) को [[अधिकतम]] या न्यूनतम विरूपण के रूप में देखा जा सकता है। लॉग सेमिरिंग में [[गणितीय अनुकूलन]] में अनुप्रयोग हैं, क्योंकि यह गैर-चिकनी अधिकतम और न्यूनतम को एक सुचारू संचालन से परिवर्तित कर देता है। लघुगणक (एक लघुगणकीय पैमाने पर मापा जाता है), जैसे कि [[डेसिबल]] (देखें {{slink|डेसिबल|जोड़ना}}), लॉग प्रायिकता, या लॉग-संभावना।
लॉग सेमिरिंग में [[उष्णकटिबंधीय]] सेमिरिंग की सीमा (उष्णकटिबंधीयकरण, डीक्वांटाइजेशन) के रूप में होती है क्योंकि आधार {{tmath|b \to \infty}} अनंत तक जाता है ([[मैक्स-प्लस सेमिरिंग]]) या शून्य {{tmath|b \to 0}} तक ([[न्यूनतम]] [[मिन-प्लस सेमी-रिंग]]), और इस प्रकार उष्णकटिबंधीय सेमिरिंग के [[विरूपण सिद्धांत]] (परिमाणीकरण) के रूप में देखा जा सकता है। विशेष रूप से, अतिरिक्त ऑपरेशन, लॉगऐड (कई शब्दों के लिए, [[लॉगसम ऍक्स्प]]) को [[अधिकतम]] या न्यूनतम विरूपण के रूप में देखा जा सकता है। लॉग सेमिरिंग में [[गणितीय अनुकूलन]] में अनुप्रयोग हैं, क्योंकि यह गैर-चिकनी अधिकतम और न्यूनतम को सुचारू संचालन से परिवर्तित कर देता है। लघुगणक (लघुगणकीय पैमाने पर मापा जाता है), जैसे कि [[डेसिबल]] (देखें {{slink|डेसिबल|जोड़ना}}), लॉग प्रायिकता, या लॉग-संभावना।


== परिभाषा ==
== परिभाषा ==
लॉग सेमीरिंग पर संचालन को गैर-ऋणात्मक वास्तविक संख्याओं में मैप करके, वहां संचालन करके और उन्हें वापस मैप करके बाहरी रूप से परिभाषित किया जा सकता है। जोड़ और गुणन के सामान्य संचालन के साथ गैर-ऋणात्मक वास्तविक संख्याएं एक सेमिरिंग बनाती हैं (कोई नकारात्मक नहीं है), जिसे [[संभाव्यता सेमीरिंग]] के रूप में जाना जाता है, इसलिए लॉग सेमीरिंग संचालन को संभाव्यता सेमीरिंग पर संचालन के [[ठहराना|पुलबैक]] के रूप में देखा जा सकता है, और ये रिंग के रूप में [[समरूप]] हैं।
लॉग सेमीरिंग पर संचालन को गैर-ऋणात्मक वास्तविक संख्याओं में मैप करके, वहां संचालन करके और उन्हें वापस मैप करके बाहरी रूप से परिभाषित किया जा सकता है। जोड़ और गुणन के सामान्य संचालन के साथ गैर-ऋणात्मक वास्तविक संख्याएं सेमिरिंग बनाती हैं (कोई नकारात्मक नहीं है), जिसे [[संभाव्यता सेमीरिंग]] के रूप में जाना जाता है, इसलिए लॉग सेमीरिंग संचालन को संभाव्यता सेमीरिंग पर संचालन के [[ठहराना|पुलबैक]] के रूप में देखा जा सकता है, और ये रिंग के रूप में [[समरूप]] हैं।


औपचारिक रूप से, विस्तारित वास्तविक संख्याएँ दी गई हैं; {{math|'''R''' ∪ {–∞, +∞}}}{{efn|Note that usually only one infinity is included, not both, since <math>\infty \otimes -\infty = \infty + (-\infty)</math> is ambiguous, and is best left undefined, as is 0/0 in real numbers.}} और एक आधार {{math|''b'' ≠ 1}}, एक परिभाषित करता है:
औपचारिक रूप से, विस्तारित वास्तविक संख्याएँ दी गई हैं; {{math|'''R''' ∪ {–∞, +∞}}}{{efn|Note that usually only one infinity is included, not both, since <math>\infty \otimes -\infty = \infty + (-\infty)</math> is ambiguous, and is best left undefined, as is 0/0 in real numbers.}} और आधार {{math|''b'' ≠ 1}}, परिभाषित करता है:
:<math>
:<math>
\begin{align}
\begin{align}
Line 14: Line 14:
\end{align}
\end{align}
</math>
</math>
ध्यान दें कि आधार की चिंता किए बिना, लॉग गुणन सामान्य जोड़ के समान है, <math>x \otimes_b y = x + y</math>, चूँकि लघुगणक गुणन को योग में लेते हैं; चूँकि, लॉग जोड़ आधार पर निर्भर करता है। सामान्य जोड़ और गुणा की इकाइयाँ 0 और 1 हैं; तदनुसार, लॉग जोड़ की इकाई है, <math>\log_b 0 = -\infty</math> के लिए <math>b > 1</math> और <math>\log_b 0 = -\log_{1/b} 0 = +\infty</math> के लिए <math>b < 1</math>, और लॉग <math>\log 1 = 0</math> गुणन की इकाई है, आधार की चिंता किए बिना।
ध्यान दें कि आधार की चिंता किए बिना, लॉग गुणन सामान्य जोड़ <math>x \otimes_b y = x + y</math> के समान है, चूँकि लघुगणक गुणन को योग में लेते हैं; चूँकि, लॉग जोड़ आधार पर निर्भर करता है। सामान्य जोड़ और गुणा की इकाइयाँ 0 और 1 हैं; तदनुसार, लॉग जोड़ की इकाई है, <math>\log_b 0 = -\infty</math> के लिए <math>b > 1</math> और <math>\log_b 0 = -\log_{1/b} 0 = +\infty</math> के लिए <math>b < 1</math>, और लॉग <math>\log 1 = 0</math> गुणन की इकाई है, आधार की चिंता किए बिना।


अधिक संक्षेप में, इकाई लॉग सेमिरिंग को आधार के लिए परिभाषित किया जा सकता है, जैसे {{mvar|''e''}}:
अधिक संक्षेप में, इकाई लॉग सेमिरिंग को आधार के लिए परिभाषित किया जा सकता है, जैसे {{mvar|''e''}}:
Line 35: Line 35:


== गुण ==
== गुण ==
एक लॉग सेमीरिंग वास्तव में एक [[सेमीफ़ील्ड]] है, क्योंकि योगात्मक इकाई के अतिरिक्त अन्य सभी संख्याएँ {{math|−∞}} (या {{math|+∞}}) द्वारा दिया गया गुणक व्युत्क्रम <math>-x</math> है, तब से <math>x \otimes -x = \log_b(b^x \cdot b^{-x}) = \log_b (1) = 0.</math> इस प्रकार लॉग डिवीजन ⊘ अच्छी तरह से परिभाषित है, चूँकि लॉग घटाव ⊖ सदैव परिभाषित नहीं होता है।
लॉग सेमीरिंग वास्तव में [[सेमीफ़ील्ड]] है, क्योंकि योगात्मक इकाई के अतिरिक्त अन्य सभी संख्याएँ {{math|−∞}} (या {{math|+∞}}) द्वारा दिया गया गुणक व्युत्क्रम <math>-x</math> है, तब से <math>x \otimes -x = \log_b(b^x \cdot b^{-x}) = \log_b (1) = 0</math>इस प्रकार लॉग डिवीजन ⊘ अच्छी तरह से परिभाषित है, चूँकि लॉग घटाव ⊖ सदैव परिभाषित नहीं होता है।


एक माध्य को लॉग जोड़ और लॉग डिवीजन द्वारा परिभाषित किया जा सकता है (प्रतिपादक के अनुरूप [[अर्ध-अंकगणितीय माध्य]] के रूप में), जैसा कि
माध्य को लॉग जोड़ और लॉग डिवीजन द्वारा परिभाषित किया जा सकता है (प्रतिपादक के अनुरूप [[अर्ध-अंकगणितीय माध्य]] के रूप में), जैसा कि
:<math>M_\mathrm{lm}(x, y) := (x \oplus y) \oslash 2 = \log_b\bigl((b^x + b^y)/2\bigr) = \log_b (b^x + b^y) - \log_b 2 = (x \oplus y) - \log_b 2.</math>
:<math>M_\mathrm{lm}(x, y) := (x \oplus y) \oslash 2 = \log_b\bigl((b^x + b^y)/2\bigr) = \log_b (b^x + b^y) - \log_b 2 = (x \oplus y) - \log_b 2.</math>
ध्यान दें कि यह केवल <math>- \log_b 2</math> द्वारा स्थानांतरित किया गया है, चूँकि लघुगणकीय विभाजन रैखिक घटाव से मेल खाता है।
ध्यान दें कि यह केवल <math>- \log_b 2</math> द्वारा स्थानांतरित किया गया है, चूँकि लघुगणकीय विभाजन रैखिक घटाव से मेल खाता है।


एक लॉग सेमीरिंग में सामान्य यूक्लिडियन मीट्रिक होता है, जो [[सकारात्मक वास्तविक संख्या|सकारात्मक वास्तविक संख्याओं]] पर लघुगणकीय पैमाने से मेल खाता है।
लॉग सेमीरिंग में सामान्य यूक्लिडियन मीट्रिक होता है, जो [[सकारात्मक वास्तविक संख्या|धनात्मक वास्तविक संख्याओं]] पर लघुगणकीय पैमाने से मेल खाता है।


इसी तरह, एक लॉग सेमिरिंग में सामान्य लेबेस्ग्यू उपाय होता है, जो लॉग गुणन (सामान्य जोड़, ज्यामितीय रूप से अनुवाद) के संबंध में एक [[अपरिवर्तनीय उपाय]] है, जो संभाव्यता सेमीरिंग पर लघुगणकीय माप से मेल खाता है।
इसी तरह, लॉग सेमिरिंग में सामान्य लेबेस्ग्यू उपाय होता है, जो लॉग गुणन (सामान्य जोड़, ज्यामितीय रूप से अनुवाद) के संबंध में [[अपरिवर्तनीय उपाय]] है, जो संभाव्यता सेमीरिंग पर लघुगणकीय माप से मेल खाता है।


== यह भी देखें ==
== यह भी देखें ==
Line 59: Line 59:
*{{cite book | last=Lothaire | first=M. | authorlink=M. Lothaire | title=Applied combinatorics on words | others=A collective work by Jean Berstel, Dominique Perrin, Maxime Crochemore, Eric Laporte, Mehryar Mohri, Nadia Pisanti, Marie-France Sagot, [[Gesine Reinert]], [[Sophie Schbath]], Michael Waterman, Philippe Jacquet, [[Wojciech Szpankowski]], Dominique Poulalhon, Gilles Schaeffer, Roman Kolpakov, Gregory Koucherov, Jean-Paul Allouche and [[Valérie Berthé]] | series=Encyclopedia of Mathematics and Its Applications | volume=105 | location=Cambridge | publisher=[[Cambridge University Press]] | year=2005 | isbn=0-521-84802-4 | zbl=1133.68067 | url-access=registration | url=https://archive.org/details/appliedcombinato0000loth }}
*{{cite book | last=Lothaire | first=M. | authorlink=M. Lothaire | title=Applied combinatorics on words | others=A collective work by Jean Berstel, Dominique Perrin, Maxime Crochemore, Eric Laporte, Mehryar Mohri, Nadia Pisanti, Marie-France Sagot, [[Gesine Reinert]], [[Sophie Schbath]], Michael Waterman, Philippe Jacquet, [[Wojciech Szpankowski]], Dominique Poulalhon, Gilles Schaeffer, Roman Kolpakov, Gregory Koucherov, Jean-Paul Allouche and [[Valérie Berthé]] | series=Encyclopedia of Mathematics and Its Applications | volume=105 | location=Cambridge | publisher=[[Cambridge University Press]] | year=2005 | isbn=0-521-84802-4 | zbl=1133.68067 | url-access=registration | url=https://archive.org/details/appliedcombinato0000loth }}
{{refend}}
{{refend}}
[[Category: लघुगणक|सेमिरिंग]] [[Category: उष्णकटिबंधीय विश्लेषण]]


[[Category: Machine Translated Page]]
[[Category:Created On 08/02/2023]]
[[Category:Created On 08/02/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:उष्णकटिबंधीय विश्लेषण]]
[[Category:लघुगणक|सेमिरिंग]]

Latest revision as of 10:40, 18 July 2023

गणित में, उष्णकटिबंधीय विश्लेषण के क्षेत्र में, लॉग सेमीरिंग लघुगणकीय पैमाने पर सेमिरिंग संरचना है, जो विस्तारित वास्तविक संख्याओं को लघुगणक के रूप में मानते हुए प्राप्त किया जाता है। अर्थात्, जोड़ और गुणन के संचालन को संयुग्मन (समूह सिद्धांत) द्वारा परिभाषित किया गया है: वास्तविक संख्याओं का घातांक, धनात्मक (या शून्य) संख्या प्राप्त करना, इन संख्याओं को वास्तविक संख्याओं पर साधारण बीजगणितीय संचालन के साथ जोड़ना या गुणा करना, और फिर लेना प्रारंभिक घातांक को उलटने के लिए लघुगणक इस तरह के संचालन को, उदाहरण के लिए, लघुगणक जोड़, आदि के रूप में भी जाना जाता है। सदैव की तरह उष्णकटिबंधीय विश्लेषण में, संचालन को ⊕ और ⊗ द्वारा चिह्नित किया जाता है, जिससे उन्हें सामान्य जोड़ + और गुणन × (या ⋅) से अलग किया जा सके। ये ऑपरेशन आधार की पसंद पर निर्भर करते हैं; b प्रतिपादक और लघुगणक के लिए (b लघुगणक इकाई का विकल्प है), जो पैमाना फ़ैक्टर से मेल खाता है, और 1 के अतिरिक्त किसी भी धनात्मक आधार के लिए अच्छी तरह से परिभाषित है; आधार का उपयोग करना b < 1 नकारात्मक चिह्न का उपयोग करने और प्रतिलोम 1/b > 1 का उपयोग करने के बराबर है।[lower-alpha 1] यदि योग्य नहीं है, तो आधार को पारंपरिक रूप से e या 1/e लिया जाता है, जो e नकारात्मक के साथ मेल खाता है।

लॉग सेमिरिंग में उष्णकटिबंधीय सेमिरिंग की सीमा (उष्णकटिबंधीयकरण, डीक्वांटाइजेशन) के रूप में होती है क्योंकि आधार अनंत तक जाता है (मैक्स-प्लस सेमिरिंग) या शून्य तक (न्यूनतम मिन-प्लस सेमी-रिंग), और इस प्रकार उष्णकटिबंधीय सेमिरिंग के विरूपण सिद्धांत (परिमाणीकरण) के रूप में देखा जा सकता है। विशेष रूप से, अतिरिक्त ऑपरेशन, लॉगऐड (कई शब्दों के लिए, लॉगसम ऍक्स्प) को अधिकतम या न्यूनतम विरूपण के रूप में देखा जा सकता है। लॉग सेमिरिंग में गणितीय अनुकूलन में अनुप्रयोग हैं, क्योंकि यह गैर-चिकनी अधिकतम और न्यूनतम को सुचारू संचालन से परिवर्तित कर देता है। लघुगणक (लघुगणकीय पैमाने पर मापा जाता है), जैसे कि डेसिबल (देखें डेसिबल § जोड़ना), लॉग प्रायिकता, या लॉग-संभावना।

परिभाषा

लॉग सेमीरिंग पर संचालन को गैर-ऋणात्मक वास्तविक संख्याओं में मैप करके, वहां संचालन करके और उन्हें वापस मैप करके बाहरी रूप से परिभाषित किया जा सकता है। जोड़ और गुणन के सामान्य संचालन के साथ गैर-ऋणात्मक वास्तविक संख्याएं सेमिरिंग बनाती हैं (कोई नकारात्मक नहीं है), जिसे संभाव्यता सेमीरिंग के रूप में जाना जाता है, इसलिए लॉग सेमीरिंग संचालन को संभाव्यता सेमीरिंग पर संचालन के पुलबैक के रूप में देखा जा सकता है, और ये रिंग के रूप में समरूप हैं।

औपचारिक रूप से, विस्तारित वास्तविक संख्याएँ दी गई हैं; R ∪ {–∞, +∞}[lower-alpha 2] और आधार b ≠ 1, परिभाषित करता है:

ध्यान दें कि आधार की चिंता किए बिना, लॉग गुणन सामान्य जोड़ के समान है, चूँकि लघुगणक गुणन को योग में लेते हैं; चूँकि, लॉग जोड़ आधार पर निर्भर करता है। सामान्य जोड़ और गुणा की इकाइयाँ 0 और 1 हैं; तदनुसार, लॉग जोड़ की इकाई है, के लिए और के लिए , और लॉग गुणन की इकाई है, आधार की चिंता किए बिना।

अधिक संक्षेप में, इकाई लॉग सेमिरिंग को आधार के लिए परिभाषित किया जा सकता है, जैसे e:

योजक इकाई के साथ −∞ और गुणक इकाई 0; यह अधिकतम सम्मेलन से मेल खाता है।

विपरीत परिपाटी भी सामान्य है, और आधार 1/e से मेल खाती है, न्यूनतम सम्मेलन:[1]

योजक इकाई के साथ +∞ और गुणक इकाई 0।

गुण

लॉग सेमीरिंग वास्तव में सेमीफ़ील्ड है, क्योंकि योगात्मक इकाई के अतिरिक्त अन्य सभी संख्याएँ −∞ (या +∞) द्वारा दिया गया गुणक व्युत्क्रम है, तब से । इस प्रकार लॉग डिवीजन ⊘ अच्छी तरह से परिभाषित है, चूँकि लॉग घटाव ⊖ सदैव परिभाषित नहीं होता है।

माध्य को लॉग जोड़ और लॉग डिवीजन द्वारा परिभाषित किया जा सकता है (प्रतिपादक के अनुरूप अर्ध-अंकगणितीय माध्य के रूप में), जैसा कि

ध्यान दें कि यह केवल द्वारा स्थानांतरित किया गया है, चूँकि लघुगणकीय विभाजन रैखिक घटाव से मेल खाता है।

लॉग सेमीरिंग में सामान्य यूक्लिडियन मीट्रिक होता है, जो धनात्मक वास्तविक संख्याओं पर लघुगणकीय पैमाने से मेल खाता है।

इसी तरह, लॉग सेमिरिंग में सामान्य लेबेस्ग्यू उपाय होता है, जो लॉग गुणन (सामान्य जोड़, ज्यामितीय रूप से अनुवाद) के संबंध में अपरिवर्तनीय उपाय है, जो संभाव्यता सेमीरिंग पर लघुगणकीय माप से मेल खाता है।

यह भी देखें

टिप्पणियाँ

  1. Since
  2. Note that usually only one infinity is included, not both, since is ambiguous, and is best left undefined, as is 0/0 in real numbers.


संदर्भ

  1. Lothaire 2005, p. 211.
  • Lothaire, M. (2005). Applied combinatorics on words. Encyclopedia of Mathematics and Its Applications. Vol. 105. A collective work by Jean Berstel, Dominique Perrin, Maxime Crochemore, Eric Laporte, Mehryar Mohri, Nadia Pisanti, Marie-France Sagot, Gesine Reinert, Sophie Schbath, Michael Waterman, Philippe Jacquet, Wojciech Szpankowski, Dominique Poulalhon, Gilles Schaeffer, Roman Kolpakov, Gregory Koucherov, Jean-Paul Allouche and Valérie Berthé. Cambridge: Cambridge University Press. ISBN 0-521-84802-4. Zbl 1133.68067.