क्रमिक रूप से संहतसमष्टि: Difference between revisions
(Created page with "{{Short description|Topological space where every sequence has a convergent subsequence.}} गणित में, एक टोपोलॉजिकल स्पेस <m...") |
No edit summary |
||
(9 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Topological space where every sequence has a convergent subsequence.}} | {{Short description|Topological space where every sequence has a convergent subsequence.}} | ||
गणित में, | गणित में, [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल समष्टि]] <math>X</math>. '''क्रमिक रूप से संहतसमष्टि''' प्रत्येक हैं। | ||
[[मीट्रिक स्थान|मापीय (मीट्रिक) समष्टि]] स्वाभाविक रूप से एक टोपोलॉजिकल समष्टि है, और मीट्रिक समष्टि के लिए,[[ सघन स्थान | सघन समष्टि]] और अनुक्रमिक संहतता की धारणाएं समतुल्य हैं (यदि कोई गणनीय विकल्प के सिद्धांत को मानता है)। हालाँकि, क्रमिक रूप से संहत टोपोलॉजिकल समष्टि उपस्थित हैं जो संहत नहीं हैं, और संहत टोपोलॉजिकल समष्टि उपस्थित हैं जो क्रमिक रूप से संहत नहीं हैं। | |||
== उदाहरण और गुण == | == उदाहरण और गुण == | ||
[[मानक टोपोलॉजी]] के साथ सभी [[वास्तविक संख्या]]ओं का | [[मानक टोपोलॉजी]] के साथ सभी [[वास्तविक संख्या]]ओं का समष्टि क्रमिक रूप से संकुचित नहीं होता है; क्रम <math>(s_n)</math> द्वारा दिए गए <math>s_n = n</math> सभी [[प्राकृतिक संख्या]]ओं के लिए <math>n</math> एक अनुक्रम है जिसका कोई अभिसरण अनुवर्ती नहीं है। | ||
यदि कोई समष्टि एक मीट्रिक समष्टि है, तो यह क्रमिक रूप से संहत है यदि और केवल यदि यह संहत समष्टि है।<ref>Willard, 17G, p. 125.</ref> [[ऑर्डर टोपोलॉजी]] के साथ [[पहला बेशुमार क्रमसूचक|पहला अगणनीय क्रमसूचक]] क्रमिक रूप से संहत टोपोलॉजिकल समष्टि का एक उदाहरण है जो संहत नहीं है। [[उत्पाद टोपोलॉजी]] का <math>2^{\aleph_0}=\mathfrak c</math> [[बंद इकाई अंतराल|सवृत इकाई अंतराल]] की प्रतियां संहत समष्टि का एक उदाहरण है जो क्रमिक रूप से संहत नहीं है।<ref>Steen and Seebach, Example '''105''', pp. 125—126.</ref> | |||
== संबंधित धारणाएँ == | == संबंधित धारणाएँ == | ||
एक टोपोलॉजिकल | एक टोपोलॉजिकल समष्टि<math>X</math> यदि प्रत्येक अनंत उपसमुच्चय हो तो सीमा बिंदु संहत कहा जाता है <math>X</math> में एक [[सीमा बिंदु]] है <math>X</math>, और [[गणनीय रूप से सघन स्थान|गणनीय रूप से सघन समष्टि]] यदि प्रत्येक गणनीय विवृत आवरण में एक परिमित उपकवर हो। मीट्रिक सअनुक्रमिक संहतता, सीमा बिंदु संहतता, गणनीय संहतता और संहत समष्टि की धारणाएं सभी समतुल्य हैं (यदि कोई पसंद के सिद्धांत को मानता है)। | ||
[[अनुक्रमिक स्थान]] में | [[अनुक्रमिक स्थान|अनुक्रमिक समष्टि]] में अनुक्रमिक (हॉसडॉर्फ) [[टोपोलॉजिकल स्पेस|समष्टि]] अनुक्रमिक सघनता गणनीय सघनता के बराबर है।<ref>Engelking, General Topology, Theorem 3.10.31<br> K.P. Hart, Jun-iti Nagata, J.E. Vaughan (editors), Encyclopedia of General Topology, Chapter d3 (by P. Simon) | ||
</ref> | </ref> | ||
एक-बिंदु अनुक्रमिक संघनन की भी एक धारणा है - विचार यह है कि सभी गैर-अभिसरण अनुक्रमों को अतिरिक्त बिंदु पर एकत्रित होना चाहिए।<ref>Brown, Ronald, "Sequentially proper maps and a sequential | एक-बिंदु अनुक्रमिक संघनन की भी एक धारणा है - विचार यह है कि सभी गैर-अभिसरण अनुक्रमों को अतिरिक्त बिंदु पर एकत्रित होना चाहिए।<ref>Brown, Ronald, "Sequentially proper maps and a sequential | ||
compactification", J. London Math Soc. (2) 7 (1973) | compactification", J. London Math Soc. (2) 7 (1973) | ||
515-522. | 515-522. | ||
</ref> | </ref> | ||
== यह भी देखें == | == यह भी देखें == | ||
* {{annotated link| | * {{annotated link|बोलजानो-वीयरस्ट्रैस प्रमेय}} | ||
* {{annotated link| | * {{annotated link|फ़्रेचेट-उरीसोहन समष्टि}} | ||
* {{annotated link| | * {{annotated link|मानचित्रों को कवर करने वाला अनुक्रम}} | ||
* {{annotated link| | * {{annotated link|अनुक्रमिक समष्टि}} | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
{{Reflist}} | {{Reflist}} | ||
==संदर्भ== | ==संदर्भ== | ||
Line 46: | Line 40: | ||
* [[Lynn Arthur Steen|Steen, Lynn A.]] and [[J. Arthur Seebach, Jr.|Seebach, J. Arthur Jr.]]; ''[[Counterexamples in Topology]]'', Holt, Rinehart and Winston (1970). {{ISBN|0-03-079485-4}}. | * [[Lynn Arthur Steen|Steen, Lynn A.]] and [[J. Arthur Seebach, Jr.|Seebach, J. Arthur Jr.]]; ''[[Counterexamples in Topology]]'', Holt, Rinehart and Winston (1970). {{ISBN|0-03-079485-4}}. | ||
*{{cite book | author=Willard, Stephen | title=General Topology | publisher=Dover Publications | year=2004 | isbn=0-486-43479-6}} | *{{cite book | author=Willard, Stephen | title=General Topology | publisher=Dover Publications | year=2004 | isbn=0-486-43479-6}} | ||
[[Category:Created On 08/07/2023]] | [[Category:Created On 08/07/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:टोपोलॉजिकल रिक्त स्थान के गुण]] | |||
[[Category:सघनता (गणित)]] |
Latest revision as of 15:53, 29 August 2023
गणित में, टोपोलॉजिकल समष्टि . क्रमिक रूप से संहतसमष्टि प्रत्येक हैं।
मापीय (मीट्रिक) समष्टि स्वाभाविक रूप से एक टोपोलॉजिकल समष्टि है, और मीट्रिक समष्टि के लिए, सघन समष्टि और अनुक्रमिक संहतता की धारणाएं समतुल्य हैं (यदि कोई गणनीय विकल्प के सिद्धांत को मानता है)। हालाँकि, क्रमिक रूप से संहत टोपोलॉजिकल समष्टि उपस्थित हैं जो संहत नहीं हैं, और संहत टोपोलॉजिकल समष्टि उपस्थित हैं जो क्रमिक रूप से संहत नहीं हैं।
उदाहरण और गुण
मानक टोपोलॉजी के साथ सभी वास्तविक संख्याओं का समष्टि क्रमिक रूप से संकुचित नहीं होता है; क्रम द्वारा दिए गए सभी प्राकृतिक संख्याओं के लिए एक अनुक्रम है जिसका कोई अभिसरण अनुवर्ती नहीं है।
यदि कोई समष्टि एक मीट्रिक समष्टि है, तो यह क्रमिक रूप से संहत है यदि और केवल यदि यह संहत समष्टि है।[1] ऑर्डर टोपोलॉजी के साथ पहला अगणनीय क्रमसूचक क्रमिक रूप से संहत टोपोलॉजिकल समष्टि का एक उदाहरण है जो संहत नहीं है। उत्पाद टोपोलॉजी का सवृत इकाई अंतराल की प्रतियां संहत समष्टि का एक उदाहरण है जो क्रमिक रूप से संहत नहीं है।[2]
संबंधित धारणाएँ
एक टोपोलॉजिकल समष्टि यदि प्रत्येक अनंत उपसमुच्चय हो तो सीमा बिंदु संहत कहा जाता है में एक सीमा बिंदु है , और गणनीय रूप से सघन समष्टि यदि प्रत्येक गणनीय विवृत आवरण में एक परिमित उपकवर हो। मीट्रिक सअनुक्रमिक संहतता, सीमा बिंदु संहतता, गणनीय संहतता और संहत समष्टि की धारणाएं सभी समतुल्य हैं (यदि कोई पसंद के सिद्धांत को मानता है)।
अनुक्रमिक समष्टि में अनुक्रमिक (हॉसडॉर्फ) समष्टि अनुक्रमिक सघनता गणनीय सघनता के बराबर है।[3]
एक-बिंदु अनुक्रमिक संघनन की भी एक धारणा है - विचार यह है कि सभी गैर-अभिसरण अनुक्रमों को अतिरिक्त बिंदु पर एकत्रित होना चाहिए।[4]
यह भी देखें
- बोलजानो-वीयरस्ट्रैस प्रमेय
- फ़्रेचेट-उरीसोहन समष्टि
- मानचित्रों को कवर करने वाला अनुक्रम
- अनुक्रमिक समष्टि
टिप्पणियाँ
- ↑ Willard, 17G, p. 125.
- ↑ Steen and Seebach, Example 105, pp. 125—126.
- ↑ Engelking, General Topology, Theorem 3.10.31
K.P. Hart, Jun-iti Nagata, J.E. Vaughan (editors), Encyclopedia of General Topology, Chapter d3 (by P. Simon) - ↑ Brown, Ronald, "Sequentially proper maps and a sequential compactification", J. London Math Soc. (2) 7 (1973) 515-522.
संदर्भ
- Munkres, James (1999). Topology (2nd ed.). Prentice Hall. ISBN 0-13-181629-2.
- Steen, Lynn A. and Seebach, J. Arthur Jr.; Counterexamples in Topology, Holt, Rinehart and Winston (1970). ISBN 0-03-079485-4.
- Willard, Stephen (2004). General Topology. Dover Publications. ISBN 0-486-43479-6.