डोर स्पेस: Difference between revisions

From Vigyanwiki
No edit summary
 
(5 intermediate revisions by 4 users not shown)
Line 1: Line 1:
गणित में, विशेष रूप से [[टोपोलॉजी]] के क्षेत्र में, एक [[टोपोलॉजिकल स्पेस]] को एक डोर स्पेस कहा जाता है यदि प्रत्येक उपसमुच्चय खुला या बंद (या दोनों) हो।{{sfn|Kelley|1975|loc=ch.2, Exercise C, p. 76}} यह शब्द परिचयात्मक टोपोलॉजी स्मरक से आया है कि "एक उपसमुच्चय एक डोर की तरह नहीं है: यह खुला, बंद, एक भी या दोनों हो सकता है।"।
गणित में, विशेष रूप से [[टोपोलॉजी]] के क्षेत्र में, [[टोपोलॉजिकल स्पेस]] को '''डोर स्पेस''' कहा जाता है यदि प्रत्येक उपसमुच्चय विवृत या संवृत (या दोनों) हो।{{sfn|Kelley|1975|loc=ch.2, Exercise C, p. 76}} यह शब्द परिचयात्मक टोपोलॉजी स्मरक से आया है कि "उपसमुच्चय डोर की तरह नहीं है: यह विवृत, संवृत, एक भी या दोनों हो सकता है।"।


==गुण और उदाहरण==
==गुण और उदाहरण==


प्रत्येक दरवाज़े का स्थान T<sub>0</sub> है (क्योंकि यदि <math>x</math> और <math>y</math> दो स्थैतिक रूप से अविभाज्य बिंदु हैं, तो सिंगलटन <math>\{x\}</math> न तो खुला है और न ही बंद है)।
प्रत्येक डोर स्पेस T<sub>0</sub> है (क्योंकि यदि <math>x</math> और <math>y</math> दो स्थैतिक रूप से अविभाज्य बिंदु हैं, तो सिंगलटन <math>\{x\}</math> न तो विवृत है और न ही संवृत है)।


दरवाज़े के स्थान का प्रत्येक [[उपस्थान (टोपोलॉजी)|उपस्थान]] एक दरवाज़ा स्थान है।<ref>{{cite journal |last1=Dontchev |first1=Julian |title=दरवाजे के स्थानों पर|journal=Indian Journal of Pure and Applied Mathematics |date=1995 |volume=26 |issue=9 |pages=873–881 |url=https://www.insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005a1b_873.pdf }} Theorem 2.6</ref> दरवाज़े की जगह का हर भाग ऐसा ही है।{{sfn|Dontchev|1995|loc=Corollary 2.12}}
डोर स्पेस का प्रत्येक [[उपस्थान (टोपोलॉजी)|सबस्पेस]] एक डोर स्पेस है।<ref>{{cite journal |last1=Dontchev |first1=Julian |title=दरवाजे के स्थानों पर|journal=Indian Journal of Pure and Applied Mathematics |date=1995 |volume=26 |issue=9 |pages=873–881 |url=https://www.insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005a1b_873.pdf }} Theorem 2.6</ref> डोर स्पेस का हर भाग ऐसा ही है।{{sfn|Dontchev|1995|loc=Corollary 2.12}}


प्रत्येक टोपोलॉजी एक सेट पर डोर टोपोलॉजी से अधिक उत्कृष्ट होती है <math>X</math> भी एक डोर टोपोलॉजी है।
प्रत्येक टोपोलॉजी समुच्चय पर डोर टोपोलॉजी से अधिक उत्कृष्ट होती है <math>X</math> भी एक डोर टोपोलॉजी है।


प्रत्येक [[पृथक स्थान]] एक द्वार स्थान है। ये [[संचय बिंदु]] रहित रिक्त स्थान हैं अर्थात जिनका प्रत्येक बिंदु एक [[पृथक बिंदु]] होता है।
प्रत्येक [[पृथक स्थान|पृथक स्पेस]] एक डोर स्पेस है। ये [[संचय बिंदु]] रहित रिक्त स्पेस हैं अर्थात जिनका प्रत्येक बिंदु एक [[पृथक बिंदु]] होता है।


ठीक एक संचय बिंदु (और अन्य सभी बिंदु अलग) के साथ प्रत्येक स्थान <math>X</math> एक डोर की जगह है (चूंकि सबसेट जिसमें केवल अलग-अलग बिंदु होते हैं, खुले होते हैं, और संचय बिंदु वाले उपसमुच्चय बंद होते हैं)। कुछ उदाहरण हैं: (1) एक असतत स्थान (जिसे फोर्ट स्पेस भी कहा जाता है) का [[एक-बिंदु संघनन]], जहां इन्फिनिटी का बिंदु संचय बिंदु होता है; (2) अपवर्जित बिंदु टोपोलॉजी वाला एक स्थान, जहां "बहिष्कृत बिंदु" संचय बिंदु है।
ठीक संचय बिंदु (और अन्य सभी बिंदु अलग) के साथ प्रत्येक स्पेस <math>X</math> डोर स्पेस है (चूंकि उपसमुच्चय जिसमें केवल अलग-अलग बिंदु होते हैं, विवृत होते हैं, और संचय बिंदु वाले उपसमुच्चय संवृत होते हैं)। कुछ उदाहरण हैं: (1) असतत स्पेस (जिसे फोर्ट स्पेस भी कहा जाता है) का [[एक-बिंदु संघनन]], जहां इन्फिनिटी का बिंदु संचय बिंदु होता है; (2) अपवर्जित बिंदु टोपोलॉजी वाला एक स्पेस, जहां "बहिष्कृत बिंदु" संचय बिंदु है।


प्रत्येक हाउसडॉर्फ डोर की जगह या तो असततत है या ठीक एक संचय बिंदु है। (इसे देखने के लिए, यदि <math>X</math> अलग संचय बिंदुओं के साथ एक जगह है <math>x</math> और <math>y</math> संबंधित संयुक्त पड़ोसी <math>U</math> और, <math>V,</math> सेट (<math>(U\setminus\{x\})\cup\{y\}</math> न तो बंद है और न ही <math>X.</math> में खुला है।)<ref>{{cite web |title=Proving that If $(X,\tau)$ is a Hausdorff door space, then at most one point $x \in X$ is a limit point of $X$ |url=https://math.stackexchange.com/questions/3789612 |website=Mathematics Stack Exchange}}</ref>
प्रत्येक हाउसडॉर्फ डोर स्पेस या तो असततत है या ठीक संचय बिंदु है। (इसे देखने के लिए, यदि <math>X</math> अलग संचय बिंदुओं के साथ एक स्पेस है <math>x</math> और <math>y</math> संबंधित संयुक्त प्रतिवेश <math>U</math> और, <math>V,</math> समुच्चय (<math>(U\setminus\{x\})\cup\{y\}</math> न तो संवृत है और न ही <math>X.</math> में विवृत है।)<ref>{{cite web |title=Proving that If $(X,\tau)$ is a Hausdorff door space, then at most one point $x \in X$ is a limit point of $X$ |url=https://math.stackexchange.com/questions/3789612 |website=Mathematics Stack Exchange}}</ref>


एक से अधिक संचय बिंदु वाले डोर के स्थान का एक उदाहरण सेट <math>X</math> पर कम से कम तीन बिंदुओं वाले विशेष बिंदु टोपोलॉजी द्वारा दिया गया है। खुले समुच्चय वे उपसमुच्चय हैं जिनमें रिक्त समुच्चय के साथ एक विशेष बिंदु <math>p\in X,</math> होता है। बिन्दु <math>p</math> एक पृथक बिन्दु है तथा अन्य सभी बिन्दु संचय बिन्दु हैं। (यह एक द्वार स्थान है क्योंकि <math>p</math> युक्त प्रत्येक सेट खुला है और <math>p</math> युक्त प्रत्येक सेट बंद है।) एक अन्य उदाहरण विशेष बिंदु टोपोलॉजी और एक अलग स्थान के साथ एक स्थान का [[टोपोलॉजिकल योग]] होगा।
एक से अधिक संचय बिंदु वाले डोर स्पेस का एक उदाहरण समुच्चय <math>X</math> पर न्यूनतम तीन बिंदुओं वाले विशेष बिंदु टोपोलॉजी द्वारा दिया गया है। विवृत समुच्चय वे उपसमुच्चय हैं जिनमें रिक्त समुच्चय के साथ एक विशेष बिंदु <math>p\in X,</math> होता है। बिन्दु <math>p</math> पृथक बिन्दु है तथा अन्य सभी बिन्दु संचय बिन्दु हैं। (यह डोर स्पेस है क्योंकि <math>p</math> युक्त प्रत्येक समुच्चय विवृत है और <math>p</math> युक्त प्रत्येक समुच्चय संवृत है।) एक अन्य उदाहरण विशेष बिंदु टोपोलॉजी और अलग स्पेस के साथ एक स्पेस का [[टोपोलॉजिकल योग]] होगा।


बिना किसी पृथक बिंदु वाले दरवाज़े के स्थान <math>(X,\tau)</math> बिल्कुल वही होते हैं जिनमें <math>X.</math> पर कुछ मुफ्त अल्ट्राफ़िल्टर <math>\mathcal U</math> के लिए <math>\tau=\mathcal U \cup \{\emptyset\}</math> फॉर्म की टोपोलॉजी होती है।<ref>{{cite journal |last1=McCartan |first1=S. D. |title=दरवाजे के स्थान पहचाने जाने योग्य हैं|journal=Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences |date=1987 |volume=87A |issue=1 |pages=13–16 |jstor=20489255 |url=https://www.jstor.org/stable/20489255 |issn=0035-8975}}</ref> ऐसे स्थान अनिवार्यतः अनंत हैं।
बिना किसी पृथक बिंदु वाले डोर स्पेस <math>(X,\tau)</math> बिल्कुल वही होते हैं जिनमें <math>X.</math> पर कुछ स्वतंत्र अल्ट्राफ़िल्टर <math>\mathcal U</math> के लिए <math>\tau=\mathcal U \cup \{\emptyset\}</math> फॉर्म की टोपोलॉजी होती है।<ref>{{cite journal |last1=McCartan |first1=S. D. |title=दरवाजे के स्थान पहचाने जाने योग्य हैं|journal=Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences |date=1987 |volume=87A |issue=1 |pages=13–16 |jstor=20489255 |url=https://www.jstor.org/stable/20489255 |issn=0035-8975}}</ref> ऐसे स्पेस अनिवार्यतः अनंत हैं।


वास्तव में तीन प्रकार के जुड़े हुए दरवाज़े हैं (<math>(X,\tau)</math>:{{sfn|McCartan|1987|loc=Corollary 3}}<ref>{{cite journal |last1=Wu |first1=Jianfeng |last2=Wang |first2=Chunli |last3=Zhang |first3=Dong |title=कनेक्टेड डोर स्पेस और समीकरणों के टोपोलॉजिकल समाधान|journal=Aequationes Mathematicae |date=2018 |volume=92 |issue=6 |pages=1149–1161 |doi=10.1007/s00010-018-0577-0 |arxiv=1809.03085 |s2cid=253598359 |issn=0001-9054}} Theorem 1</ref>
वास्तव में संबद्ध डोर तीन प्रकार के होते हैं <math>(X,\tau)</math>:{{sfn|McCartan|1987|loc=Corollary 3}}<ref>{{cite journal |last1=Wu |first1=Jianfeng |last2=Wang |first2=Chunli |last3=Zhang |first3=Dong |title=कनेक्टेड डोर स्पेस और समीकरणों के टोपोलॉजिकल समाधान|journal=Aequationes Mathematicae |date=2018 |volume=92 |issue=6 |pages=1149–1161 |doi=10.1007/s00010-018-0577-0 |arxiv=1809.03085 |s2cid=253598359 |issn=0001-9054}} Theorem 1</ref>


* अपवर्जित बिंदु टोपोलॉजी वाला स्थान;
* अपवर्जित बिंदु टोपोलॉजी स्पेस;
* सम्मिलित बिंदु टोपोलॉजी वाला एक स्थान;
* सम्मिलित बिंदु टोपोलॉजी स्पेस;
* टोपोलॉजी <math>\tau</math> वाला एक स्थान इस प्रकार है कि <math>\tau\setminus\{\emptyset\}</math> पर एक निःशुल्क अल्ट्राफ़िल्टर <math>X.</math>है।
* टोपोलॉजी <math>\tau</math> स्पेस इस प्रकार है कि <math>\tau\setminus\{\emptyset\}</math> पर स्वतंत्र अल्ट्राफ़िल्टर <math>X.</math> है।


== यह भी देखें ==
== यह भी देखें ==
Line 38: Line 38:


* {{Kelley General Topology}}
* {{Kelley General Topology}}
[[Category: टोपोलॉजिकल रिक्त स्थान के गुण]]


[[Category: Machine Translated Page]]
[[Category:Created On 08/07/2023]]
[[Category:Created On 08/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:टोपोलॉजिकल रिक्त स्थान के गुण]]

Latest revision as of 19:35, 21 July 2023

गणित में, विशेष रूप से टोपोलॉजी के क्षेत्र में, टोपोलॉजिकल स्पेस को डोर स्पेस कहा जाता है यदि प्रत्येक उपसमुच्चय विवृत या संवृत (या दोनों) हो।[1] यह शब्द परिचयात्मक टोपोलॉजी स्मरक से आया है कि "उपसमुच्चय डोर की तरह नहीं है: यह विवृत, संवृत, एक भी या दोनों हो सकता है।"।

गुण और उदाहरण

प्रत्येक डोर स्पेस T0 है (क्योंकि यदि और दो स्थैतिक रूप से अविभाज्य बिंदु हैं, तो सिंगलटन न तो विवृत है और न ही संवृत है)।

डोर स्पेस का प्रत्येक सबस्पेस एक डोर स्पेस है।[2] डोर स्पेस का हर भाग ऐसा ही है।[3]

प्रत्येक टोपोलॉजी समुच्चय पर डोर टोपोलॉजी से अधिक उत्कृष्ट होती है भी एक डोर टोपोलॉजी है।

प्रत्येक पृथक स्पेस एक डोर स्पेस है। ये संचय बिंदु रहित रिक्त स्पेस हैं अर्थात जिनका प्रत्येक बिंदु एक पृथक बिंदु होता है।

ठीक संचय बिंदु (और अन्य सभी बिंदु अलग) के साथ प्रत्येक स्पेस डोर स्पेस है (चूंकि उपसमुच्चय जिसमें केवल अलग-अलग बिंदु होते हैं, विवृत होते हैं, और संचय बिंदु वाले उपसमुच्चय संवृत होते हैं)। कुछ उदाहरण हैं: (1) असतत स्पेस (जिसे फोर्ट स्पेस भी कहा जाता है) का एक-बिंदु संघनन, जहां इन्फिनिटी का बिंदु संचय बिंदु होता है; (2) अपवर्जित बिंदु टोपोलॉजी वाला एक स्पेस, जहां "बहिष्कृत बिंदु" संचय बिंदु है।

प्रत्येक हाउसडॉर्फ डोर स्पेस या तो असततत है या ठीक संचय बिंदु है। (इसे देखने के लिए, यदि अलग संचय बिंदुओं के साथ एक स्पेस है और संबंधित संयुक्त प्रतिवेश और, समुच्चय ( न तो संवृत है और न ही में विवृत है।)[4]

एक से अधिक संचय बिंदु वाले डोर स्पेस का एक उदाहरण समुच्चय पर न्यूनतम तीन बिंदुओं वाले विशेष बिंदु टोपोलॉजी द्वारा दिया गया है। विवृत समुच्चय वे उपसमुच्चय हैं जिनमें रिक्त समुच्चय के साथ एक विशेष बिंदु होता है। बिन्दु पृथक बिन्दु है तथा अन्य सभी बिन्दु संचय बिन्दु हैं। (यह डोर स्पेस है क्योंकि युक्त प्रत्येक समुच्चय विवृत है और युक्त प्रत्येक समुच्चय संवृत है।) एक अन्य उदाहरण विशेष बिंदु टोपोलॉजी और अलग स्पेस के साथ एक स्पेस का टोपोलॉजिकल योग होगा।

बिना किसी पृथक बिंदु वाले डोर स्पेस बिल्कुल वही होते हैं जिनमें पर कुछ स्वतंत्र अल्ट्राफ़िल्टर के लिए फॉर्म की टोपोलॉजी होती है।[5] ऐसे स्पेस अनिवार्यतः अनंत हैं।

वास्तव में संबद्ध डोर तीन प्रकार के होते हैं :[6][7]

  • अपवर्जित बिंदु टोपोलॉजी स्पेस;
  • सम्मिलित बिंदु टोपोलॉजी स्पेस;
  • टोपोलॉजी स्पेस इस प्रकार है कि पर स्वतंत्र अल्ट्राफ़िल्टर है।

यह भी देखें

टिप्पणियाँ

  1. Kelley 1975, ch.2, Exercise C, p. 76.
  2. Dontchev, Julian (1995). "दरवाजे के स्थानों पर" (PDF). Indian Journal of Pure and Applied Mathematics. 26 (9): 873–881. Theorem 2.6
  3. Dontchev 1995, Corollary 2.12.
  4. "Proving that If $(X,\tau)$ is a Hausdorff door space, then at most one point $x \in X$ is a limit point of $X$". Mathematics Stack Exchange.
  5. McCartan, S. D. (1987). "दरवाजे के स्थान पहचाने जाने योग्य हैं". Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences. 87A (1): 13–16. ISSN 0035-8975. JSTOR 20489255.
  6. McCartan 1987, Corollary 3.
  7. Wu, Jianfeng; Wang, Chunli; Zhang, Dong (2018). "कनेक्टेड डोर स्पेस और समीकरणों के टोपोलॉजिकल समाधान". Aequationes Mathematicae. 92 (6): 1149–1161. arXiv:1809.03085. doi:10.1007/s00010-018-0577-0. ISSN 0001-9054. S2CID 253598359. Theorem 1


संदर्भ