क्रम टोपोलॉजी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(9 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Certain topology in mathematics}}
{{Short description|Certain topology in mathematics}}गणित में, '''क्रम सांस्थितिकी''' या (क्रम टोपोलॉजी) एक [[टोपोलॉजिकल स्पेस|निश्चित सांस्थितिकी]] है जिसे किसी भी पूर्णतः क्रमित समुच्चय पर परिभाषित किया जा सकता है। यह [[वास्तविक संख्या|वास्तविक संख्याओं]] की सांस्थितिकी का मनमाने ढंग से पूर्णतः क्रमबद्ध समुच्चयों का प्राकृतिक सामान्यीकरण है।  
{{Distinguish|क्रम सांस्थितिकी (कार्यात्मक विश्लेषण)}}
 
गणित में, '''क्रम सांस्थितिकी''' एक [[टोपोलॉजिकल स्पेस|निश्चित सांस्थितिकी]] है जिसे किसी भी पूर्णतः क्रमित समुच्चय पर परिभाषित किया जा सकता है। यह [[वास्तविक संख्या|वास्तविक संख्याओं]] की सांस्थितिकी का मनमाने ढंग से पूर्णतः क्रमबद्ध समुच्चयों का प्राकृतिक सामान्यीकरण है।  


यदि ''X'' एक पूर्णतः क्रमित समुच्चय है, तो ''X'' पर '''क्रम सांस्थितिकी''' "विवृत अर्धरखाओं" के उप आधार द्वारा उत्पन्न होती है।
यदि ''X'' एक पूर्णतः क्रमित समुच्चय है, तो ''X'' पर '''क्रम सांस्थितिकी''' "विवृत अर्धरखाओं" के उप आधार द्वारा उत्पन्न होती है।
Line 19: Line 16:


== रैखिक रूप से क्रमित अंतराल के उप-अंतराल का उदाहरण जिसकी सांस्थितिकी क्रम सांस्थितिकी नहीं है ==
== रैखिक रूप से क्रमित अंतराल के उप-अंतराल का उदाहरण जिसकी सांस्थितिकी क्रम सांस्थितिकी नहीं है ==
हालाँकि Y की उप-स्थान टोपोलॉजी = {–1} ∪ {1/n}<sub>''n''&isin;'''N'''</sub> उपरोक्त अनुभाग में यह दिखाया गया है कि यह Y पर प्रेरित ऑर्डर द्वारा उत्पन्न नहीं हुआ है, फिर भी यह Y पर एक ऑर्डर टोपोलॉजी है; वास्तव में, सबस्पेस टोपोलॉजी में प्रत्येक बिंदु अलग-थलग है (यानी, सिंगलटन {y} Y में प्रत्येक y के लिए Y में खुला है), इसलिए सबस्पेस टोपोलॉजी Y पर [[असतत टोपोलॉजी]] है (टोपोलॉजी जिसमें Y का प्रत्येक उपसमुच्चय एक खुला है) सेट), और किसी भी सेट पर असतत टोपोलॉजी एक ऑर्डर टोपोलॉजी है। Y पर कुल आदेश को परिभाषित करने के लिए जो Y पर असतत टोपोलॉजी उत्पन्न करता है, बस -1 को Y का सबसे बड़ा तत्व परिभाषित करके Y पर प्रेरित आदेश को संशोधित करें और अन्यथा अन्य बिंदुओं के लिए समान क्रम रखें, ताकि इस नए क्रम में (इसे कॉल करें <<sub>1</sub>) हमारे पास 1/n < है<sub>1</sub> -1 सभी n ∈ 'N' के लिए। फिर, Y पर टोपोलॉजी के क्रम में < द्वारा उत्पन्न किया गया<sub>1</sub>, Y का प्रत्येक बिंदु Y में पृथक है।
यद्यपि उपरोक्त अनुभाग में ''Y'' = {–1} ∪ {1/''n''}<sub>''n'''''N'''</sub> की उप-अंतराल सांस्थितिकी को ''Y'' पर प्रेरित क्रम द्वारा उत्पन्न नहीं किया गया है, फिर भी यह ''Y'' पर एक क्रम सांस्थितिकी है वास्तव में, उपअंतराल सांस्थितिकी में प्रत्येक बिंदु पृथक (अर्थात, एकल {y} ''Y'' में प्रत्येक y के लिए ''Y'' में विवृत है) है, इसलिए उप-अंतराल सांस्थितिकी ''Y'' पर (वह सांस्थितिकी जिसमें ''Y'' का प्रत्येक उपसमुच्चय विवृत समुच्चय है) [[असतत टोपोलॉजी|असतत सांस्थितिकी]] है, और किसी भी समुच्चय पर असतत सांस्थितिकी क्रम सांस्थितिकी है। ''Y'' पर कुल क्रम को परिभाषित करने के लिए जो ''Y'' पर असतत सांस्थितिकी उत्पन्न करता है, केवल -1 को ''Y'' का सबसे बड़ा तत्व परिभाषित करके ''Y'' पर प्रेरित क्रम को संशोधित करें और अन्यथा अन्य बिंदुओं के लिए समान क्रम रखें, ताकि इस नए क्रम में (इसे ''<''<sub>1</sub> कहें) हमारे पास सभी ''n'' ∈ '''N''' के लिए 1/''n'' ''<''<sub>1</sub> –1 है। फिर, ''<''<sub>1</sub> द्वारा उत्पन्न ''Y'' पर क्रम सांस्थितिकी में, ''Y'' का प्रत्येक बिंदु ''Y'' में पृथक होता है।  


हम यहां रैखिक रूप से क्रमबद्ध टोपोलॉजिकल स्पेस जिसकी टोपोलॉजी एक ऑर्डर टोपोलॉजी है।
हम यहां रैखिक रूप से क्रमित सांस्थितिक अंतराल ''X'' के उपसमुच्चय ''Z'' को इस प्रकार परिभाषित करना चाहते हैं कि ''Z'' पर कोई भी कुल क्रम ''Z'' पर उपअंतराल सांस्थितिकी उत्पन्न नहीं करता है, ताकि उपअंतराल सांस्थितिकी क्रम सांस्थितिक न हो, यद्यपि यह उस अंतराल की उपअंतराल सांस्थितिकी हो, जिसकी सांस्थितिकी क्रम सांस्थितिकी है।


होने देना <math>Z = \{-1\}\cup (0,1) </math> वास्तविक पंक्ति में. पहले जैसा ही तर्क दिखाता है कि Z पर सबस्पेस टोपोलॉजी Z पर प्रेरित ऑर्डर टोपोलॉजी के बराबर नहीं है, लेकिन कोई यह दिखा सकता है कि Z पर सबस्पेस टोपोलॉजी Z पर किसी भी ऑर्डर टोपोलॉजी के बराबर नहीं हो सकती है।
मान लीजिए <math>Z = \{-1\}\cup (0,1) </math> वास्तविक रेखा में है। पहले जैसा ही तर्क दिखाता है कि ''Z'' पर उपअंतराल सांस्थितिकी ''Z'' पर प्रेरित क्रम सांस्थितिकी के बराबर नहीं है, लेकिन कोई यह दिखा सकता है कि ''Z'' पर उपअंतराल सांस्थितिकी ''Z'' पर किसी भी क्रम सांस्थितिकी के बराबर नहीं हो सकती है।  


एक तर्क इस प्रकार है. विरोधाभास के माध्यम से मान लीजिए कि Z पर कुछ पूरी तरह से ऑर्डर किया गया सेट # सख्त कुल ऑर्डर < है, जैसे कि < द्वारा उत्पन्न ऑर्डर टोपोलॉजी Z पर सबस्पेस टोपोलॉजी के बराबर है (ध्यान दें कि हम यह नहीं मान रहे हैं कि < Z पर प्रेरित ऑर्डर है , बल्कि Z पर मनमाने ढंग से दिया गया कुल ऑर्डर जो सबस्पेस टोपोलॉजी उत्पन्न करता है)निम्नलिखित में, अंतराल संकेतन की व्याख्या < संबंध के सापेक्ष की जानी चाहिए। इसके अलावा, यदि और बी सेट हैं, <math> A<B </math> इसका मतलब यही होगा <math> a<b </math> ए में प्रत्येक ए और बी में बी के लिए।
तर्क इस प्रकार है। विरोधाभास के माध्यम से मान लीजिए कि ''Z'' पर कुछ दृढ़ कुल क्रम < है, जैसे कि < द्वारा उत्पन्न क्रम सांस्थितिकी ''Z'' पर उपअंतराल सांस्थितिकी (ध्यान दें कि हम यह नहीं मान रहे हैं कि < ''Z'' पर प्रेरित क्रम है, बल्कि ''Z'' पर मनमाने ढंग से दिया गया कुल क्रम है जो उपअंतराल सांस्थितिकी उत्पन्न करता है) के बराबर है। निम्नलिखित में, अंतराल संकेतन की व्याख्या < संबंध के सापेक्ष की जानी चाहिए। साथ ही, यदि ''A'' और ''B'' समुच्चय हैं, तो <math> A<B </math> का अर्थ होगा कि ''A'' में प्रत्येक ''a'' और ''B'' में ''b'' के लिए <math> a<b </math>


मान लीजिए M=Z\{-1}, इकाई अंतराल। एम जुड़ा हुआ है. यदि m,n∈M और m<-1<n, तो <math>(-\infty, -1)</math> और <math>(-1, \infty)</math> अलग एम, एक विरोधाभास। इसी तरह के तर्कों से, एम अपने आप में सघन है और < के संबंध में इसमें कोई अंतराल नहीं है। इस प्रकार, M <<{-1} या {-1}< (-1, पी) खाली है. चूँकि {-1} <M, हम जानते हैं कि -1 Z का एकमात्र तत्व है जो p से कम है, इसलिए p, M का न्यूनतम है। फिर \ {p} = A ∪B, जहां A और B गैर-रिक्त खुले हैं और एम के असंयुक्त उपसमुच्चय, क्रमशः वास्तविक रेखा (0,पी) और (पी,1) के अंतराल द्वारा दिए गए हैं। ध्यान दें कि A और B की सीमाएँ दोनों p की एकात्मक हैं। में व्यापकता खोए बिना और बी में बी को ऐसे मान लें कि <बी, चूंकि एम में कोई अंतराल नहीं है और यह घना है, अंतराल (, बी) में ए और बी के बीच एक सीमा बिंदु है (कोई भी कर सकता है) A के तत्वों x के समुच्चय का सर्वोच्च भाग इस प्रकार लें कि [a,x] A में हो)यह एक विरोधाभास है, क्योंकि एकमात्र सीमा सख्ती से एक के अंतर्गत है।
माना ''M'' = ''Z'' \ {-1}, इकाई अंतराल है। ''M'' जुड़ा हुआ है। यदि ''m'', ''n'' ∈ ''M'' और ''m'' < -1 < ''n'', तो <math>(-\infty, -1)</math> और <math>(-1, \infty)</math> ''M'' को अलग करते हैं, जो विरोधाभास है। समान तर्कों के अनुसार, ''M'' अपने आप में सघन है और < के संबंध में इसमें कोई अंतराल नहीं है। इस प्रकार, ''M'' < {-1} or {-1} < ''M''। व्यापकता की हानि के बिना मान लें कि {-1} < ''M। चूँकि Z में {-1} विवृत है, M में कुछ बिंदु p है जिससे अंतराल (-1, p) खाली है। चूँकि {-1} < M, हम जानते हैं कि -1 Z का एकमात्र तत्व है जो p से कम है, इसलिए p, M का न्यूनतम है। फिर M \ {p} = A ∪ B, जहां A और B क्रमशः वास्तविक रेखा (0,p) और (p,1) के अंतराल द्वारा दिए गए M के गैर-रिक्त विवृत और असंयुक्त उपसमुच्चय हैं। ध्यान दें कि A और B की सीमाएँ दोनों p की एकात्मक हैं। A में व्यापकता हानि बिना a और b में B को ऐसे मान लें कि a<b, चूंकि M में कोई अंतराल नहीं है और यह सघन है, अंतराल (a,b) (कोई A के तत्वों x के समुच्चय का सर्वोच्च मान इस प्रकार ले सकता है कि [a,x] A में है) में A और B के बीच एक सीमांत बिंदु है। यह एक विरोधाभास है, क्योंकि एकमात्र सीमा पूरी तरह से a अंतर्गत है।''


==बाएँ और दाएँ क्रम की टोपोलॉजी==
==बाएँ और दाएँ क्रम सांस्थितिकी==
ऑर्डर टोपोलॉजी के कई प्रकार दिए जा सकते हैं:
क्रम सांस्थितिकी के कई प्रकार दिए जा सकते हैं-


* सही क्रम टोपोलॉजी<ref>Steen & Seebach, p. 74</ref> एक्स पर एक टोपोलॉजी है जिसका आधार (टोपोलॉजी) फॉर्म के सभी अंतराल हैं <math>(a,\infty)=\{x\in X\mid x>a\}</math>, सेट एक्स के साथ।
* ''X'' पर '''दाएँ क्रम सांस्थितिकी<ref>Steen & Seebach, p. 74</ref>''' वह सांस्थितिकी है जिसका आधार समुच्चय ''X'' के साथ <math>(a,\infty)=\{x\in X\mid x>a\}</math> रूप के सभी अंतराल हैं।
* एक्स पर 'लेफ्ट ऑर्डर टोपोलॉजी' वह टोपोलॉजी है जिसका आधार फॉर्म के सभी अंतराल हैं <math>(-\infty,a)=\{x\in X\mid x<a\}</math>, सेट एक्स के साथ।
* X पर '''बाएँ क्रम सांस्थितिकी''' वह सांस्थितिकी है जिसका आधार समुच्चय ''X'' के साथ <math>(-\infty,a)=\{x\in X\mid x<a\}</math> रूप के सभी अंतराल हैं।


सामान्य टोपोलॉजी में प्रतिउदाहरण देने के लिए बाएँ और दाएँ क्रम की टोपोलॉजी का उपयोग किया जा सकता है। उदाहरण के लिए, एक बंधे हुए सेट पर बाएँ या दाएँ क्रम की टोपोलॉजी एक [[ सघन स्थान ]] का उदाहरण प्रदान करती है जो हॉसडॉर्फ नहीं है।
बाएँ और दाएँ क्रम सांस्थितिकी का उपयोग सामान्य सांस्थितिकी में प्रतिउदाहरण देने के लिए किया जा सकता है। उदाहरण के लिए, परिबद्ध समुच्चय पर बाएँ या दाएँ क्रम सांस्थतिकी [[ सघन स्थान |सघन अंतराल]] का उदाहरण प्रदान करती है जो हॉसडॉर्फ नहीं है।  


बायाँ क्रम टोपोलॉजी एक मानक टोपोलॉजी है जिसका उपयोग [[बूलियन बीजगणित (संरचना)]] पर कई [[सेट-सैद्धांतिक]] उद्देश्यों के लिए किया जाता है।{{Clarify|Boolean algebras are not totally ordered|date=April 2021}}
बाएँ क्रम सांस्थितिकी एक मानक सांस्थितिकी है जिसका उपयोग [[बूलियन बीजगणित (संरचना)|बूलियन बीजगणित]] पर कई [[सेट-सैद्धांतिक|समुच्चय-सैद्धांतिक]] उद्देश्यों के लिए किया जाता है।


==सामान्य स्थान==
==क्रमसूचक अंतराल==


किसी भी [[क्रमसूचक संख्या]] λ के लिए कोई क्रमसूचक संख्याओं के रिक्त स्थान पर विचार कर सकता है
किसी भी [[क्रमसूचक संख्या]] λ के लिए कोई क्रमसूचक संख्याओं के अंतरालों पर विचार कर सकता है
:<math>[0,\lambda) = \{\alpha \mid \alpha < \lambda\}</math>
:<math>[0,\lambda) = \{\alpha \mid \alpha < \lambda\}</math>
:<math>[0,\lambda] = \{\alpha \mid \alpha \le \lambda\}</math>
:<math>[0,\lambda] = \{\alpha \mid \alpha \le \lambda\}</math>
प्राकृतिक क्रम टोपोलॉजी के साथ। इन स्थानों को क्रमसूचक स्थान कहा जाता है। (ध्यान दें कि क्रमिक संख्याओं के सामान्य सेट-सैद्धांतिक निर्माण में हमारे पास ''λ'' = [0,''λ'') और ''λ'' + 1 = [0,''λ''] होता है)। जाहिर है, ये स्थान अधिकतर तब रुचिकर होते हैं जब ''λ'' एक अनंत क्रमसूचक होता है; अन्यथा (परिमित अध्यादेशों के लिए), ऑर्डर टोपोलॉजी केवल असतत टोपोलॉजी है।
प्राकृतिक क्रम सांस्थितिकी के साथ। इन अंतरालों को '''क्रमसूचक अंतराल''' कहा जाता है। (ध्यान दें कि क्रमसूचक संख्याओं के सामान्य समुच्चय-सैद्धांतिक निर्माण में हमारे पास ''λ'' = [0,''λ'') और ''λ'' + 1 = [0,''λ''] होता है)। स्पष्टतः, ये अंतराल अधिकतर तब रुचिकर होते हैं जब ''λ'' एक अनंत क्रमसूचक है अन्यथा (परिमित क्रमसूचक के लिए), क्रम सांस्थितिकी केवल असतत सांस्थितिकी है।  


जब ''λ'' = ω (पहला अनंत क्रमसूचक), स्थान [0,ω) सामान्य (अभी भी असतत) टोपोलॉजी के साथ सिर्फ एन है, जबकि [0,ω] एन का एलेक्जेंडरॉफ_एक्सटेंशन|एक-बिंदु कॉम्पैक्टिफिकेशन है .
जब ''λ'' = ω (प्रथम अनंत क्रमसूचक), अंतराल [0,ω) सामान्य (अभी भी असतत) सांस्थितिकी के साथ सिर्फ '''N''' है, जबकि [0,ω] '''N''' का एक-बिंदु संघनन है।


विशेष रुचि वह मामला है जब ''λ'' = ω<sub>1</sub>, सभी गणनीय क्रमसूचकों का समुच्चय, और पहला बेशुमार क्रमवाचक। तत्व ω<sub>1</sub> उपसमुच्चय [0,ω का एक [[सीमा बिंदु]] है<sub>1</sub>) भले ही [0,ω में तत्वों का कोई [[अनुक्रम (गणित)]] नहीं है<sub>1</sub>) में तत्व ω है<sub>1</sub> इसकी सीमा के रूप में. विशेष रूप से, [0,ω<sub>1</sub>] [[प्रथम-गणनीय स्थान]] नहीं है|प्रथम-गणनीय। उपस्थान [0,ω<sub>1</sub>) हालाँकि, प्रथम-गणनीय है, क्योंकि [0,ω में एकमात्र बिंदु है<sub>1</sub>] बिना गणनीय [[स्थानीय आधार]] के ω है<sub>1</sub>. कुछ और संपत्तियों में शामिल हैं
विशेष रुचि की स्थिति तब होती है जब ''λ'' = ω<sub>1</sub>, सभी गणनीय क्रमसूचकों का समुच्चय, और प्रथम असंख्य क्रमसूचक होता है। तत्व ω<sub>1</sub> उपसमुच्चय [0,ω<sub>1</sub>) का एक [[सीमा बिंदु]] है, यद्यपि [0,ω<sub>1</sub>) में तत्वों के किसी भी [[अनुक्रम (गणित)|अनुक्रम]] में तत्व ω<sub>1</sub> इसकी सीमा के रूप में नहीं है। विशेष रूप से, [0,ω<sub>1</sub>] [[प्रथम-गणनीय स्थान|प्रथम-गणनीय]] नहीं है। हालाँकि, उप-स्थान [0,ω<sub>1</sub>) प्रथम-गणनीय है, क्योंकि गणनीय [[स्थानीय आधार]] के बिना [0,ω<sub>1</sub>] में एकमात्र बिंदु ω<sub>1</sub> है। कुछ और गुणों में सम्मिलित हैं
*न तो [0,ω<sub>1</sub>) या [0,ω<sub>1</sub>] वियोज्य स्थान या द्वितीय-गणनीय है
*न तो [0,ω<sub>1</sub>) या [0,ω<sub>1</sub>] वियोज्य या द्वितीय-गणनीय है
*[0,ω<sub>1</sub>] सघन स्थान है, जबकि [0,ω<sub>1</sub>) अनुक्रमिक रूप [[क्रमिक रूप से संकुचित स्थान]] और [[गणनीय रूप से सघन स्थान]] है, लेकिन कॉम्पैक्ट या [[ परा-सुसंहत ]] नहीं है
*[0,ω<sub>1</sub>] सघन है, जबकि [0,ω<sub>1</sub>) [[क्रमिक रूप से संकुचित स्थान|क्रमिक रूप से सघन]] और [[गणनीय रूप से सघन स्थान|गणनीय रूप से सघन]] है, लेकिन सघन या [[ परा-सुसंहत |अनुसंहत]] नहीं है


== टोपोलॉजी और ऑर्डिनल्स ==
== सांस्थितिकी और क्रमसूचक ==
=== टोपोलॉजिकल स्पेस के रूप में ऑर्डिनल्स ===
=== सांस्थितिक अंतराल के रूप में क्रमसूचक ===
किसी भी क्रमसूचक संख्या [[कुल ऑर्डर]] टोपोलॉजी के साथ संपन्न करके एक टोपोलॉजिकल स्पेस में बनाया जा सकता है (चूँकि, अच्छी तरह से क्रमबद्ध होने के कारण, एक क्रमसूचक विशेष रूप से कुल क्रम में होता है): इसके विपरीत संकेत के अभाव में, यह हमेशा ऑर्डर टोपोलॉजी होता है इसका मतलब तब होता है जब एक ऑर्डिनल को एक टोपोलॉजिकल स्पेस के रूप में माना जाता है। (ध्यान दें कि यदि हम एक उचित वर्ग को टोपोलॉजिकल स्पेस के रूप में स्वीकार करने के इच्छुक हैं, तो सभी ऑर्डिनल्स का वर्ग भी ऑर्डर टोपोलॉजी के लिए एक टोपोलॉजिकल स्पेस है।)
किसी भी क्रमसूचक संख्या को क्रम सांस्थितिकी (चूँकि, अच्छी तरह से क्रमबद्ध होने के कारण, क्रमसूचक विशेष रूप से पूरी तरह से क्रमित होता है) के साथ संपन्न करके सांस्थितिक अंतराल में बनाया जा सकता है- इसके विपरीत संकेत के अभाव में, सदैव क्रम सांस्थितिकी का अर्थ तब होता है जब क्रमसूचक को सांस्थितिक अंतराल के रूप में माना जाता है। (ध्यान दें कि यदि हम एक उचित वर्ग को सांस्थितिक अंतराल के रूप में स्वीकार करने के इच्छुक हैं, तो सभी क्रमसूचक का वर्ग भी क्रम सांस्थितिकी के लिए सांस्थितिक अंतराल है।)


किसी ऑर्डिनल α के सीमा बिंदुओं का सेट बिल्कुल α से कम सीमा वाले ऑर्डिनल्स का सेट होता है। α से कम [[उत्तराधिकारी क्रमसूचक]] (और शून्य) α में [[पृथक बिंदु]] हैं। विशेष रूप से, परिमित क्रमसूचक और ω असतत स्थान टोपोलॉजिकल स्थान हैं, और इससे परे कोई भी क्रमसूचक असतत नहीं है। ऑर्डिनल α एक टोपोलॉजिकल स्पेस के रूप में कॉम्पैक्ट स्पेस है यदि और केवल यदि α एक उत्तराधिकारी ऑर्डिनल है।
किसी क्रमसूचक ''α'' के सीमा बिंदुओं का समुच्चय बिल्कुल ''α'' से कम सीमा वाले क्रमसूचकों का समुच्चय है। ''α'' से कम के [[उत्तराधिकारी क्रमसूचक|आनुक्रमिक क्रमसूचक]] (और शून्य) ''α'' में [[पृथक बिंदु]] हैं। विशेष रूप से, परिमित क्रमसूचक और ω अलग सांस्थितिक अंतराल हैं, और इससे परे कोई भी क्रमसूचक अलग नहीं है। क्रमसूचक ''α'' एक सांस्थितिक अंतराल के रूप में सघन है यदि और केवल तभी जब ''α'' आनुक्रमिक क्रमसूचक है।   
   
एक [[सीमा क्रमसूचक]] α के बंद सेट केवल इस अर्थ में बंद सेट हैं कि हमारे पास #बंद किए गए असंबद्ध सेट और वर्ग हैं, अर्थात्, जिनमें एक सीमा क्रमसूचक होता है जब भी उनमें इसके नीचे सभी पर्याप्त रूप से बड़े अध्यादेश होते हैं।


कोई भी क्रमसूचक, निश्चित रूप से, किसी भी आगे के क्रमसूचक का एक खुला उपसमुच्चय है। हम निम्नलिखित आगमनात्मक तरीके से ऑर्डिनल्स पर टोपोलॉजी को भी परिभाषित कर सकते हैं: 0 खाली टोपोलॉजिकल स्पेस है, α+1 को कॉम्पेक्टिफिकेशन (गणित) | α का एक-बिंदु कॉम्पेक्टिफिकेशन लेकर प्राप्त किया जाता है, और δ के लिए एक सीमा ऑर्डिनल, δ [[ प्रत्यक्ष सीमा ]] टोपोलॉजी से सुसज्जित है। ध्यान दें कि यदि α एक उत्तराधिकारी क्रमसूचक है, तो α सघन है, इस स्थिति में इसका एक-बिंदु संघनन α+1 α और एक बिंदु का असंयुक्त संघ है।
[[सीमा क्रमसूचक]] ''α'' के संवृत्त समुच्चय केवल उस अर्थ में संवृत्त समुच्चय हैं जिन्हें हम पहले ही परिभाषित कर चुके हैं, अर्थात्, जिनमें सीमा क्रमसूचक होता है जब भी उनमें इसके नीचे सभी पर्याप्त रूप से बड़े क्रमसूचक होते हैं।


टोपोलॉजिकल स्पेस के रूप में, सभी ऑर्डिनल्स हॉसडॉर्फ स्पेस और यहां तक ​​कि सामान्य स्पेस भी हैं। वे पूरी तरह से अलग किए गए स्थान (जुड़े हुए घटक बिंदु हैं), बिखरे हुए स्थान (प्रत्येक गैर-रिक्त उपस्थान में एक अलग बिंदु होता है; इस मामले में, बस सबसे छोटा तत्व लें), शून्य-आयामी स्थान | शून्य-आयामी (टोपोलॉजी में एक है) [[क्लोपेन]] [[आधार (टोपोलॉजी)]]: यहां, क्लोपेन अंतराल (β,γ<nowiki>'</nowiki>+1)=<nowiki>[</nowiki>β+' के मिलन के रूप में एक खुला अंतराल (β,γ) लिखें 1,γ<nowiki>']</nowiki> के लिए γ<nowiki>'</nowiki><γ). हालाँकि, वे सामान्य रूप से अत्यधिक असंबद्ध स्थान नहीं हैं (वहाँ खुले सेट हैं, उदाहरण के लिए ω से सम संख्याएँ, जिनका समापन खुला नहीं है)।
कोई भी क्रमसूचक, निश्चित रूप से, किसी भी आगे के क्रमसूचक का एक विवृत उपसमुच्चय है। हम क्रमसूचक पर सांस्थितिकी को निम्नलिखित विवेचनात्मक तरीके से भी परिभाषित कर सकते हैं- 0 खाली सांस्थितिक अंतराल है, ''α''+1 ''α'' के एक-बिंदु संघनन को लेकर प्राप्त किया जाता है, और ''δ'' सीमा क्रमसूचक के लिए, ''δ'' [[ प्रत्यक्ष सीमा |प्रेरक सीमा]] सांस्थितिकी से सुसज्जित है। ध्यान दें कि यदि ''α'' आनुक्रमिक क्रमसूचक है, तो ''α'' सघन है, इस स्थिति में इसका एक-बिंदु संघनन ''α''+1 ''α'' और बिंदु का असंयुक्त समुच्च है। 


टोपोलॉजिकल स्पेस ω<sub>1</sub> और इसके उत्तराधिकारी ω<sub>1</sub>+1 का उपयोग अक्सर गैर-गणनीय टोपोलॉजिकल रिक्त स्थान के पाठ्य-पुस्तक उदाहरण के रूप में किया जाता है।
सांस्थितिक अंतराल के रूप में, सभी क्रमसूचक हॉसडॉर्फ और यहां तक ​​कि सामान्य भी हैं। वे भी पूरी तरह से अलग (जुड़े हुए घटक बिंदु हैं) हो गए हैं, बिखरे (प्रत्येक गैर-रिक्त उप-स्थान में एक पृथक बिंदु होता है इस स्थिति में, केवल सबसे छोटा तत्व लें) हुए हैं, शून्य-आयामी (सांस्थितिकी का एक [[क्लोपेन]] [[आधार (टोपोलॉजी)|आधार]] है- यहां, ''γ''<nowiki/>'<''γ'' के लिए क्लोपेन अंतराल (''β'',''γ''<nowiki/>'+1)=[''β''+1,''γ''<nowiki/>'] के समुच्च के रूप में विवृत अंतराल (''β'',''γ'') लिखें। हालाँकि, वे सामान्य रूप से (विवृत समुच्चय हैं, उदाहरण के लिए ω से सम संख्याएँ, जिनका समापन विवृत नहीं है) अत्यधिक रूप से विच्छेदित नहीं हैं।
उदाहरण के लिए, टोपोलॉजिकल स्पेस में ω<sub>1</sub>+1, तत्व ω<sub>1</sub> उपसमुच्चय ω के समापन में है<sub>1</sub> भले ही ω में तत्वों का कोई क्रम नहीं है<sub>1</sub> इसमें ω तत्व है<sub>1</sub> इसकी सीमा के रूप में: ω में एक तत्व<sub>1</sub> एक गणनीय समुच्चय है; ऐसे समुच्चयों के किसी भी क्रम के लिए, इन समुच्चयों का मिलन अनगिनत गणनीय समुच्चयों का मिलन है, इसलिए फिर भी गणनीय है; यह संघ अनुक्रम के तत्वों की ऊपरी सीमा है, और इसलिए अनुक्रम की सीमा, यदि इसमें कोई है।


अंतरिक्ष ω<sub>1</sub> प्रथम-गणनीय स्थान है|प्रथम-गणनीय, लेकिन [[द्वितीय-गणनीय स्थान]] नहीं|द्वितीय-गणनीय, और ω<sub>1</sub>कॉम्पैक्ट स्पेस होने के बावजूद +1 में इन दोनों में से कोई भी गुण नहीं है। यह भी ध्यान देने योग्य है कि ω से कोई भी सतत फलन<sub>1</sub> से R (वास्तविक रेखा) अंततः स्थिर है: इसलिए ω का कॉम्पेक्टिफिकेशन (गणित)|स्टोन-सेच कॉम्पेक्टिफिकेशन<sub>1</sub> ω है<sub>1</sub>+1, ठीक इसके एक-बिंदु संघनन की तरह (ω के बिल्कुल विपरीत, जिसका स्टोन-सेच संघनन ω से बहुत बड़ा है)।
सांस्थितिक अंतराल ω<sub>1</sub> और उसके आनुक्रमिक ω<sub>1</sub>+1 को प्रायः गैर-गणनीय सांस्थितिक अंतराल के पाठ्य-पुस्तक उदाहरण के रूप में उपयोग किया जाता है। उदाहरण के लिए, सांस्थितिक अंतराल ω<sub>1</sub>+1 में, तत्व ω<sub>1</sub> उपसमुच्चय ω<sub>1</sub> के समापन में है, भले ही ω<sub>1</sub> में तत्वों के किसी भी अनुक्रम में तत्व ω<sub>1</sub> इसकी सीमा के रूप में नहीं है- ω<sub>1</sub> में तत्व गणनीय समुच्चय है ऐसे समुच्चयों के किसी भी क्रम के लिए, इन समुच्चयों का मिलन अनगिनत गणनीय समुच्चयों का मिलन है, इसलिए फिर भी गणनीय है यह समुच्च अनुक्रम के तत्वों की ऊपरी सीमा है, और इसलिए अनुक्रम की सीमा, यदि इसमें कोई है। 


=== सामान्य-[[अनुक्रम]]ित अनुक्रम ===
अंतराल ω<sub>1</sub> प्रथम-गणनीय है, लेकिन [[द्वितीय-गणनीय स्थान|द्वितीय-गणनीय]] नहीं है, और सघन होने के बावजूद, ω<sub>1</sub>+1 में इन दोनों में से कोई भी गुण नहीं है। यह भी ध्यान देने योग्य है कि ω<sub>1</sub> से '''R''' (वास्तविक रेखा) तक कोई भी निरंतर फलन अंततः स्थिर होता है- इसलिए ω<sub>1</sub> का स्टोन-सेच संघनन ω<sub>1</sub>+1 है, ठीक उसी तरह जैसे इसका एक-बिंदु संघनन (ω के ठीक विपरीत, जिसका स्टोन-सेच संघनन ω से बहुत बड़ा है)।
यदि α एक सीमा क्रमसूचक है और X एक समुच्चय है, तो X के तत्वों का α-अनुक्रमित अनुक्रम केवल α से अनुक्रम की अवधारणा. एक साधारण अनुक्रम मामले α = ω से मेल खाता है।
=== क्रमसूचक-[[अनुक्रम|अनुक्रमित]] अनुक्रम ===
यदि ''α'' सीमा क्रमसूचक है और ''X'' समुच्चय है, तो ''X'' के तत्वों के ''α''-अनुक्रमित अनुक्रम का अर्थ केवल ''α'' से ''X'' तक फलन है। यह अवधारणा, '''अनंत अनुक्रम''' या '''क्रमिक-अनुक्रमित अनुक्रम''', अनुक्रम की अवधारणा का सामान्यीकरण है। एक साधारण अनुक्रम स्थिति ''α'' = ω से मेल खाता है।  


यदि <α ऐसा कि x<sub>''ι''</sub> सभी ι≥β के लिए U में है।
यदि ''X'' सांस्थितिक अंतराल है, तो हम कहते हैं कि ''X'' के तत्वों का ''α''-अनुक्रमित अनुक्रम सीमा ''x'' में परिवर्तित हो जाता है जब यह एक नेट के रूप में परिवर्तित होता है, दूसरे शब्दों में, जब ''x'' का कोई पड़ोस ''U'' दिया जाता है तो क्रमिक ''β''<''α'' होता है इस प्रकार कि सभी ''ι''≥''β'' के लिए ''x<sub>ι</sub>'' ''U'' में है। सांस्थितिकी में सीमाएं निर्धारित करने के लिए सामान्य-अनुक्रमित अनुक्रम सामान्य (ω-अनुक्रमित) अनुक्रमों की तुलना में अधिक शक्तिशाली हैं- उदाहरण के लिए, ω<sub>1</sub> (ओमेगा-वन, सभी गणनीय क्रमसूचक संख्याओं का समुच्चय, और सबसे छोटी असंख्य क्रमसूचक संख्या), ω<sub>1</sub>+1 का सीमा बिंदु है (क्योंकि यह एक सीमा क्रमसूचक है), और, वास्तव में, यह ω<sub>1</sub>-अनुक्रमित अनुक्रम की सीमा है जो ω<sub>1</sub> से कम किसी भी क्रमसूचक को स्वयं में मैप करता है- हालाँकि, यह ω<sub>1</sub> में किसी भी सामान्य (ω-अनुक्रमित) अनुक्रम की सीमा नहीं है, क्योंकि ऐसी कोई भी सीमा इसके तत्वों के समुच्च से कम या उसके बराबर है, जो गणनीय समुच्चयों का गणनीय समुच्च है, इसलिए स्वयं गणनीय है।  


टोपोलॉजी में सीमाएं निर्धारित करने के लिए सामान्य-अनुक्रमित अनुक्रम सामान्य (ω-अनुक्रमित) अनुक्रमों से अधिक शक्तिशाली हैं: उदाहरण के लिए, ω<sub>1</sub> (क्रमसूचक संख्या#कार्डिनल का प्रारंभिक क्रमसूचक|ओमेगा-वन, सभी गणनीय क्रमसूचक संख्याओं का समुच्चय, और सबसे छोटी बेशुमार क्रमसूचक संख्या), ω का एक सीमा बिंदु है<sub>1</sub>+1 (क्योंकि यह एक सीमा क्रमसूचक है), और, वास्तव में, यह ω की सीमा है<sub>1</sub>-अनुक्रमित अनुक्रम जो ω से कम किसी भी क्रमसूचक को मैप करता है<sub>1</sub> स्वयं के लिए: हालाँकि, यह ω में किसी सामान्य (ω-अनुक्रमित) अनुक्रम की सीमा नहीं है<sub>1</sub>, चूँकि ऐसी कोई भी सीमा उसके तत्वों के मिलन से कम या उसके बराबर होती है, जो गणनीय समुच्चयों का गणनीय संघ है, इसलिए स्वयं गणनीय है।
हालाँकि, सामान्य रूप से नेट (या [[फ़िल्टर (गणित)|फ़िल्टर]]) को बदलने के लिए क्रमिक-अनुक्रमित अनुक्रम पर्याप्त शक्तिशाली नहीं हैं- उदाहरण के लिए, [[टाइकोनोफ़ प्लैंक]] पर (उत्पाद अंतराल <math>(\omega_1+1)\times(\omega+1)</math>, कोण बिंदु <math>(\omega_1,\omega)</math> विवृत उपसमुच्चय <math>\omega_1\times\omega</math> का सीमा बिंदु है (यह संवृत होने में है), लेकिन यह क्रमिक-अनुक्रमित अनुक्रम की सीमा नहीं है।
 
हालाँकि, सामान्य रूप से नेट (या [[फ़िल्टर (गणित)]]) को बदलने के लिए क्रमिक-अनुक्रमित अनुक्रम पर्याप्त शक्तिशाली नहीं हैं: उदाहरण के लिए, [[टाइकोनोफ़ प्लैंक]] (उत्पाद स्थान) पर <math>(\omega_1+1)\times(\omega+1)</math>), कोने का बिंदु <math>(\omega_1,\omega)</math> खुले उपसमुच्चय का एक सीमा बिंदु है (यह समापन में है)। <math>\omega_1\times\omega</math>, लेकिन यह क्रमिक-अनुक्रमित अनुक्रम की सीमा नहीं है।


== यह भी देखें ==
== यह भी देखें ==


* [[टोपोलॉजी की सूची]]
* [[टोपोलॉजी की सूची|सांस्थितिकी की सूची]]
* [[निचली सीमा टोपोलॉजी]]
* [[निचली सीमा टोपोलॉजी|निम्न सीमा सांस्थितिकी]]
* [[लंबी लाइन (टोपोलॉजी)]]
* [[लंबी लाइन (टोपोलॉजी)|दीर्घ रेखा (सांस्थितिकी)]]
* [[रैखिक सातत्य]]
* [[रैखिक सातत्य]]
* [[ऑर्डर टोपोलॉजी (कार्यात्मक विश्लेषण)]]
* [[ऑर्डर टोपोलॉजी (कार्यात्मक विश्लेषण)|क्रम]] [[टोपोलॉजी की सूची|सांस्थितिकी]] (कार्यात्मक विश्लेषण)
* [[आंशिक रूप से ऑर्डर किया गया स्थान]]
* [[आंशिक रूप से ऑर्डर किया गया स्थान|आंशिक रूप से क्रमित अंतराल]]


==टिप्पणियाँ==
==टिप्पणियाँ==
<references/>
<references/>
==संदर्भ==
==संदर्भ==


Line 98: Line 89:


{{Order theory}}
{{Order theory}}
[[Category: सामान्य टोपोलॉजी]] [[Category: आदेश सिद्धांत]] [[Category: क्रमसूचक संख्या]] [[Category: टोपोलॉजिकल रिक्त स्थान]]


[[Category: Machine Translated Page]]
[[Category:Collapse templates]]
[[Category:Created On 30/06/2023]]
[[Category:Created On 30/06/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia articles incorporating text from PlanetMath|क्रम टोपोलॉजी]]
[[Category:Wikipedia metatemplates]]
[[Category:आदेश सिद्धांत]]
[[Category:क्रमसूचक संख्या]]
[[Category:टोपोलॉजिकल रिक्त स्थान]]
[[Category:सामान्य टोपोलॉजी]]

Latest revision as of 16:10, 25 July 2023

गणित में, क्रम सांस्थितिकी या (क्रम टोपोलॉजी) एक निश्चित सांस्थितिकी है जिसे किसी भी पूर्णतः क्रमित समुच्चय पर परिभाषित किया जा सकता है। यह वास्तविक संख्याओं की सांस्थितिकी का मनमाने ढंग से पूर्णतः क्रमबद्ध समुच्चयों का प्राकृतिक सामान्यीकरण है।

यदि X एक पूर्णतः क्रमित समुच्चय है, तो X पर क्रम सांस्थितिकी "विवृत अर्धरखाओं" के उप आधार द्वारा उत्पन्न होती है।

X में सभी a, b के लिए। बशर्ते कि X में कम से कम दो तत्व हों, यह विवृत अंतराल कहने के बराबर है

उपरोक्त अर्धरेखाओं के साथ मिलकर क्रम सांस्थितिकी के लिए आधार बनता है। X में विवृत समुच्चय वे समुच्चय हैं जो (संभवतः अनंत रूप से कई) ऐसे विवृत अंतराल और अर्धरेखाओं का एक समुच्च हैं। सांस्थितिक अंतराल X को क्रम करने योग्य या रैखिक रूप से ऑर्डर करने योग्य कहा जाता है[1] यदि उसके तत्वों पर कुल क्रम उपस्थित होता है जैसे कि उस क्रम से प्रेरित क्रम सांस्थितिकी और X पर दी गई सांस्थितिकी मेल खाती है। क्रम सांस्थितिकी X को पूरी तरह से सामान्य हॉसडॉर्फ़ अंतराल में बदल देती है।

R, Q, Z और N पर मानक सांस्थितिकी क्रम सांस्थितिकी हैं।

प्रेरित क्रम सांस्थितिकी

यदि Y, X का उपसमुच्चय है, X पूर्णतया क्रमित समुच्चय है, तो Y को X से कुल क्रम प्राप्त होता है। इसलिए समुच्चय Y में क्रम सांस्थितिकी, प्रेरित क्रम सांस्थितिकी है। X के उपसमुच्चय के रूप में, Y में भी एक उपअंतराल सांस्थितिकी है। उपअंतराल सांस्थितिकी सदैव कम से कम प्रेरित क्रम सांस्थितिकी जितनी ही अच्छी होती है, लेकिन वे सामान्य तौर पर समान नहीं होती हैं।

उदाहरण के लिए, परिमेय में उपसमुच्चय Y = {–1} ∪ {1/n}nN पर विचार करें। उपअंतराल सांस्थितिकी के तहत, एकल समुच्चय {–1} Y में विवृत है, लेकिन प्रेरित क्रम सांस्थितिकी के तहत, -1 वाले किसी भी विवृत समुच्चय में अंतराल के सभी लेकिन सीमित रूप से कई सदस्य सम्मिलत होने चाहिए।

रैखिक रूप से क्रमित अंतराल के उप-अंतराल का उदाहरण जिसकी सांस्थितिकी क्रम सांस्थितिकी नहीं है

यद्यपि उपरोक्त अनुभाग में Y = {–1} ∪ {1/n}nN की उप-अंतराल सांस्थितिकी को Y पर प्रेरित क्रम द्वारा उत्पन्न नहीं किया गया है, फिर भी यह Y पर एक क्रम सांस्थितिकी है वास्तव में, उपअंतराल सांस्थितिकी में प्रत्येक बिंदु पृथक (अर्थात, एकल {y} Y में प्रत्येक y के लिए Y में विवृत है) है, इसलिए उप-अंतराल सांस्थितिकी Y पर (वह सांस्थितिकी जिसमें Y का प्रत्येक उपसमुच्चय विवृत समुच्चय है) असतत सांस्थितिकी है, और किसी भी समुच्चय पर असतत सांस्थितिकी क्रम सांस्थितिकी है। Y पर कुल क्रम को परिभाषित करने के लिए जो Y पर असतत सांस्थितिकी उत्पन्न करता है, केवल -1 को Y का सबसे बड़ा तत्व परिभाषित करके Y पर प्रेरित क्रम को संशोधित करें और अन्यथा अन्य बिंदुओं के लिए समान क्रम रखें, ताकि इस नए क्रम में (इसे <1 कहें) हमारे पास सभी nN के लिए 1/n <1 –1 है। फिर, <1 द्वारा उत्पन्न Y पर क्रम सांस्थितिकी में, Y का प्रत्येक बिंदु Y में पृथक होता है।

हम यहां रैखिक रूप से क्रमित सांस्थितिक अंतराल X के उपसमुच्चय Z को इस प्रकार परिभाषित करना चाहते हैं कि Z पर कोई भी कुल क्रम Z पर उपअंतराल सांस्थितिकी उत्पन्न नहीं करता है, ताकि उपअंतराल सांस्थितिकी क्रम सांस्थितिक न हो, यद्यपि यह उस अंतराल की उपअंतराल सांस्थितिकी हो, जिसकी सांस्थितिकी क्रम सांस्थितिकी है।

मान लीजिए वास्तविक रेखा में है। पहले जैसा ही तर्क दिखाता है कि Z पर उपअंतराल सांस्थितिकी Z पर प्रेरित क्रम सांस्थितिकी के बराबर नहीं है, लेकिन कोई यह दिखा सकता है कि Z पर उपअंतराल सांस्थितिकी Z पर किसी भी क्रम सांस्थितिकी के बराबर नहीं हो सकती है।

तर्क इस प्रकार है। विरोधाभास के माध्यम से मान लीजिए कि Z पर कुछ दृढ़ कुल क्रम < है, जैसे कि < द्वारा उत्पन्न क्रम सांस्थितिकी Z पर उपअंतराल सांस्थितिकी (ध्यान दें कि हम यह नहीं मान रहे हैं कि < Z पर प्रेरित क्रम है, बल्कि Z पर मनमाने ढंग से दिया गया कुल क्रम है जो उपअंतराल सांस्थितिकी उत्पन्न करता है) के बराबर है। निम्नलिखित में, अंतराल संकेतन की व्याख्या < संबंध के सापेक्ष की जानी चाहिए। साथ ही, यदि A और B समुच्चय हैं, तो का अर्थ होगा कि A में प्रत्येक a और B में b के लिए

माना M = Z \ {-1}, इकाई अंतराल है। M जुड़ा हुआ है। यदि m, nM और m < -1 < n, तो और M को अलग करते हैं, जो विरोधाभास है। समान तर्कों के अनुसार, M अपने आप में सघन है और < के संबंध में इसमें कोई अंतराल नहीं है। इस प्रकार, M < {-1} or {-1} < M। व्यापकता की हानि के बिना मान लें कि {-1} < M। चूँकि Z में {-1} विवृत है, M में कुछ बिंदु p है जिससे अंतराल (-1, p) खाली है। चूँकि {-1} < M, हम जानते हैं कि -1 Z का एकमात्र तत्व है जो p से कम है, इसलिए p, M का न्यूनतम है। फिर M \ {p} = A ∪ B, जहां A और B क्रमशः वास्तविक रेखा (0,p) और (p,1) के अंतराल द्वारा दिए गए M के गैर-रिक्त विवृत और असंयुक्त उपसमुच्चय हैं। ध्यान दें कि A और B की सीमाएँ दोनों p की एकात्मक हैं। A में व्यापकता हानि बिना a और b में B को ऐसे मान लें कि a<b, चूंकि M में कोई अंतराल नहीं है और यह सघन है, अंतराल (a,b) (कोई A के तत्वों x के समुच्चय का सर्वोच्च मान इस प्रकार ले सकता है कि [a,x] A में है) में A और B के बीच एक सीमांत बिंदु है। यह एक विरोधाभास है, क्योंकि एकमात्र सीमा पूरी तरह से a अंतर्गत है।

बाएँ और दाएँ क्रम सांस्थितिकी

क्रम सांस्थितिकी के कई प्रकार दिए जा सकते हैं-

  • X पर दाएँ क्रम सांस्थितिकी[2] वह सांस्थितिकी है जिसका आधार समुच्चय X के साथ रूप के सभी अंतराल हैं।
  • X पर बाएँ क्रम सांस्थितिकी वह सांस्थितिकी है जिसका आधार समुच्चय X के साथ रूप के सभी अंतराल हैं।

बाएँ और दाएँ क्रम सांस्थितिकी का उपयोग सामान्य सांस्थितिकी में प्रतिउदाहरण देने के लिए किया जा सकता है। उदाहरण के लिए, परिबद्ध समुच्चय पर बाएँ या दाएँ क्रम सांस्थतिकी सघन अंतराल का उदाहरण प्रदान करती है जो हॉसडॉर्फ नहीं है।

बाएँ क्रम सांस्थितिकी एक मानक सांस्थितिकी है जिसका उपयोग बूलियन बीजगणित पर कई समुच्चय-सैद्धांतिक उद्देश्यों के लिए किया जाता है।

क्रमसूचक अंतराल

किसी भी क्रमसूचक संख्या λ के लिए कोई क्रमसूचक संख्याओं के अंतरालों पर विचार कर सकता है

प्राकृतिक क्रम सांस्थितिकी के साथ। इन अंतरालों को क्रमसूचक अंतराल कहा जाता है। (ध्यान दें कि क्रमसूचक संख्याओं के सामान्य समुच्चय-सैद्धांतिक निर्माण में हमारे पास λ = [0,λ) और λ + 1 = [0,λ] होता है)। स्पष्टतः, ये अंतराल अधिकतर तब रुचिकर होते हैं जब λ एक अनंत क्रमसूचक है अन्यथा (परिमित क्रमसूचक के लिए), क्रम सांस्थितिकी केवल असतत सांस्थितिकी है।

जब λ = ω (प्रथम अनंत क्रमसूचक), अंतराल [0,ω) सामान्य (अभी भी असतत) सांस्थितिकी के साथ सिर्फ N है, जबकि [0,ω] N का एक-बिंदु संघनन है।

विशेष रुचि की स्थिति तब होती है जब λ = ω1, सभी गणनीय क्रमसूचकों का समुच्चय, और प्रथम असंख्य क्रमसूचक होता है। तत्व ω1 उपसमुच्चय [0,ω1) का एक सीमा बिंदु है, यद्यपि [0,ω1) में तत्वों के किसी भी अनुक्रम में तत्व ω1 इसकी सीमा के रूप में नहीं है। विशेष रूप से, [0,ω1] प्रथम-गणनीय नहीं है। हालाँकि, उप-स्थान [0,ω1) प्रथम-गणनीय है, क्योंकि गणनीय स्थानीय आधार के बिना [0,ω1] में एकमात्र बिंदु ω1 है। कुछ और गुणों में सम्मिलित हैं

सांस्थितिकी और क्रमसूचक

सांस्थितिक अंतराल के रूप में क्रमसूचक

किसी भी क्रमसूचक संख्या को क्रम सांस्थितिकी (चूँकि, अच्छी तरह से क्रमबद्ध होने के कारण, क्रमसूचक विशेष रूप से पूरी तरह से क्रमित होता है) के साथ संपन्न करके सांस्थितिक अंतराल में बनाया जा सकता है- इसके विपरीत संकेत के अभाव में, सदैव क्रम सांस्थितिकी का अर्थ तब होता है जब क्रमसूचक को सांस्थितिक अंतराल के रूप में माना जाता है। (ध्यान दें कि यदि हम एक उचित वर्ग को सांस्थितिक अंतराल के रूप में स्वीकार करने के इच्छुक हैं, तो सभी क्रमसूचक का वर्ग भी क्रम सांस्थितिकी के लिए सांस्थितिक अंतराल है।)

किसी क्रमसूचक α के सीमा बिंदुओं का समुच्चय बिल्कुल α से कम सीमा वाले क्रमसूचकों का समुच्चय है। α से कम के आनुक्रमिक क्रमसूचक (और शून्य) α में पृथक बिंदु हैं। विशेष रूप से, परिमित क्रमसूचक और ω अलग सांस्थितिक अंतराल हैं, और इससे परे कोई भी क्रमसूचक अलग नहीं है। क्रमसूचक α एक सांस्थितिक अंतराल के रूप में सघन है यदि और केवल तभी जब α आनुक्रमिक क्रमसूचक है।

सीमा क्रमसूचक α के संवृत्त समुच्चय केवल उस अर्थ में संवृत्त समुच्चय हैं जिन्हें हम पहले ही परिभाषित कर चुके हैं, अर्थात्, जिनमें सीमा क्रमसूचक होता है जब भी उनमें इसके नीचे सभी पर्याप्त रूप से बड़े क्रमसूचक होते हैं।

कोई भी क्रमसूचक, निश्चित रूप से, किसी भी आगे के क्रमसूचक का एक विवृत उपसमुच्चय है। हम क्रमसूचक पर सांस्थितिकी को निम्नलिखित विवेचनात्मक तरीके से भी परिभाषित कर सकते हैं- 0 खाली सांस्थितिक अंतराल है, α+1 α के एक-बिंदु संघनन को लेकर प्राप्त किया जाता है, और δ सीमा क्रमसूचक के लिए, δ प्रेरक सीमा सांस्थितिकी से सुसज्जित है। ध्यान दें कि यदि α आनुक्रमिक क्रमसूचक है, तो α सघन है, इस स्थिति में इसका एक-बिंदु संघनन α+1 α और बिंदु का असंयुक्त समुच्च है।

सांस्थितिक अंतराल के रूप में, सभी क्रमसूचक हॉसडॉर्फ और यहां तक ​​कि सामान्य भी हैं। वे भी पूरी तरह से अलग (जुड़े हुए घटक बिंदु हैं) हो गए हैं, बिखरे (प्रत्येक गैर-रिक्त उप-स्थान में एक पृथक बिंदु होता है इस स्थिति में, केवल सबसे छोटा तत्व लें) हुए हैं, शून्य-आयामी (सांस्थितिकी का एक क्लोपेन आधार है- यहां, γ'<γ के लिए क्लोपेन अंतराल (β,γ'+1)=[β+1,γ'] के समुच्च के रूप में विवृत अंतराल (β,γ) लिखें। हालाँकि, वे सामान्य रूप से (विवृत समुच्चय हैं, उदाहरण के लिए ω से सम संख्याएँ, जिनका समापन विवृत नहीं है) अत्यधिक रूप से विच्छेदित नहीं हैं।

सांस्थितिक अंतराल ω1 और उसके आनुक्रमिक ω1+1 को प्रायः गैर-गणनीय सांस्थितिक अंतराल के पाठ्य-पुस्तक उदाहरण के रूप में उपयोग किया जाता है। उदाहरण के लिए, सांस्थितिक अंतराल ω1+1 में, तत्व ω1 उपसमुच्चय ω1 के समापन में है, भले ही ω1 में तत्वों के किसी भी अनुक्रम में तत्व ω1 इसकी सीमा के रूप में नहीं है- ω1 में तत्व गणनीय समुच्चय है ऐसे समुच्चयों के किसी भी क्रम के लिए, इन समुच्चयों का मिलन अनगिनत गणनीय समुच्चयों का मिलन है, इसलिए फिर भी गणनीय है यह समुच्च अनुक्रम के तत्वों की ऊपरी सीमा है, और इसलिए अनुक्रम की सीमा, यदि इसमें कोई है।

अंतराल ω1 प्रथम-गणनीय है, लेकिन द्वितीय-गणनीय नहीं है, और सघन होने के बावजूद, ω1+1 में इन दोनों में से कोई भी गुण नहीं है। यह भी ध्यान देने योग्य है कि ω1 से R (वास्तविक रेखा) तक कोई भी निरंतर फलन अंततः स्थिर होता है- इसलिए ω1 का स्टोन-सेच संघनन ω1+1 है, ठीक उसी तरह जैसे इसका एक-बिंदु संघनन (ω के ठीक विपरीत, जिसका स्टोन-सेच संघनन ω से बहुत बड़ा है)।

क्रमसूचक-अनुक्रमित अनुक्रम

यदि α सीमा क्रमसूचक है और X समुच्चय है, तो X के तत्वों के α-अनुक्रमित अनुक्रम का अर्थ केवल α से X तक फलन है। यह अवधारणा, अनंत अनुक्रम या क्रमिक-अनुक्रमित अनुक्रम, अनुक्रम की अवधारणा का सामान्यीकरण है। एक साधारण अनुक्रम स्थिति α = ω से मेल खाता है।

यदि X सांस्थितिक अंतराल है, तो हम कहते हैं कि X के तत्वों का α-अनुक्रमित अनुक्रम सीमा x में परिवर्तित हो जाता है जब यह एक नेट के रूप में परिवर्तित होता है, दूसरे शब्दों में, जब x का कोई पड़ोस U दिया जाता है तो क्रमिक β<α होता है इस प्रकार कि सभी ιβ के लिए xι U में है। सांस्थितिकी में सीमाएं निर्धारित करने के लिए सामान्य-अनुक्रमित अनुक्रम सामान्य (ω-अनुक्रमित) अनुक्रमों की तुलना में अधिक शक्तिशाली हैं- उदाहरण के लिए, ω1 (ओमेगा-वन, सभी गणनीय क्रमसूचक संख्याओं का समुच्चय, और सबसे छोटी असंख्य क्रमसूचक संख्या), ω1+1 का सीमा बिंदु है (क्योंकि यह एक सीमा क्रमसूचक है), और, वास्तव में, यह ω1-अनुक्रमित अनुक्रम की सीमा है जो ω1 से कम किसी भी क्रमसूचक को स्वयं में मैप करता है- हालाँकि, यह ω1 में किसी भी सामान्य (ω-अनुक्रमित) अनुक्रम की सीमा नहीं है, क्योंकि ऐसी कोई भी सीमा इसके तत्वों के समुच्च से कम या उसके बराबर है, जो गणनीय समुच्चयों का गणनीय समुच्च है, इसलिए स्वयं गणनीय है।

हालाँकि, सामान्य रूप से नेट (या फ़िल्टर) को बदलने के लिए क्रमिक-अनुक्रमित अनुक्रम पर्याप्त शक्तिशाली नहीं हैं- उदाहरण के लिए, टाइकोनोफ़ प्लैंक पर (उत्पाद अंतराल , कोण बिंदु विवृत उपसमुच्चय का सीमा बिंदु है (यह संवृत होने में है), लेकिन यह क्रमिक-अनुक्रमित अनुक्रम की सीमा नहीं है।

यह भी देखें

टिप्पणियाँ

  1. Lynn, I. L. (1962). "रैखिक रूप से क्रमबद्ध स्थान". Proceedings of the American Mathematical Society. 13 (3): 454–456. doi:10.1090/S0002-9939-1962-0138089-6.
  2. Steen & Seebach, p. 74

संदर्भ