लुकास अनुक्रम: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
गणित में, लुकास अनुक्रम <math>U_n(P,Q)</math> और <math>V_n(P, Q)</math> कुछ स्थिर-पुनरावर्ती अनुक्रम होता है जो [[पुनरावृत्ति संबंध]] को संतुष्ट करते हैं
गणित में, '''लुकास अनुक्रम''' <math>U_n(P,Q)</math> और <math>V_n(P, Q)</math> कुछ स्थिर-पुनरावर्ती अनुक्रम होता है जो [[पुनरावृत्ति संबंध]] को प्रदर्शित करते हैं


: <math>x_n = P \cdot x_{n - 1} - Q \cdot x_{n - 2}</math>
: <math>x_n = P \cdot x_{n - 1} - Q \cdot x_{n - 2}</math>
जहाँ <math>P</math> और <math>Q</math> निश्चित [[पूर्णांक]] होता हैं। इस पुनरावृत्ति संबंध को संतुष्ट करने वाले किसी भी अनुक्रम को लुकास अनुक्रमों <math>U_n(P, Q)</math> और <math>V_n(P, Q)</math>के [[रैखिक संयोजन]] के रूप में प्रदर्शित किया जा सकता है।
जहाँ <math>P</math> और <math>Q</math> निश्चित [[पूर्णांक]] होता हैं। इस पुनरावृत्ति संबंध को सरल करने वाले किसी भी अनुक्रम को लुकास अनुक्रमों <math>U_n(P, Q)</math> और <math>V_n(P, Q)</math>के [[रैखिक संयोजन]] के रूप में प्रदर्शित किया जा सकता है।


अधिक सामान्यतः, लुकास अनुक्रम <math>U_n(P, Q)</math> और <math>V_n(P, Q)</math> में [[बहुपद]] के अनुक्रम का प्रतिनिधित्व <math>P</math> और <math>Q</math> पूर्णांक गुणांक के साथ करते हैं।   
अधिक सामान्यतः, लुकास अनुक्रम <math>U_n(P, Q)</math> और <math>V_n(P, Q)</math> में [[बहुपद]] के अनुक्रम का प्रतिनिधित्व <math>P</math> और <math>Q</math> पूर्णांक गुणांक के साथ करते हैं।   


लुकास अनुक्रमों के प्रसिद्ध उदाहरणों में [[फाइबोनैचि संख्या]]एं, मेरसेन संख्याएं, पेल संख्याएं, लुकास संख्याएं, जैकबस्टल संख्याएं और फर्मेट संख्याओं का सुपरसमुच्चय सम्मिलित होता हैं (नीचे देखें)। लुकास अनुक्रमों का नाम [[फ्रांस]] के गणितज्ञ एडवर्ड लुकास के नाम पर रखा गया था।
लुकास अनुक्रमों के प्रसिद्ध उदाहरणों में [[फाइबोनैचि संख्या]]एं, मेरसेन संख्याएं, पेल संख्याएं, लुकास संख्याएं, जैकबस्टल संख्याएं और फर्मेट संख्याओं का श्रेष्ट समुच्चय सम्मिलित होता हैं (नीचे देखें)। इस प्रकार लुकास अनुक्रमों का नाम [[फ्रांस]] के गणितज्ञ एडवर्ड लुकास के नाम पर रखा गया था।


== पुनरावृत्ति संबंध ==
== पुनरावृत्ति संबंध ==


दो पूर्णांक पैरामीटर <math>P</math> और <math>Q</math> दिए गएदिए गए है,पहली तरह के लुकास अनुक्रम <math>U_n(P,Q)</math> और दूसरे प्रकार का <math>V_n(P,Q)</math> पुनरावृत्ति संबंधों द्वारा परिभाषित किया जाता हैं:
दो पूर्णांक पैरामीटर <math>P</math> और <math>Q</math> दिए गएदिए गए है, प्रथम प्रकार के लुकास अनुक्रम <math>U_n(P,Q)</math> और दूसरे प्रकार का <math>V_n(P,Q)</math> पुनरावृत्ति संबंधों द्वारा परिभाषित किया जाता हैं:


:<math>\begin{align}
:<math>\begin{align}
Line 67: Line 67:
लुकास अनुक्रमों के लिए पुनरावृत्ति संबंध का विशिष्ट समीकरण <math>U_n(P,Q)</math> और <math>V_n(P,Q)</math> होता है:
लुकास अनुक्रमों के लिए पुनरावृत्ति संबंध का विशिष्ट समीकरण <math>U_n(P,Q)</math> और <math>V_n(P,Q)</math> होता है:
:<math>x^2 - Px + Q=0 \,</math>
:<math>x^2 - Px + Q=0 \,</math>
इसमें <math>D = P^2 - 4Q</math> विभेदक होता और बहुपद का मूल निम्न प्रकार है:
इसमें <math>D = P^2 - 4Q</math> विभेदक होता और बहुपद का मूल निम्न प्रकार है:
:<math>a = \frac{P+\sqrt{D}}2\quad\text{and}\quad b = \frac{P-\sqrt{D}}2. \,</math>
:<math>a = \frac{P+\sqrt{D}}2\quad\text{and}\quad b = \frac{P-\sqrt{D}}2. \,</math>
इस प्रकार:
इस प्रकार:
Line 73: Line 73:
:<math>a b = \frac{1}{4}(P^2 - D) = Q\, ,</math>
:<math>a b = \frac{1}{4}(P^2 - D) = Q\, ,</math>
:<math>a - b = \sqrt{D}\, .</math>
:<math>a - b = \sqrt{D}\, .</math>
ध्यान दें कि क्रम <math>a^n</math> और क्रम <math>b^n</math> पुनरावृत्ति संबंध को भी संतुष्ट करें। यघपि ये पूर्णांक अनुक्रम नहीं हो सकते हैं।
ध्यान दें कि क्रम <math>a^n</math> और क्रम <math>b^n</math> पुनरावृत्ति संबंध को भी सरल करते हैं। यघपि ये पूर्णांक अनुक्रम नहीं हो सकते हैं।


=== विशिष्ट जड़ें ===
=== विशिष्ट मूल ===
जब <math>D\ne 0</math>, ''a'' और ''b'' भिन्न-भिन्न होता हैं और कोई भी इसे शीघ्रता से सत्यापित कर सकता है
जब <math>D\ne 0</math>, ''a'' और ''b'' भिन्न-भिन्न होता हैं और कोई भी इसे शीघ्रता से सत्यापित कर सकता है


:<math>a^n = \frac{V_n + U_n \sqrt{D}}{2}</math>
:<math>a^n = \frac{V_n + U_n \sqrt{D}}{2}</math>
Line 85: Line 85:
:<math>V_n = a^n+b^n \,</math>
:<math>V_n = a^n+b^n \,</math>


=== दोहराया गया जड़ें ===
=== पुनरावर्तित मूल ===
स्थिति <math> D=0 </math> मात्र तब होता है जब <math> P=2S \text{ औ र }Q=S^2</math> कुछ पूर्णांक S के लिए होता जिससे <math>a=b=S</math> होता है। इस स्थति में कोई भी इसे सरलता से प्राप्त कर सकते है
स्थिति <math> D=0 </math> मात्र तब होता है जब <math> P=2S \text{ औ र }Q=S^2</math> कुछ पूर्णांक S के लिए होता जिससे <math>a=b=S</math> होता है। इस स्थति में कोई भी इसे सरलता से प्राप्त कर सकते है


Line 104: Line 104:


=== पेल समीकरण ===
=== पेल समीकरण ===
कब <math>Q=\pm 1</math>, लुकास अनुक्रम <math>U_n(P, Q)</math> और <math>V_n(P, Q)</math> कुछ [[पेल समीकरण]] को संतुष्ट करें:
कब <math>Q=\pm 1</math>, लुकास अनुक्रम <math>U_n(P, Q)</math> और <math>V_n(P, Q)</math> कुछ [[पेल समीकरण]] को सरल करें:
:<math>V_n(P,1)^2 - D\cdot U_n(P,1)^2 = 4,</math>
:<math>V_n(P,1)^2 - D\cdot U_n(P,1)^2 = 4,</math>
:<math>V_{2n}(P,-1)^2 - D\cdot U_{2n}(P,-1)^2 = 4,</math>
:<math>V_{2n}(P,-1)^2 - D\cdot U_{2n}(P,-1)^2 = 4,</math>
Line 113: Line 113:
::<math> P' = P + 2c  </math>
::<math> P' = P + 2c  </math>
::<math> Q' = cP + Q + c^2  </math>
::<math> Q' = cP + Q + c^2  </math>
:के समान विभेदक <math>U_n(P, Q)</math> और <math>V_n(P, Q)</math> होता है :  
:के समान विभेदक <math>U_n(P, Q)</math> और <math>V_n(P, Q)</math> होता है:  
:: <math>P'^2 - 4Q' = (P+2c)^2 - 4(cP + Q + c^2) = P^2 - 4Q = D.</math>
:: <math>P'^2 - 4Q' = (P+2c)^2 - 4(cP + Q + c^2) = P^2 - 4Q = D.</math>
::* किसी भी संख्या c के लिए, हमारे पास भी निम्न समीकरण होता है
::* किसी भी संख्या c के लिए, हमारे पास भी निम्न समीकरण होता है
Line 120: Line 120:


=== अन्य संबंध ===
=== अन्य संबंध ===
लुकास अनुक्रमों की स्थिति उन संबंधों को संतुष्ट करती हैं जो फाइबोनैचि संख्याओं के मध्य <math>F_n=U_n(1,-1)</math> और लुकास संख्याएँ <math>L_n=V_n(1,-1)</math> के सामान्यीकरण होता है। उदाहरण के लिए:
लुकास अनुक्रमों की स्थिति उन संबंधों को सरल करती हैं जो फाइबोनैचि संख्याओं के मध्य <math>F_n=U_n(1,-1)</math> और लुकास संख्याएँ <math>L_n=V_n(1,-1)</math> के सामान्यीकरण होता है। उदाहरण के लिए:
:<math>
:<math>
\begin{array}{r|l}
\begin{array}{r|l}
Line 157: Line 157:


=== विभाज्यता गुण ===
=== विभाज्यता गुण ===
परिणामों में सम्मिलित <math>U_{km}(P,Q)</math><math>U_m(P,Q)</math> का गुणज होता है, अर्थात्, अनुक्रम <math>(U_m(P,Q))_{m\ge1}</math>एक [[विभाज्यता क्रम]] होता है। इसका तात्पर्य, विशेष रूप से, जब <math>U_n(P,Q)</math> मात्र तभी [[अभाज्य संख्या]] हो सकती है जब n अभाज्य हो। अन्य परिणाम [[वर्ग द्वारा घातांक]] का अनुरूप होता है जो शीघ्रता से गणना की अनुमति देता है <math>U_n(P,Q)</math> n के बड़े मानों के लिए होता है।इसके अतिरिक्त, यदि <math>\gcd(P,Q)=1</math> होता है, तब <math>(U_m(P,Q))_{m\ge1}</math> विभाज्यता क्रम होता है।  
परिणामों में सम्मिलित <math>U_{km}(P,Q)</math><math>U_m(P,Q)</math> का गुणज होता है, अर्थात्, अनुक्रम <math>(U_m(P,Q))_{m\ge1}</math>एक [[विभाज्यता क्रम]] होता है। इसका तात्पर्य, विशेष रूप से, जब <math>U_n(P,Q)</math> मात्र तभी [[अभाज्य संख्या]] हो सकती है जब n अभाज्य हो। इस प्रकार अन्य परिणाम [[वर्ग द्वारा घातांक]] का अनुरूप होता है जो शीघ्रता से गणना की अनुमति देता है जों <math>U_n(P,Q)</math> n के बड़े मानों के लिए होता है।इसके अतिरिक्त, यदि <math>\gcd(P,Q)=1</math> होता है, तब <math>(U_m(P,Q))_{m\ge1}</math> विभाज्यता क्रम होता है।  


अन्य विभाज्यता गुण इस प्रकार हैं:<ref>For such relations and divisibility properties, see {{harv|Carmichael|1913}}, {{harv|Lehmer|1930}} or {{harv|Ribenboim|1996|loc=2.IV}}.</ref>
अन्य विभाज्यता गुण इस प्रकार हैं:<ref>For such relations and divisibility properties, see {{harv|Carmichael|1913}}, {{harv|Lehmer|1930}} or {{harv|Ribenboim|1996|loc=2.IV}}.</ref>
* अगर <math>n \mid m</math> तो विषम होता है तो <math>V_m</math> विभाजित <math>V_n</math> होता है।  
* अगर <math>n \mid m</math> तो विषम होता है तो <math>V_m</math> विभाजित <math>V_n</math> होता है।  
*मान लीजिए N, 2Q के सापेक्ष अभाज्य पूर्णांक है। यदि सबसे छोटा धनात्मक पूर्णांक r जिसके लिए N विभाजित होता है <math>U_r</math> उपस्थिति है, तो n का वह समुच्चय जिसके लिए N विभाजित होता है <math>U_n</math> अवश्य r के गुणजों का समुच्चय होता है।
*मान लीजिए N, 2Q के सापेक्ष अभाज्य पूर्णांक है। यदि सबसे छोटा धनात्मक पूर्णांक r जिसके लिए N विभाजित होता है <math>U_r</math> उपस्थिति है, तो n का वह समुच्चय जिसके लिए N विभाजित होता है <math>U_n</math> अवश्य r के गुणजों का समुच्चय होता है।
* यदि P और Q समता (गणित) हैं, तो <math>U_n, V_n</math> को छोड़कर सदैव सम होते हैं <math>U_1</math>.
* यदि P और Q समता (गणित) हैं, तो <math>U_n, V_n</math> को छोड़कर <math>U_1</math>सदैव सम होते हैं।
* यदि P सम है और Q विषम है, तो समता (गणित) की <math>U_n</math> n और <math>V_n</math> के समान होते है जो सदैव सम रहता है।  
* यदि P सम है और Q विषम है, तो समता (गणित) की <math>U_n</math> n और <math>V_n</math> के समान होते है जो सदैव सम रहता है।  
* यदि P विषम है और Q सम है, तो <math>U_n, V_n</math> सदैव <math>n=1, 2, \ldots</math> के लिए विषम होते हैं .
* यदि P विषम है और Q सम है, तो <math>U_n, V_n</math> सदैव <math>n=1, 2, \ldots</math> के लिए विषम होते हैं।
* यदि P और Q विषम हैं, तो <math>U_n, V_n</math> सम होता हैं यदि और मात्र यदि n, 3 का गुणज होता है।
* यदि P और Q विषम हैं, तो <math>U_n, V_n</math> सम होता हैं यदि और मात्र यदि n, 3 का गुणज होता है।
* यदि p विषम अभाज्य है, तो <math>U_p\equiv\left(\tfrac{D}{p}\right), V_p\equiv P\pmod{p}</math> होता है (लेजेन्ड्रे प्रतीक देखें)।
* यदि p विषम अभाज्य है, तो <math>U_p\equiv\left(\tfrac{D}{p}\right), V_p\equiv P\pmod{p}</math> होता है (लेजेन्ड्रे प्रतीक देखें)।
* यदि p विषम अभाज्य है और P और Q को विभाजित करता है, तो p प्रत्येक <math>n>1</math> पर <math>U_n</math> से विभाजित होता है।  
* यदि p विषम अभाज्य है और P और Q को विभाजित करता है, तो p प्रत्येक <math>n>1</math> पर <math>U_n</math> से विभाजित होता है।  
* यदि p विषम अभाज्य है और P को विभाजित करता है लेकिन Q को नहीं, तो p <math>U_n</math> को विभाजित करता है यदि और मात्र यदि n सम होता है।
* यदि p विषम अभाज्य है और P को विभाजित करता है लेकिन Q को नहीं, तो p <math>U_n</math> को विभाजित करता है यदि और मात्र यदि n सम होता है।
* यदि p विषम अभाज्य है और P को नहीं जबकि Q को विभाजित करता है, तो p कभी भी <math>n=1, 2, \ldots</math> के लिए <math>U_n</math> से विभाजित नहीं होता है। .
* यदि p विषम अभाज्य है और P को नहीं जबकि Q को विभाजित करता है, तो p कभी भी <math>n=1, 2, \ldots</math> के लिए <math>U_n</math> से विभाजित नहीं होता है।  
* यदि p विषम अभाज्य है और PQ को नहीं बल्कि D को विभाजित करता है, तो p विभाजित होता है <math>U_n</math> यदि और मात्र यदि p, n को विभाजित करता है।
* यदि p विषम अभाज्य है और PQ को नहीं बल्कि D को विभाजित करता है, तो p विभाजित होता है <math>U_n</math> यदि और मात्र यदि p, n को विभाजित करता है।
* यदि p विषम अभाज्य है और PQD को विभाजित नहीं करता है, तो p <math>U_l</math> से विभाजित होता है, जहाँ <math>l=p-\left(\tfrac{D}{p}\right)</math>होता है।  
* यदि p विषम अभाज्य है और PQD को विभाजित नहीं करता है, तो p <math>U_l</math> से विभाजित होता है, जहाँ <math>l=p-\left(\tfrac{D}{p}\right)</math>होता है।  


अंतिम तथ्य फ़र्मेट के छोटे प्रमेय का सामान्यीकरण करता है। इन तथ्यों का उपयोग लुकास-लेहमर प्राइमलिटी परीक्षण में किया जाता है। अंतिम तथ्य का व्युत्क्रम (तर्क) मान्य नहीं होता है, जैसे फ़र्मेट के छोटे प्रमेय का व्युत्क्रम मान्य नहीं होता है। D और <math>U_l</math> विभाजक के सापेक्ष भाज्य संख्या n उपस्थिति होता है, जहाँ <math>l=n-\left(\tfrac{D}{n}\right)</math>होता है। ऐसे सम्मिश्रण को [[लुकास स्यूडोप्राइम]] कहा जाता है।
अंतिम तथ्य फ़र्मेट के छोटे प्रमेय का सामान्यीकरण करता है। इन तथ्यों का उपयोग लुकास-लेहमर अभाज्यलिटी परीक्षण में किया जाता है। अंतिम तथ्य का व्युत्क्रम (तर्क) मान्य नहीं होता है, जैसे फ़र्मेट के छोटे प्रमेय का व्युत्क्रम मान्य नहीं होता है। D और <math>U_l</math> विभाजक के सापेक्ष भाज्य संख्या n उपस्थिति होता है, जहाँ <math>l=n-\left(\tfrac{D}{n}\right)</math>होता है। ऐसे सम्मिश्रण को [[लुकास स्यूडोप्राइम|लुकास स्यूडोअभाज्य]] कहा जाता है।


लुकास अनुक्रम में किसी पद का अभाज्य कारक जो अनुक्रम में किसी भी पहले के पद को विभाजित नहीं करता है उसे प्राथमिक कहा जाता है। कारमाइकल के प्रमेय में कहा गया है कि लुकास अनुक्रम में सभी लेकिन सीमित रूप से कई शब्दों में प्राथमिक अभाज्य कारक होता है।<ref name=Yabuta>{{cite journal |last1=Yabuta |first1=M |title=आदिम भाजक पर कारमाइकल के प्रमेय का एक सरल प्रमाण|journal=Fibonacci Quarterly |date=2001 |volume=39 |pages=439–443 |url=http://www.fq.math.ca/Scanned/39-5/yabuta.pdf |access-date=4 October 2018}}</ref> वास्तव में, कारमाइकल (1913) ने दिखाया कि यदि ''D'' धनात्मक होता है और ''n'' 1, 2 या 6 नहीं होता है, तो <math>U_n</math> प्राथमिक अभाज्य कारक होता है। ''D'' नकारात्मक स्थितियों में, बिलु, हनरोट, वाउटियर और मिग्नोटे का अत्यंत परिणाम होता है<ref>{{cite journal | first1=Yuri | last1=Bilu | first2=Guillaume | last2=Hanrot | first3=Paul M. | last3=Voutier | first4=Maurice | last4=Mignotte | title=लुकास और लेहमर संख्याओं के आदिम भाजक का अस्तित्व| journal = J. Reine Angew. Math. | year=2001 | volume=2001 | issue=539 |pages= 75–122 | mr=1863855 | doi=10.1515/crll.2001.080| s2cid=122969549 | url=https://hal.inria.fr/inria-00072867/file/RR-3792.pdf }}
लुकास अनुक्रम में किसी पद का अभाज्य कारक जो अनुक्रम में किसी भी पहले के पद को विभाजित नहीं करता है उसे प्राथमिक कहा जाता है। कारमाइकल के प्रमेय में कहा गया है कि लुकास अनुक्रम में सभी लेकिन सीमित रूप से कई शब्दों में प्राथमिक अभाज्य कारक होता है।<ref name=Yabuta>{{cite journal |last1=Yabuta |first1=M |title=आदिम भाजक पर कारमाइकल के प्रमेय का एक सरल प्रमाण|journal=Fibonacci Quarterly |date=2001 |volume=39 |pages=439–443 |url=http://www.fq.math.ca/Scanned/39-5/yabuta.pdf |access-date=4 October 2018}}</ref> वास्तव में, कारमाइकल (1913) ने दिखाया कि यदि ''D'' धनात्मक होता है और ''n'' 1, 2 या 6 नहीं होता है, तो <math>U_n</math> प्राथमिक अभाज्य कारक होता है। ''D'' नकारात्मक स्थितियों में, बिलु, हनरोट, वाउटियर और मिग्नोटे का अत्यंत परिणाम होता है<ref>{{cite journal | first1=Yuri | last1=Bilu | first2=Guillaume | last2=Hanrot | first3=Paul M. | last3=Voutier | first4=Maurice | last4=Mignotte | title=लुकास और लेहमर संख्याओं के आदिम भाजक का अस्तित्व| journal = J. Reine Angew. Math. | year=2001 | volume=2001 | issue=539 |pages= 75–122 | mr=1863855 | doi=10.1515/crll.2001.080| s2cid=122969549 | url=https://hal.inria.fr/inria-00072867/file/RR-3792.pdf }}
</ref> जो प्रदर्शित करता है कि यदि n > 30, तो <math>U_n</math> प्राथमिक अभाज्य कारक होता है और सभी स्थितियों को निर्धारित करता है <math>U_n</math> कोई प्राथमिक अभाज्य गुणनखंड नहीं होता है।  
</ref> जो प्रदर्शित करता है कि यदि n > 30, तो <math>U_n</math> प्राथमिक अभाज्य कारक होता है और सभी स्थितियों को निर्धारित करता है <math>U_n</math> कोई प्राथमिक अभाज्य गुणनखंड नहीं होता है।  


== विशिष्ट नाम ==
== विशिष्ट नाम ==
Line 183: Line 183:


:{{math|''U<sub>n</sub>''(1, −1)}} : फाइबोनैचि संख्याएँ
:{{math|''U<sub>n</sub>''(1, −1)}} : फाइबोनैचि संख्याएँ
:{{math|''V<sub>n</sub>''(1, −1)}} : लुकास संख्याएँ
:{{math|''V<sub>n</sub>''(1, −1)}} : लुकास संख्याएँ
:{{math|''U<sub>n</sub>''(2, −1)}} : पेलें संख्याएँ
:{{math|''U<sub>n</sub>''(2, −1)}} : पेलें संख्याएँ
:{{math|''V<sub>n</sub>''(2, −1)}} : पेल-लुकास संख्याएँ   (साथी पेल संख्याएँ )
:{{math|''V<sub>n</sub>''(2, −1)}} : पेल-लुकास संख्याएँ (सहचर पेल संख्याएँ )
:{{math|''U<sub>n</sub>''(1, −2)}} : जैकबस्थल संख्याएँ
:{{math|''U<sub>n</sub>''(1, −2)}} : जैकबस्थल संख्याएँ
:{{math|''V<sub>n</sub>''(1, −2)}} : जैकबस्थल-लुकास संख्याएँ
:{{math|''V<sub>n</sub>''(1, −2)}} : जैकबस्थल-लुकास संख्याएँ
:{{math|''U<sub>n</sub>''(3, 2)}}: मेर्सन संख्या 2<sup>n</sup>‍− 1
:{{math|''U<sub>n</sub>''(3, 2)}}: मेर्सन संख्या 2<sup>n</sup>‍− 1
:{{math|''V<sub>n</sub>''(3, 2)}} : फॉर्म के संख्याएँ   2<sup>n</sup> + 1, जिसमें फ़र्मेट संख्याएँ   सम्मिलित हैं<ref name=Yabuta/>:{{math|''U<sub>n</sub>''(6,&thinsp;1)}} : [[वर्ग त्रिकोणीय संख्या]]ओं का वर्गमूल।
:{{math|''V<sub>n</sub>''(3, 2)}} : फॉर्म के संख्याएँ 2<sup>n</sup> + 1, जिसमें फ़र्मेट संख्याएँ सम्मिलित होती हैं<ref name=Yabuta/>
:{{math|''U<sub>n</sub>''(6,&thinsp;1)}} : [[वर्ग त्रिकोणीय संख्या]]ओं का वर्गमूल।
:{{math|''U<sub>n</sub>''(''x'', −1)}} : [[फाइबोनैचि बहुपद]]
:{{math|''U<sub>n</sub>''(''x'', −1)}} : [[फाइबोनैचि बहुपद]]
:{{math|''V<sub>n</sub>''(''x'', −1)}} : [[लुकास बहुपद]]
:{{math|''V<sub>n</sub>''(''x'', −1)}} : [[लुकास बहुपद]]
:{{math|''U<sub>n</sub>''(2''x'',&thinsp;1)}} : दूसरी तरह के [[चेबीशेव बहुपद]]
:{{math|''U<sub>n</sub>''(2''x'',&thinsp;1)}} : दूसरी तरह के [[चेबीशेव बहुपद]]
:{{math|''V<sub>n</sub>''(2''x'',&thinsp;1)}} : पहली तरह के चेबीशेव बहुपद को 2 से गुणा किया गया
:{{math|''V<sub>n</sub>''(2''x'',&thinsp;1)}} : प्रथम प्रकार के चेबीशेव बहुपद को 2 से गुणा किया गया
:{{math|''U<sub>n</sub>''(''x''+1, ''x'')}} : आधार x में पुनर्पुनित करता है
:{{math|''U<sub>n</sub>''(''x''+1, ''x'')}} : आधार x में पुनःपुनित करता है
:{{math|''V<sub>n</sub>''(''x''+1, ''x'')}} : एक्स<sup>n</sup> + 1
:{{math|''V<sub>n</sub>''(''x''+1, ''x'')}} : ''x<sup>n</sup>'' + 1


कुछ लुकास अनुक्रमों की पूर्णांक अनुक्रमों के ऑन-लाइन विश्वकोश में प्रविष्टियाँ हैं:
कुछ लुकास अनुक्रमों की पूर्णांक अनुक्रमों के ऑन-लाइन विश्वकोश में प्रविष्टियाँ निम्न प्रकार हैं:


:{|class="wikitable" style="background: #fff"
:{|class="wikitable" style="background: #fff"
Line 267: Line 268:


== अनुप्रयोग ==
== अनुप्रयोग ==
* लुकास अनुक्रमों का उपयोग संभाव्य लुकास स्यूडोप्राइम परीक्षणों में किया जाता है, जो आमतौर पर इस्तेमाल किए जाने वाले बैली-पीएसडब्ल्यू प्राइमलिटी परीक्षण का हिस्सा हैं।
* लुकास अनुक्रमों का उपयोग संभाव्य लुकास स्यूडोअभाज्य परीक्षणों में किया जाता है, जो सामान्यतः प्रयोग किए जाने वाले बैली-पीएसडब्ल्यू प्रारंभिक परीक्षण का भाग होता हैं।
* लुकास अनुक्रमों का उपयोग कुछ प्रारंभिक प्रमाण विधियों में किया जाता है, जिनमें लुकास-लेहमर-रीज़ल परीक्षण, और एन+1 और हाइब्रिड एन−1/एन+1 विधियां जैसे ब्रिलहार्ट-लेहमर-सेल्फ्रिज 1975 सम्मिलित हैं।<ref name="BLS75">{{ cite journal|author=John Brillhart|author2=Derrick Henry Lehmer|author3-link=John Selfridge|author3=John Selfridge|title=New Primality Criteria and Factorizations of 2<sup>m</sup> ± 1|journal=Mathematics of Computation |volume=29|number=130|date=April 1975|pages=620–647|jstor=2005583|doi=10.1090/S0025-5718-1975-0384673-1|author-link=John Brillhart|author2-link=Derrick Henry Lehmer|doi-access=free}}</ref>
* लुकास अनुक्रमों का उपयोग कुछ प्रारंभिक प्रमाण विधियों में किया जाता है, जिनमें लुकास-लेहमर-रीज़ल परीक्षण, और N+1और संकर N−1/N+1 विधियां जैसे ब्रिलहार्ट-लेहमर-सेल्फ्रिज 1975 सम्मिलित होता हैं।<ref name="BLS75">{{ cite journal|author=John Brillhart|author2=Derrick Henry Lehmer|author3-link=John Selfridge|author3=John Selfridge|title=New Primality Criteria and Factorizations of 2<sup>m</sup> ± 1|journal=Mathematics of Computation |volume=29|number=130|date=April 1975|pages=620–647|jstor=2005583|doi=10.1090/S0025-5718-1975-0384673-1|author-link=John Brillhart|author2-link=Derrick Henry Lehmer|doi-access=free}}</ref>
* LUC लुकास अनुक्रमों पर आधारित [[सार्वजनिक-कुंजी क्रिप्टोसिस्टम]] है<ref>{{cite journal |author1=P. J. Smith |author2=M. J. J. Lennon |title=LUC: A new public key system |journal=Proceedings of the Ninth IFIP Int. Symp. On Computer Security |year=1993 |pages=103–117 |citeseerx=10.1.1.32.1835 }}</ref> जो [[एलगमाल]] (LUCELG), डिफी-हेलमैन (LUCDIF), और RSA (एल्गोरिदम) (LUCRSA) के एनालॉग्स को लागू करता है। एलयूसी में संदेश के एन्क्रिप्शन की गणना आरएसए या डिफी-हेलमैन जैसे [[मॉड्यूलर घातांक]] का उपयोग करने के बजाय, कुछ लुकास अनुक्रम के शब्द के रूप में की जाती है। यघपि , ब्लेइचेनबैकर एट अल द्वारा पेपर।<ref>{{cite journal |author1=D. Bleichenbacher |author2=W. Bosma |author3=A. K. Lenstra |title=लुकास-आधारित क्रिप्टोसिस्टम पर कुछ टिप्पणियाँ|journal=[[Lecture Notes in Computer Science]] |volume=963 |year=1995 |pages=386–396 |doi=10.1007/3-540-44750-4_31 |isbn=978-3-540-60221-7 |url=http://www.math.ru.nl/~bosma/pubs/CRYPTO95.pdf|doi-access=free }}</ref> दर्शाता है कि मॉड्यूलर एक्सपोनेंटिएशन पर आधारित क्रिप्टोसिस्टम पर एलयूसी के कई कथित सुरक्षा लाभ या तो उपस्थिति नहीं हैं, या उतने पर्याप्त नहीं हैं जितना दावा किया गया है।
* एलयूसी लुकास अनुक्रमों पर आधारित [[सार्वजनिक-कुंजी क्रिप्टोसिस्टम|सार्वजनिक-कुंजी क्रिप्टोप्रणाली]] है<ref>{{cite journal |author1=P. J. Smith |author2=M. J. J. Lennon |title=LUC: A new public key system |journal=Proceedings of the Ninth IFIP Int. Symp. On Computer Security |year=1993 |pages=103–117 |citeseerx=10.1.1.32.1835 }}</ref> जो [[एलगमाल]] (LUCELG), डिफी-हेलमैन (LUCDIF), और RSA (कलन विधि) (LUCRSA) के एनालॉग्स को प्रयुक्त करता है। एलयूसी में संदेश के कूटलेखन की गणना आरएसए या डिफी-हेलमैन जैसे [[मॉड्यूलर घातांक]] का उपयोग करने के अतिरिक्त, कुछ लुकास अनुक्रम के शब्द के रूप में की जाती है। यघपि, ब्लेइचेनबैकर एट अल द्वारा पेपर <ref>{{cite journal |author1=D. Bleichenbacher |author2=W. Bosma |author3=A. K. Lenstra |title=लुकास-आधारित क्रिप्टोसिस्टम पर कुछ टिप्पणियाँ|journal=[[Lecture Notes in Computer Science]] |volume=963 |year=1995 |pages=386–396 |doi=10.1007/3-540-44750-4_31 |isbn=978-3-540-60221-7 |url=http://www.math.ru.nl/~bosma/pubs/CRYPTO95.pdf|doi-access=free }}</ref> प्रदर्शित करता है कि मॉड्यूलर घातांक पर आधारित क्रिप्टोप्रणाली पर एलयूसी के कई कथित सुरक्षा लाभ या तो उपस्थिति नहीं होते हैं, या उतने पर्याप्त नहीं होते हैं जितना माना जाता है।


==यह भी देखें==
==यह भी देखें==
* लुकास स्यूडोप्राइम
* लुकास स्यूडोअभाज्य
* [[फ्रोबेनियस स्यूडोप्राइम]]
* [[फ्रोबेनियस स्यूडोप्राइम|फ्रोबेनियस स्यूडोअभाज्य]]  
* सोमर-लुकास स्यूडोप्राइम
* सोमर-लुकास स्यूडोअभाज्य


==टिप्पणियाँ==
==टिप्पणियाँ==
Line 353: Line 354:
* {{MathWorld | urlname=LucasSequence | title=Lucas Sequence}}
* {{MathWorld | urlname=LucasSequence | title=Lucas Sequence}}
* {{cite web| url = http://weidai.com/lucas.html|author=Wei Dai|title= Lucas Sequences in Cryptography|author-link=Wei Dai}}
* {{cite web| url = http://weidai.com/lucas.html|author=Wei Dai|title= Lucas Sequences in Cryptography|author-link=Wei Dai}}
[[Category: पुनरावृत्ति संबंध]] [[Category: पूर्णांक क्रम]]


[[Category: Machine Translated Page]]
[[Category:Created On 07/07/2023]]
[[Category:Created On 07/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:पुनरावृत्ति संबंध]]
[[Category:पूर्णांक क्रम]]

Latest revision as of 15:16, 28 July 2023

गणित में, लुकास अनुक्रम और कुछ स्थिर-पुनरावर्ती अनुक्रम होता है जो पुनरावृत्ति संबंध को प्रदर्शित करते हैं

जहाँ और निश्चित पूर्णांक होता हैं। इस पुनरावृत्ति संबंध को सरल करने वाले किसी भी अनुक्रम को लुकास अनुक्रमों और के रैखिक संयोजन के रूप में प्रदर्शित किया जा सकता है।

अधिक सामान्यतः, लुकास अनुक्रम और में बहुपद के अनुक्रम का प्रतिनिधित्व और पूर्णांक गुणांक के साथ करते हैं।

लुकास अनुक्रमों के प्रसिद्ध उदाहरणों में फाइबोनैचि संख्याएं, मेरसेन संख्याएं, पेल संख्याएं, लुकास संख्याएं, जैकबस्टल संख्याएं और फर्मेट संख्याओं का श्रेष्ट समुच्चय सम्मिलित होता हैं (नीचे देखें)। इस प्रकार लुकास अनुक्रमों का नाम फ्रांस के गणितज्ञ एडवर्ड लुकास के नाम पर रखा गया था।

पुनरावृत्ति संबंध

दो पूर्णांक पैरामीटर और दिए गएदिए गए है, प्रथम प्रकार के लुकास अनुक्रम और दूसरे प्रकार का पुनरावृत्ति संबंधों द्वारा परिभाषित किया जाता हैं:

और

इसे प्रदर्शित करना कठिन नहीं होता है ,

उपरोक्त संबंधों का आव्युह रूप में इस प्रकार वर्णित किया जा सकता है:




उदाहरण

लुकास अनुक्रमों की प्रारंभिक स्थितियां और तालिका में निम्न प्रकार दिए गए हैं:


स्पष्ट अभिव्यक्ति

लुकास अनुक्रमों के लिए पुनरावृत्ति संबंध का विशिष्ट समीकरण और होता है:

इसमें विभेदक होता और बहुपद का मूल निम्न प्रकार है:

इस प्रकार:

ध्यान दें कि क्रम और क्रम पुनरावृत्ति संबंध को भी सरल करते हैं। यघपि ये पूर्णांक अनुक्रम नहीं हो सकते हैं।

विशिष्ट मूल

जब , a और b भिन्न-भिन्न होता हैं और कोई भी इसे शीघ्रता से सत्यापित कर सकता है

इससे यह पता चलता है कि लुकास अनुक्रमों की स्थितियों को a और b के संदर्भ में निम्नानुसार व्यक्त किया जा सकता है

पुनरावर्तित मूल

स्थिति मात्र तब होता है जब कुछ पूर्णांक S के लिए होता जिससे होता है। इस स्थति में कोई भी इसे सरलता से प्राप्त कर सकते है

गुण

कार्य उत्पन्न करना

सामान्य जनरेटिंग फलन निम्न प्रकार होता हैं

पेल समीकरण

कब , लुकास अनुक्रम और कुछ पेल समीकरण को सरल करें:

विभिन्न मापदंडों के साथ अनुक्रमों के मध्य संबंध

  • किसी भी संख्या c के लिए, अनुक्रम और के साथ
के समान विभेदक और होता है:
  • किसी भी संख्या c के लिए, हमारे पास भी निम्न समीकरण होता है

अन्य संबंध

लुकास अनुक्रमों की स्थिति उन संबंधों को सरल करती हैं जो फाइबोनैचि संख्याओं के मध्य और लुकास संख्याएँ के सामान्यीकरण होता है। उदाहरण के लिए: