लुकास अनुक्रम: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 2: Line 2:


: <math>x_n = P \cdot x_{n - 1} - Q \cdot x_{n - 2}</math>
: <math>x_n = P \cdot x_{n - 1} - Q \cdot x_{n - 2}</math>
जहाँ <math>P</math> और <math>Q</math> निश्चित [[पूर्णांक]] होता हैं। इस पुनरावृत्ति संबंध को संतुष्ट करने वाले किसी भी अनुक्रम को लुकास अनुक्रमों <math>U_n(P, Q)</math> और <math>V_n(P, Q)</math>के [[रैखिक संयोजन]] के रूप में प्रदर्शित किया जा सकता है।
जहाँ <math>P</math> और <math>Q</math> निश्चित [[पूर्णांक]] होता हैं। इस पुनरावृत्ति संबंध को सरल करने वाले किसी भी अनुक्रम को लुकास अनुक्रमों <math>U_n(P, Q)</math> और <math>V_n(P, Q)</math>के [[रैखिक संयोजन]] के रूप में प्रदर्शित किया जा सकता है।


अधिक सामान्यतः, लुकास अनुक्रम <math>U_n(P, Q)</math> और <math>V_n(P, Q)</math> में [[बहुपद]] के अनुक्रम का प्रतिनिधित्व <math>P</math> और <math>Q</math> पूर्णांक गुणांक के साथ करते हैं।   
अधिक सामान्यतः, लुकास अनुक्रम <math>U_n(P, Q)</math> और <math>V_n(P, Q)</math> में [[बहुपद]] के अनुक्रम का प्रतिनिधित्व <math>P</math> और <math>Q</math> पूर्णांक गुणांक के साथ करते हैं।   


लुकास अनुक्रमों के प्रसिद्ध उदाहरणों में [[फाइबोनैचि संख्या]]एं, मेरसेन संख्याएं, पेल संख्याएं, लुकास संख्याएं, जैकबस्टल संख्याएं और फर्मेट संख्याओं का श्रेष्ट समुच्चय सम्मिलित होता हैं (नीचे देखें)। लुकास अनुक्रमों का नाम [[फ्रांस]] के गणितज्ञ एडवर्ड लुकास के नाम पर रखा गया था।
लुकास अनुक्रमों के प्रसिद्ध उदाहरणों में [[फाइबोनैचि संख्या]]एं, मेरसेन संख्याएं, पेल संख्याएं, लुकास संख्याएं, जैकबस्टल संख्याएं और फर्मेट संख्याओं का श्रेष्ट समुच्चय सम्मिलित होता हैं (नीचे देखें)। इस प्रकार लुकास अनुक्रमों का नाम [[फ्रांस]] के गणितज्ञ एडवर्ड लुकास के नाम पर रखा गया था।


== पुनरावृत्ति संबंध ==
== पुनरावृत्ति संबंध ==
Line 73: Line 73:
:<math>a b = \frac{1}{4}(P^2 - D) = Q\, ,</math>
:<math>a b = \frac{1}{4}(P^2 - D) = Q\, ,</math>
:<math>a - b = \sqrt{D}\, .</math>
:<math>a - b = \sqrt{D}\, .</math>
ध्यान दें कि क्रम <math>a^n</math> और क्रम <math>b^n</math> पुनरावृत्ति संबंध को भी संतुष्ट करते हैं। यघपि ये पूर्णांक अनुक्रम नहीं हो सकते हैं।
ध्यान दें कि क्रम <math>a^n</math> और क्रम <math>b^n</math> पुनरावृत्ति संबंध को भी सरल करते हैं। यघपि ये पूर्णांक अनुक्रम नहीं हो सकते हैं।


=== विशिष्ट मूल ===
=== विशिष्ट मूल ===
Line 104: Line 104:


=== पेल समीकरण ===
=== पेल समीकरण ===
कब <math>Q=\pm 1</math>, लुकास अनुक्रम <math>U_n(P, Q)</math> और <math>V_n(P, Q)</math> कुछ [[पेल समीकरण]] को संतुष्ट करें:
कब <math>Q=\pm 1</math>, लुकास अनुक्रम <math>U_n(P, Q)</math> और <math>V_n(P, Q)</math> कुछ [[पेल समीकरण]] को सरल करें:
:<math>V_n(P,1)^2 - D\cdot U_n(P,1)^2 = 4,</math>
:<math>V_n(P,1)^2 - D\cdot U_n(P,1)^2 = 4,</math>
:<math>V_{2n}(P,-1)^2 - D\cdot U_{2n}(P,-1)^2 = 4,</math>
:<math>V_{2n}(P,-1)^2 - D\cdot U_{2n}(P,-1)^2 = 4,</math>
Line 120: Line 120:


=== अन्य संबंध ===
=== अन्य संबंध ===
लुकास अनुक्रमों की स्थिति उन संबंधों को संतुष्ट करती हैं जो फाइबोनैचि संख्याओं के मध्य <math>F_n=U_n(1,-1)</math> और लुकास संख्याएँ <math>L_n=V_n(1,-1)</math> के सामान्यीकरण होता है। उदाहरण के लिए:
लुकास अनुक्रमों की स्थिति उन संबंधों को सरल करती हैं जो फाइबोनैचि संख्याओं के मध्य <math>F_n=U_n(1,-1)</math> और लुकास संख्याएँ <math>L_n=V_n(1,-1)</math> के सामान्यीकरण होता है। उदाहरण के लिए:
:<math>
:<math>
\begin{array}{r|l}
\begin{array}{r|l}
Line 157: Line 157:


=== विभाज्यता गुण ===
=== विभाज्यता गुण ===
परिणामों में सम्मिलित <math>U_{km}(P,Q)</math><math>U_m(P,Q)</math> का गुणज होता है, अर्थात्, अनुक्रम <math>(U_m(P,Q))_{m\ge1}</math>एक [[विभाज्यता क्रम]] होता है। इसका तात्पर्य, विशेष रूप से, जब <math>U_n(P,Q)</math> मात्र तभी [[अभाज्य संख्या]] हो सकती है जब n अभाज्य हो। अन्य परिणाम [[वर्ग द्वारा घातांक]] का अनुरूप होता है जो शीघ्रता से गणना की अनुमति देता है <math>U_n(P,Q)</math> n के बड़े मानों के लिए होता है।इसके अतिरिक्त, यदि <math>\gcd(P,Q)=1</math> होता है, तब <math>(U_m(P,Q))_{m\ge1}</math> विभाज्यता क्रम होता है।  
परिणामों में सम्मिलित <math>U_{km}(P,Q)</math><math>U_m(P,Q)</math> का गुणज होता है, अर्थात्, अनुक्रम <math>(U_m(P,Q))_{m\ge1}</math>एक [[विभाज्यता क्रम]] होता है। इसका तात्पर्य, विशेष रूप से, जब <math>U_n(P,Q)</math> मात्र तभी [[अभाज्य संख्या]] हो सकती है जब n अभाज्य हो। इस प्रकार अन्य परिणाम [[वर्ग द्वारा घातांक]] का अनुरूप होता है जो शीघ्रता से गणना की अनुमति देता है जों <math>U_n(P,Q)</math> n के बड़े मानों के लिए होता है।इसके अतिरिक्त, यदि <math>\gcd(P,Q)=1</math> होता है, तब <math>(U_m(P,Q))_{m\ge1}</math> विभाज्यता क्रम होता है।  


अन्य विभाज्यता गुण इस प्रकार हैं:<ref>For such relations and divisibility properties, see {{harv|Carmichael|1913}}, {{harv|Lehmer|1930}} or {{harv|Ribenboim|1996|loc=2.IV}}.</ref>
अन्य विभाज्यता गुण इस प्रकार हैं:<ref>For such relations and divisibility properties, see {{harv|Carmichael|1913}}, {{harv|Lehmer|1930}} or {{harv|Ribenboim|1996|loc=2.IV}}.</ref>
Line 270: Line 270:
* लुकास अनुक्रमों का उपयोग संभाव्य लुकास स्यूडोअभाज्य परीक्षणों में किया जाता है, जो सामान्यतः प्रयोग किए जाने वाले बैली-पीएसडब्ल्यू प्रारंभिक परीक्षण का भाग होता हैं।
* लुकास अनुक्रमों का उपयोग संभाव्य लुकास स्यूडोअभाज्य परीक्षणों में किया जाता है, जो सामान्यतः प्रयोग किए जाने वाले बैली-पीएसडब्ल्यू प्रारंभिक परीक्षण का भाग होता हैं।
* लुकास अनुक्रमों का उपयोग कुछ प्रारंभिक प्रमाण विधियों में किया जाता है, जिनमें लुकास-लेहमर-रीज़ल परीक्षण, और N+1और संकर N−1/N+1 विधियां जैसे ब्रिलहार्ट-लेहमर-सेल्फ्रिज 1975 सम्मिलित होता हैं।<ref name="BLS75">{{ cite journal|author=John Brillhart|author2=Derrick Henry Lehmer|author3-link=John Selfridge|author3=John Selfridge|title=New Primality Criteria and Factorizations of 2<sup>m</sup> ± 1|journal=Mathematics of Computation |volume=29|number=130|date=April 1975|pages=620–647|jstor=2005583|doi=10.1090/S0025-5718-1975-0384673-1|author-link=John Brillhart|author2-link=Derrick Henry Lehmer|doi-access=free}}</ref>
* लुकास अनुक्रमों का उपयोग कुछ प्रारंभिक प्रमाण विधियों में किया जाता है, जिनमें लुकास-लेहमर-रीज़ल परीक्षण, और N+1और संकर N−1/N+1 विधियां जैसे ब्रिलहार्ट-लेहमर-सेल्फ्रिज 1975 सम्मिलित होता हैं।<ref name="BLS75">{{ cite journal|author=John Brillhart|author2=Derrick Henry Lehmer|author3-link=John Selfridge|author3=John Selfridge|title=New Primality Criteria and Factorizations of 2<sup>m</sup> ± 1|journal=Mathematics of Computation |volume=29|number=130|date=April 1975|pages=620–647|jstor=2005583|doi=10.1090/S0025-5718-1975-0384673-1|author-link=John Brillhart|author2-link=Derrick Henry Lehmer|doi-access=free}}</ref>
* एलयूसी लुकास अनुक्रमों पर आधारित [[सार्वजनिक-कुंजी क्रिप्टोसिस्टम|सार्वजनिक-कुंजी क्रिप्टोप्रणाली]] है<ref>{{cite journal |author1=P. J. Smith |author2=M. J. J. Lennon |title=LUC: A new public key system |journal=Proceedings of the Ninth IFIP Int. Symp. On Computer Security |year=1993 |pages=103–117 |citeseerx=10.1.1.32.1835 }}</ref> जो [[एलगमाल]] (LUCELG), डिफी-हेलमैन (LUCDIF), और RSA (कलन विधि) (LUCRSA) के एनालॉग्स को प्रयुक्त करता है। एलयूसी में संदेश के कूटलेखन की गणना आरएसए या डिफी-हेलमैन जैसे [[मॉड्यूलर घातांक]] का उपयोग करने के अतिरिक्त, कुछ लुकास अनुक्रम के शब्द के रूप में की जाती है। यघपि, ब्लेइचेनबैकर एट अल द्वारा पेपर <ref>{{cite journal |author1=D. Bleichenbacher |author2=W. Bosma |author3=A. K. Lenstra |title=लुकास-आधारित क्रिप्टोसिस्टम पर कुछ टिप्पणियाँ|journal=[[Lecture Notes in Computer Science]] |volume=963 |year=1995 |pages=386–396 |doi=10.1007/3-540-44750-4_31 |isbn=978-3-540-60221-7 |url=http://www.math.ru.nl/~bosma/pubs/CRYPTO95.pdf|doi-access=free }}</ref> प्रदर्शित करता है कि मॉड्यूलर घातांक पर आधारित क्रिप्टोप्रणाली पर एलयूसी के कई कथित सुरक्षा लाभ या तो उपस्थिति नहीं होते हैं, या उतने पर्याप्त नहीं होते हैं जितना दावा किया जाता है।
* एलयूसी लुकास अनुक्रमों पर आधारित [[सार्वजनिक-कुंजी क्रिप्टोसिस्टम|सार्वजनिक-कुंजी क्रिप्टोप्रणाली]] है<ref>{{cite journal |author1=P. J. Smith |author2=M. J. J. Lennon |title=LUC: A new public key system |journal=Proceedings of the Ninth IFIP Int. Symp. On Computer Security |year=1993 |pages=103–117 |citeseerx=10.1.1.32.1835 }}</ref> जो [[एलगमाल]] (LUCELG), डिफी-हेलमैन (LUCDIF), और RSA (कलन विधि) (LUCRSA) के एनालॉग्स को प्रयुक्त करता है। एलयूसी में संदेश के कूटलेखन की गणना आरएसए या डिफी-हेलमैन जैसे [[मॉड्यूलर घातांक]] का उपयोग करने के अतिरिक्त, कुछ लुकास अनुक्रम के शब्द के रूप में की जाती है। यघपि, ब्लेइचेनबैकर एट अल द्वारा पेपर <ref>{{cite journal |author1=D. Bleichenbacher |author2=W. Bosma |author3=A. K. Lenstra |title=लुकास-आधारित क्रिप्टोसिस्टम पर कुछ टिप्पणियाँ|journal=[[Lecture Notes in Computer Science]] |volume=963 |year=1995 |pages=386–396 |doi=10.1007/3-540-44750-4_31 |isbn=978-3-540-60221-7 |url=http://www.math.ru.nl/~bosma/pubs/CRYPTO95.pdf|doi-access=free }}</ref> प्रदर्शित करता है कि मॉड्यूलर घातांक पर आधारित क्रिप्टोप्रणाली पर एलयूसी के कई कथित सुरक्षा लाभ या तो उपस्थिति नहीं होते हैं, या उतने पर्याप्त नहीं होते हैं जितना माना जाता है।


==यह भी देखें==
==यह भी देखें==
Line 354: Line 354:
* {{MathWorld | urlname=LucasSequence | title=Lucas Sequence}}
* {{MathWorld | urlname=LucasSequence | title=Lucas Sequence}}
* {{cite web| url = http://weidai.com/lucas.html|author=Wei Dai|title= Lucas Sequences in Cryptography|author-link=Wei Dai}}
* {{cite web| url = http://weidai.com/lucas.html|author=Wei Dai|title= Lucas Sequences in Cryptography|author-link=Wei Dai}}
[[Category: पुनरावृत्ति संबंध]] [[Category: पूर्णांक क्रम]]


[[Category: Machine Translated Page]]
[[Category:Created On 07/07/2023]]
[[Category:Created On 07/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:पुनरावृत्ति संबंध]]
[[Category:पूर्णांक क्रम]]

Latest revision as of 15:16, 28 July 2023

गणित में, लुकास अनुक्रम और कुछ स्थिर-पुनरावर्ती अनुक्रम होता है जो पुनरावृत्ति संबंध को प्रदर्शित करते हैं

जहाँ और निश्चित पूर्णांक होता हैं। इस पुनरावृत्ति संबंध को सरल करने वाले किसी भी अनुक्रम को लुकास अनुक्रमों और के रैखिक संयोजन के रूप में प्रदर्शित किया जा सकता है।

अधिक सामान्यतः, लुकास अनुक्रम और में बहुपद के अनुक्रम का प्रतिनिधित्व और पूर्णांक गुणांक के साथ करते हैं।

लुकास अनुक्रमों के प्रसिद्ध उदाहरणों में फाइबोनैचि संख्याएं, मेरसेन संख्याएं, पेल संख्याएं, लुकास संख्याएं, जैकबस्टल संख्याएं और फर्मेट संख्याओं का श्रेष्ट समुच्चय सम्मिलित होता हैं (नीचे देखें)। इस प्रकार लुकास अनुक्रमों का नाम फ्रांस के गणितज्ञ एडवर्ड लुकास के नाम पर रखा गया था।

पुनरावृत्ति संबंध

दो पूर्णांक पैरामीटर और दिए गएदिए गए है, प्रथम प्रकार के लुकास अनुक्रम और दूसरे प्रकार का पुनरावृत्ति संबंधों द्वारा परिभाषित किया जाता हैं:

और

इसे प्रदर्शित करना कठिन नहीं होता है ,

उपरोक्त संबंधों का आव्युह रूप में इस प्रकार वर्णित किया जा सकता है:




उदाहरण

लुकास अनुक्रमों की प्रारंभिक स्थितियां और तालिका में निम्न प्रकार दिए गए हैं:


स्पष्ट अभिव्यक्ति

लुकास अनुक्रमों के लिए पुनरावृत्ति संबंध का विशिष्ट समीकरण और होता है:

इसमें विभेदक होता और बहुपद का मूल निम्न प्रकार है:

इस प्रकार:

ध्यान दें कि क्रम और क्रम पुनरावृत्ति संबंध को भी सरल करते हैं। यघपि ये पूर्णांक अनुक्रम नहीं हो सकते हैं।

विशिष्ट मूल

जब , a और b भिन्न-भिन्न होता हैं और कोई भी इसे शीघ्रता से सत्यापित कर सकता है

इससे यह पता चलता है कि लुकास अनुक्रमों की स्थितियों को a और b के संदर्भ में निम्नानुसार व्यक्त किया जा सकता है

पुनरावर्तित मूल

स्थिति मात्र तब होता है जब कुछ पूर्णांक S के लिए होता जिससे होता है। इस स्थति में कोई भी इसे सरलता से प्राप्त कर सकते है

गुण

कार्य उत्पन्न करना

सामान्य जनरेटिंग फलन निम्न प्रकार होता हैं

पेल समीकरण

कब , लुकास अनुक्रम और कुछ पेल समीकरण को सरल करें:

विभिन्न मापदंडों के साथ अनुक्रमों के मध्य संबंध

  • किसी भी संख्या c के लिए, अनुक्रम और के साथ
के समान विभेदक और होता है:
  • किसी भी संख्या c के लिए, हमारे पास भी निम्न समीकरण होता है

अन्य संबंध

लुकास अनुक्रमों की स्थिति उन संबंधों को सरल करती हैं जो फाइबोनैचि संख्याओं के मध्य और लुकास संख्याएँ के सामान्यीकरण होता है। उदाहरण के लिए: