आवधिक क्रम: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Sequence for which the same terms are repeated over and over}}{{More citations needed|date=August 2021}} गणित में, एक आवर्त...")
 
No edit summary
 
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{short description|Sequence for which the same terms are repeated over and over}}{{More citations needed|date=August 2021}}
{{short description|Sequence for which the same terms are repeated over and over}}गणित में, '''आवधिक अनुक्रम''' (जिसे कभी-कभी '''चक्र''' भी कहा जाता है) [[अनुक्रम]] है जिसके लिए ही  समान[[शब्द (तर्क)]] बार-बार दोहराए जाते हैं:


गणित में, एक आवर्त अनुक्रम (जिसे कभी-कभी चक्र भी कहा जाता है{{Citation needed|date=August 2021}}) एक [[अनुक्रम]] है जिसके लिए एक ही [[शब्द (तर्क)]] बार-बार दोहराया जाता है:
:''a''<sub>1</sub>, ''a''<sub>2</sub>, ..., ''a<sub>p</sub>'', ''a''<sub>1</sub>, ''a''<sub>2</sub>, ..., ''a<sub>p</sub>'', ''a''<sub>1</sub>, ''a''<sub>2</sub>, ..., ''a<sub>p</sub>'', ...


:ए<sub>1</sub>, ए<sub>2</sub>, ..., ए<sub>''p''</sub>, ए<sub>1</sub>, ए<sub>2</sub>, ..., ए<sub>''p''</sub>,  ए<sub>1</sub>, <sub>2</sub>, ..., ए<sub>''p''</sub>, ...{{Citation needed|date=August 2021}}
इस प्रकार दोहराए गए पदों की संख्या p को आवर्त (अवधि) कहा जाता है।<ref name=":0">{{Cite web|date=7 February 2011|title=अंततः आवर्त अनुक्रम - गणित का विश्वकोश|url=https://encyclopediaofmath.org/index.php?title=Ultimately_periodic_sequence&oldid=15942|url-status=live|access-date=13 August 2021|website=encyclopediaofmath.org}}</ref>
=='''परिभाषा'''==
A '''(विशुद्ध रूप से) आवधिक''' अनुक्रम ('''p अवधि''' के साथ), या '''''पी-''आवधिक अनुक्रम''', अनुक्रम, एक अनुक्रम ''a''<sub>1</sub>, ''a''<sub>2</sub>, ''a''<sub>3</sub>, ... संतोषजनक है


दोहराए गए पदों की संख्या p को 'अवधि' ([[आवृत्ति]]) कहा जाता है।<ref name=":0">{{Cite web|date=7 February 2011|title=अंततः आवर्त अनुक्रम - गणित का विश्वकोश|url=https://encyclopediaofmath.org/index.php?title=Ultimately_periodic_sequence&oldid=15942|url-status=live|access-date=13 August 2021|website=encyclopediaofmath.org}}</ref>
:''a<sub>n</sub>''<sub>+''p''</sub> = ''a<sub>n</sub>''
n के सभी मानों के लिए।<ref name=":0" /><ref name=":1">{{Cite web|last=Weisstein|first=Eric W.|title=आवधिक अनुक्रम|url=https://mathworld.wolfram.com/PeriodicSequence.html|access-date=2021-08-13|website=mathworld.wolfram.com|language=en}}</ref><ref>{{Cite web|last=Bosma|first=Wieb|title=आवधिक अनुक्रमों की जटिलता|url=https://www.math.ru.nl/~bosma/pubs/periodic.pdf|url-status=live|access-date=13 August 2021|website=www.math.ru.nl}}</ref><ref name=":2">{{Cite journal|last1=Janglajew|first1=Klara|last2=Schmeidel|first2=Ewa|date=2012-11-14|title=गैर-सजातीय रैखिक अंतर समीकरणों के समाधान की आवधिकता|journal=Advances in Difference Equations|volume=2012|issue=1|pages=195|doi=10.1186/1687-1847-2012-195|s2cid=122892501|issn=1687-1847|doi-access=free}}</ref><ref>{{Cite book|last1=Menezes|first1=Alfred J.|url=https://books.google.com/books?id=YyCyDwAAQBAJ&dq=%22periodic+sequence%22+AND+%22cycle%22&pg=PA180|title=एप्लाइड क्रिप्टोग्राफी की हैंडबुक|last2=Oorschot|first2=Paul C. van|last3=Vanstone|first3=Scott A.|date=2018-12-07|publisher=CRC Press|isbn=978-0-429-88132-9|language=en}}</ref> यदि किसी अनुक्रम को [[फ़ंक्शन (गणित)|फलन (गणित)]] के रूप में माना जाता है जिसका डोमेन [[प्राकृतिक संख्या]]ओं का समुच्चय है, तब आवधिक अनुक्रम बस विशेष प्रकार का आवधिक फलन है। इस प्रकार सबसे छोटा p जिसके लिए आवर्त अनुक्रम p-आवधिक होता है, उसे '''<nowiki/>'न्यूनतम अवधि'''' या '''त्रुटिहीन अवधि'''<ref name=":3" />कहा जाता है<ref name=":0" /><ref name=":3">{{Cite web|last=Weisstein|first=Eric W.|title=सबसे कम अवधि|url=https://mathworld.wolfram.com/LeastPeriod.html|access-date=2021-08-13|website=mathworld.wolfram.com|language=en}}</ref>  


 
=='''उदाहरण'''==
==परिभाषा==
ए (विशुद्ध रूप से) आवधिक अनुक्रम (अवधि ''पी'' के साथ), या ''पी-''आवधिक अनुक्रम, एक अनुक्रम ''ए'' है<sub>1</sub>, ए<sub>2</sub>, ए<sub>3</sub>, ... संतुष्टि देने वाला
 
:ए<sub>''n''+''p''</sub> = ए<sub>''n''</sub>
n के सभी मानों के लिए।<ref name=":0" /><ref name=":1">{{Cite web|last=Weisstein|first=Eric W.|title=आवधिक अनुक्रम|url=https://mathworld.wolfram.com/PeriodicSequence.html|access-date=2021-08-13|website=mathworld.wolfram.com|language=en}}</ref><ref>{{Cite web|last=Bosma|first=Wieb|title=आवधिक अनुक्रमों की जटिलता|url=https://www.math.ru.nl/~bosma/pubs/periodic.pdf|url-status=live|access-date=13 August 2021|website=www.math.ru.nl}}</ref><ref name=":2">{{Cite journal|last1=Janglajew|first1=Klara|last2=Schmeidel|first2=Ewa|date=2012-11-14|title=गैर-सजातीय रैखिक अंतर समीकरणों के समाधान की आवधिकता|journal=Advances in Difference Equations|volume=2012|issue=1|pages=195|doi=10.1186/1687-1847-2012-195|s2cid=122892501|issn=1687-1847|doi-access=free}}</ref><ref>{{Cite book|last1=Menezes|first1=Alfred J.|url=https://books.google.com/books?id=YyCyDwAAQBAJ&dq=%22periodic+sequence%22+AND+%22cycle%22&pg=PA180|title=एप्लाइड क्रिप्टोग्राफी की हैंडबुक|last2=Oorschot|first2=Paul C. van|last3=Vanstone|first3=Scott A.|date=2018-12-07|publisher=CRC Press|isbn=978-0-429-88132-9|language=en}}</ref> यदि किसी अनुक्रम को एक [[फ़ंक्शन (गणित)]] के रूप में माना जाता है जिसका डोमेन [[प्राकृतिक संख्या]]ओं का सेट है, तो एक आवधिक अनुक्रम बस एक विशेष प्रकार का आवधिक फ़ंक्शन है।{{Citation needed|date=August 2021}} सबसे छोटा p जिसके लिए एक आवर्त अनुक्रम p-आवधिक होता है, उसे 'न्यूनतम आवर्त' कहा जाता है<ref name=":0" /><ref name=":3">{{Cite web|last=Weisstein|first=Eric W.|title=सबसे कम अवधि|url=https://mathworld.wolfram.com/LeastPeriod.html|access-date=2021-08-13|website=mathworld.wolfram.com|language=en}}</ref> या सटीक अवधि.<ref name=":3" />{{Verify source|date=August 2021}}
 
==उदाहरण==
प्रत्येक स्थिर फलन 1-आवधिक है।<ref name=":2" />
प्रत्येक स्थिर फलन 1-आवधिक है।<ref name=":2" />


Line 22: Line 18:


:<math>\frac{1}{7} = 0.142857\,142857\,142857\,\ldots</math>
:<math>\frac{1}{7} = 0.142857\,142857\,142857\,\ldots</math>
अधिक सामान्यतः, किसी भी परिमेय संख्या के दशमलव विस्तार में अंकों का क्रम अंततः आवधिक होता है (नीचे देखें)।<ref>{{Cite web|last=Hosch|first=William L.|date=1 June 2018|title=तर्कसंगत संख्या|url=https://www.britannica.com/science/rational-number|url-status=live|access-date=13 August 2021|website=Encyclopedia Britannica|language=en}}</ref>{{Verify source|date=August 2021}}
इस प्रकार अधिक सामान्यतः, किसी भी परिमेय संख्या के दशमलव विस्तार में अंकों का क्रम अंततः आवधिक होता है (नीचे देखें)।<ref>{{Cite web|last=Hosch|first=William L.|date=1 June 2018|title=तर्कसंगत संख्या|url=https://www.britannica.com/science/rational-number|url-status=live|access-date=13 August 2021|website=Encyclopedia Britannica|language=en}}</ref>


−1 की घातों का क्रम आवर्त दो के साथ आवर्ती है:
−1 की घातों का क्रम आवर्त दो के साथ आवर्ती है:


:<math>-1,1,-1,1,-1,1,\ldots</math>
:<math>-1,1,-1,1,-1,1,\ldots</math>
अधिक सामान्यतः, एकता की किसी भी जड़ की शक्तियों का क्रम आवधिक होता है। एक [[समूह (गणित)]] में परिमित [[क्रम (समूह सिद्धांत)]] के किसी भी तत्व की शक्तियों के लिए भी यही सच है।{{Citation needed|date=August 2021}}
अधिक सामान्यतः, एकता की किसी भी जड़ की शक्तियों का क्रम आवधिक होता है। इस प्रकार [[समूह (गणित)]] में परिमित [[क्रम (समूह सिद्धांत)]] के किसी भी तत्व की शक्तियों के लिए भी यही सच है।


किसी फ़ंक्शन के लिए एक [[आवधिक बिंदु]] {{math|''f'' : ''X'' → ''X''}} एक बिंदु है {{mvar|x}} जिसकी कक्षा (गतिशीलता)
किसी फलन के लिए [[आवधिक बिंदु]] {{math|''f'' : ''X'' → ''X''}} बिंदु {{mvar|x}} जिसकी कक्षा (गतिशीलता) है


:<math>x,\, f(x),\, f(f(x)),\, f^3(x),\, f^4(x),\, \ldots</math>
:<math>x,\, f(x),\, f(f(x)),\, f^3(x),\, f^4(x),\, \ldots</math>
एक आवधिक क्रम है. यहाँ, <math>f^n(x)</math> का मतलब है {{nowrap|{{mvar|n}}-fold}} की कार्य संरचना {{mvar|f}} के लिए आवेदन किया {{mvar|x}}.<ref name=":3" />{{Verify source|date=August 2021}} गतिशील प्रणालियों के सिद्धांत में आवधिक बिंदु महत्वपूर्ण हैं। एक परिमित समुच्चय से प्रत्येक फलन का एक आवर्त बिंदु होता है; [[चक्र का पता लगाना]] ऐसे बिंदु को खोजने की एल्गोरिथम समस्या है।{{Citation needed|date=August 2021}}
आवधिक क्रम है. यहाँ, <math>f^n(x)</math> का कारणहै {{nowrap|{{mvar|n}}-fold}} की कार्य संरचना {{mvar|f}} के लिए आवेदन किया {{mvar|x}}.<ref name=":3" /> गतिशील प्रणालियों के सिद्धांत में आवधिक बिंदु महत्वपूर्ण हैं। परिमित समुच्चय से प्रत्येक फलन का आवर्त बिंदु होता है; इस प्रकार [[चक्र का पता लगाना]] ऐसे बिंदु को खोजने की एल्गोरिथम समस्या है।


==पहचान==
=='''पहचान'''==


===आंशिक रकम===
===आंशिक रकम===
:<math>\sum_{n=1}^{kp+m} a_{n} = k*\sum_{n=1}^{p} a_{n} + \sum_{n=1}^{m} a_{n}</math> जहाँ k और m<p प्राकृतिक संख्याएँ हैं।{{Citation needed|date=August 2021}}
:<math>\sum_{n=1}^{kp+m} a_{n} = k*\sum_{n=1}^{p} a_{n} + \sum_{n=1}^{m} a_{n}</math> जहाँ k और m<p प्राकृतिक संख्याएँ हैं।


===आंशिक उत्पाद===
===आंशिक उत्पाद===
:<math>\prod_{n=1}^{kp+m} a_{n} = ({\prod_{n=1}^{p} a_{n}})^k * \prod_{n=1}^{m} a_{n}</math> जहाँ k और m<p प्राकृतिक संख्याएँ हैं।{{Citation needed|date=August 2021}}
:<math>\prod_{n=1}^{kp+m} a_{n} = ({\prod_{n=1}^{p} a_{n}})^k * \prod_{n=1}^{m} a_{n}</math> जहाँ k और m<p प्राकृतिक संख्याएँ हैं।


==आवधिक 0, 1 अनुक्रम==
=='''आवधिक 0, 1 अनुक्रम'''==


किसी भी आवधिक अनुक्रम का निर्माण शून्य और एक से युक्त आवधिक अनुक्रमों के तत्व-वार जोड़, घटाव, गुणा और भाग द्वारा किया जा सकता है। आवधिक शून्य और एक अनुक्रम को त्रिकोणमितीय कार्यों के योग के रूप में व्यक्त किया जा सकता है:
किसी भी आवधिक अनुक्रम का निर्माण शून्य और से युक्त आवधिक अनुक्रमों के तत्व-वार जोड़, घटाव, गुणा और भाग द्वारा किया जा सकता है। इस प्रकार आवधिक शून्य और अनुक्रम को त्रिकोणमितीय कार्यों के योग के रूप में व्यक्त किया जा सकता है:


:<math>\sum_{k=1}^{1} \cos (-\pi\frac{n(k-1)}{1})/1 = 1,1,1,1,1,1,1,1,1...</math>
:<math>\sum_{k=1}^{1} \cos (-\pi\frac{n(k-1)}{1})/1 = 1,1,1,1,1,1,1,1,1...</math>
Line 51: Line 47:
:<math>...</math>
:<math>...</math>
:<math>\sum_{k=1}^{N} \cos (2\pi\frac{n(k-1)}{N})/N = 0,0,0...,1 \text{  sequence with period  } N </math>
:<math>\sum_{k=1}^{N} \cos (2\pi\frac{n(k-1)}{N})/N = 0,0,0...,1 \text{  sequence with period  } N </math>
{{Citation needed|date=August 2021}}{{Clarify|date=August 2021|reason=Notation is unexplained.}}


==सामान्यीकरण==
=='''सामान्यीकरण'''==
एक अनुक्रम अंततः आवर्ती होता है यदि शुरुआत से कुछ सीमित संख्या में पदों को हटाकर इसे आवर्ती बनाया जा सकता है। उदाहरण के लिए, 1/56 के दशमलव विस्तार में अंकों का क्रम अंततः आवधिक है:
अनुक्रम '''अंततः आवधिक''' होता है यदि प्रारंभ से कुछ सीमित संख्या में पदों को हटाकर इसे आवर्ती बनाया जा सकता है। इस प्रकार उदाहरण के लिए, 1/56 के दशमलव विस्तार में अंकों का क्रम अंततः आवधिक है:
 
: 1 / 56 = 0 . 0 1 7 8 5 7 1 4 2 8 5 7 1 4 2 8 5 7 1 4 2...
अनुक्रम '''अंततः आवधिक''' होता है यदि यह शर्त को पूरा करता है <math>a_{k+r} = a_k</math> कुछ r और पर्याप्त रूप से बड़े k के लिए।<ref name=":0" />


: 1 / 56 = 0 . 0 1 7 8 5 7 1 4 2 8 5 7 1 4 2 8 5 7 1 4 2...{{Citation needed|date=August 2021}}
अनुक्रम '''असम्बद्ध रूप से आवधिक''' है यदि इसकी शर्तें आवधिक अनुक्रम के करीब आती हैं। अर्थात् अनुक्रम ''x''<sub>1</sub>, एक्स<sub>2</sub>, एक्स<sub>3</sub>,... यदि कोई आवधिक अनुक्रम उपस्तिथ है तब यह असम्बद्ध रूप से आवधिक है<sub>1</sub>, ए<sub>2</sub>, ए<sub>3</sub>, ... जिसके लिए
एक अनुक्रम अंततः आवधिक होता है यदि यह शर्त को पूरा करता है <math>a_{k+r} = a_k</math> कुछ r और पर्याप्त रूप से बड़े k के लिए।<ref name=":0" />
एक अनुक्रम असम्बद्ध रूप से आवधिक है यदि इसकी शर्तें एक आवधिक अनुक्रम के करीब आती हैं। अर्थात् अनुक्रम ''x''<sub>1</sub>, एक्स<sub>2</sub>, एक्स<sub>3</sub>,... यदि कोई आवधिक अनुक्रम मौजूद है तो यह असम्बद्ध रूप से आवधिक है<sub>1</sub>, ए<sub>2</sub>, ए<sub>3</sub>, ... जिसके लिए


:<math>\lim_{n\rightarrow\infty} x_n - a_n = 0.</math><ref name=":2" /><ref>{{Cite book|last=Cheng|first=SuiSun|url=https://books.google.com/books?id=Yc03DwAAQBAJ&dq=%22asymptotically+periodic+sequence%22+AND+%22definition%22+-wikipedia&pg=PA12|title=New Developments in Difference Equations and Applications: Proceedings of the Third International Conference on Difference Equations|date=2017-09-29|publisher=Routledge|isbn=978-1-351-42880-4|language=en}}</ref><ref>{{Cite journal|date=2019-01-01|title=गैर-गाऊसी साइक्लोस्टेशनरी संकेतों के साथ एलएमएस फिल्टर का प्रदर्शन विश्लेषण|journal=Signal Processing|language=en|volume=154|pages=260–271|doi=10.1016/j.sigpro.2018.08.008|issn=0165-1684|arxiv=1708.00635|last1=Shlezinger|first1=Nir|last2=Todros|first2=Koby|s2cid=53521677}}</ref>{{Verify source|date=August 2021}}
:<math>\lim_{n\rightarrow\infty} x_n - a_n = 0.</math><ref name=":2" /><ref>{{Cite book|last=Cheng|first=SuiSun|url=https://books.google.com/books?id=Yc03DwAAQBAJ&dq=%22asymptotically+periodic+sequence%22+AND+%22definition%22+-wikipedia&pg=PA12|title=New Developments in Difference Equations and Applications: Proceedings of the Third International Conference on Difference Equations|date=2017-09-29|publisher=Routledge|isbn=978-1-351-42880-4|language=en}}</ref><ref>{{Cite journal|date=2019-01-01|title=गैर-गाऊसी साइक्लोस्टेशनरी संकेतों के साथ एलएमएस फिल्टर का प्रदर्शन विश्लेषण|journal=Signal Processing|language=en|volume=154|pages=260–271|doi=10.1016/j.sigpro.2018.08.008|issn=0165-1684|arxiv=1708.00635|last1=Shlezinger|first1=Nir|last2=Todros|first2=Koby|s2cid=53521677}}</ref>


उदाहरण के लिए, अनुक्रम
उदाहरण के लिए, अनुक्रम
Line 66: Line 62:
:1 / 3, 2 / 3, 1 / 4, 3 / 4, 1 / 5, 4 / 5,...
:1 / 3, 2 / 3, 1 / 4, 3 / 4, 1 / 5, 4 / 5,...


स्पर्शोन्मुख रूप से आवर्त है, क्योंकि इसके पद आवर्त अनुक्रम 0, 1, 0, 1, 0, 1, ... के निकट आते हैं।{{Citation needed|date=August 2021}}
इस प्रकार स्पर्शोन्मुख रूप से आवर्त है, क्योंकि इसके पद आवर्त अनुक्रम 0, 1, 0, 1, 0, 1, ... के निकट आते हैं।


== संदर्भ ==
== संदर्भ ==
{{Reflist}}{{Series (mathematics)}}
{{Reflist}}{{Series (mathematics)}}


{{DEFAULTSORT:Periodic Sequence}}[[Category: अनुक्रम और श्रृंखला]]
{{DEFAULTSORT:Periodic Sequence}}
 
 


[[Category: Machine Translated Page]]
[[Category:CS1 English-language sources (en)]]
[[Category:Created On 07/07/2023]]
[[Category:CS1 maint]]
[[Category:Collapse templates|Periodic Sequence]]
[[Category:Created On 07/07/2023|Periodic Sequence]]
[[Category:Lua-based templates|Periodic Sequence]]
[[Category:Machine Translated Page|Periodic Sequence]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Periodic Sequence]]
[[Category:Pages with script errors|Periodic Sequence]]
[[Category:Sidebars with styles needing conversion|Periodic Sequence]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready|Periodic Sequence]]
[[Category:Templates generating microformats|Periodic Sequence]]
[[Category:Templates that add a tracking category|Periodic Sequence]]
[[Category:Templates that are not mobile friendly|Periodic Sequence]]
[[Category:Templates that generate short descriptions|Periodic Sequence]]
[[Category:Templates using TemplateData|Periodic Sequence]]
[[Category:Wikipedia metatemplates|Periodic Sequence]]
[[Category:अनुक्रम और श्रृंखला|Periodic Sequence]]

Latest revision as of 10:45, 24 July 2023

गणित में, आवधिक अनुक्रम (जिसे कभी-कभी चक्र भी कहा जाता है) अनुक्रम है जिसके लिए ही समानशब्द (तर्क) बार-बार दोहराए जाते हैं:

a1, a2, ..., ap, a1, a2, ..., ap, a1, a2, ..., ap, ...

इस प्रकार दोहराए गए पदों की संख्या p को आवर्त (अवधि) कहा जाता है।[1]

परिभाषा

A (विशुद्ध रूप से) आवधिक अनुक्रम (p अवधि के साथ), या पी-आवधिक अनुक्रम, अनुक्रम, एक अनुक्रम a1, a2, a3, ... संतोषजनक है

an+p = an

n के सभी मानों के लिए।[1][2][3][4][5] यदि किसी अनुक्रम को फलन (गणित) के रूप में माना जाता है जिसका डोमेन प्राकृतिक संख्याओं का समुच्चय है, तब आवधिक अनुक्रम बस विशेष प्रकार का आवधिक फलन है। इस प्रकार सबसे छोटा p जिसके लिए आवर्त अनुक्रम p-आवधिक होता है, उसे 'न्यूनतम अवधि' या त्रुटिहीन अवधि[6]कहा जाता है[1][6]

उदाहरण

प्रत्येक स्थिर फलन 1-आवधिक है।[4]

क्रम न्यूनतम अवधि 2 वाला आवर्त है।[2]

1/7 के दशमलव विस्तार में अंकों का क्रम आवर्त 6 के साथ आवर्ती है:

इस प्रकार अधिक सामान्यतः, किसी भी परिमेय संख्या के दशमलव विस्तार में अंकों का क्रम अंततः आवधिक होता है (नीचे देखें)।[7]

−1 की घातों का क्रम आवर्त दो के साथ आवर्ती है:

अधिक सामान्यतः, एकता की किसी भी जड़ की शक्तियों का क्रम आवधिक होता है। इस प्रकार समूह (गणित) में परिमित क्रम (समूह सिद्धांत) के किसी भी तत्व की शक्तियों के लिए भी यही सच है।

किसी फलन के लिए आवधिक बिंदु f : XX बिंदु x जिसकी कक्षा (गतिशीलता) है

आवधिक क्रम है. यहाँ, का कारणहै n-fold की कार्य संरचना f के लिए आवेदन किया x.[6] गतिशील प्रणालियों के सिद्धांत में आवधिक बिंदु महत्वपूर्ण हैं। परिमित समुच्चय से प्रत्येक फलन का आवर्त बिंदु होता है; इस प्रकार चक्र का पता लगाना ऐसे बिंदु को खोजने की एल्गोरिथम समस्या है।

पहचान

आंशिक रकम

जहाँ k और m<p प्राकृतिक संख्याएँ हैं।

आंशिक उत्पाद

जहाँ k और m<p प्राकृतिक संख्याएँ हैं।

आवधिक 0, 1 अनुक्रम

किसी भी आवधिक अनुक्रम का निर्माण शून्य और से युक्त आवधिक अनुक्रमों के तत्व-वार जोड़, घटाव, गुणा और भाग द्वारा किया जा सकता है। इस प्रकार आवधिक शून्य और अनुक्रम को त्रिकोणमितीय कार्यों के योग के रूप में व्यक्त किया जा सकता है:

सामान्यीकरण

अनुक्रम अंततः आवधिक होता है यदि प्रारंभ से कुछ सीमित संख्या में पदों को हटाकर इसे आवर्ती बनाया जा सकता है। इस प्रकार उदाहरण के लिए, 1/56 के दशमलव विस्तार में अंकों का क्रम अंततः आवधिक है:

1 / 56 = 0 . 0 1 7 8 5 7 1 4 2 8 5 7 1 4 2 8 5 7 1 4 2...

अनुक्रम अंततः आवधिक होता है यदि यह शर्त को पूरा करता है कुछ r और पर्याप्त रूप से बड़े k के लिए।[1]

अनुक्रम असम्बद्ध रूप से आवधिक है यदि इसकी शर्तें आवधिक अनुक्रम के करीब आती हैं। अर्थात् अनुक्रम x1, एक्स2, एक्स3,... यदि कोई आवधिक अनुक्रम उपस्तिथ है तब यह असम्बद्ध रूप से आवधिक है1, ए2, ए3, ... जिसके लिए

[4][8][9]

उदाहरण के लिए, अनुक्रम

1 / 3, 2 / 3, 1 / 4, 3 / 4, 1 / 5, 4 / 5,...

इस प्रकार स्पर्शोन्मुख रूप से आवर्त है, क्योंकि इसके पद आवर्त अनुक्रम 0, 1, 0, 1, 0, 1, ... के निकट आते हैं।

संदर्भ

  1. 1.0 1.1 1.2 1.3 "अंततः आवर्त अनुक्रम - गणित का विश्वकोश". encyclopediaofmath.org. 7 February 2011. Retrieved 13 August 2021.{{cite web}}: CS1 maint: url-status (link)
  2. 2.0 2.1 Weisstein, Eric W. "आवधिक अनुक्रम". mathworld.wolfram.com (in English). Retrieved 2021-08-13.
  3. Bosma, Wieb. "आवधिक अनुक्रमों की जटिलता" (PDF). www.math.ru.nl. Retrieved 13 August 2021.{{cite web}}: CS1 maint: url-status (link)
  4. 4.0 4.1 4.2 Janglajew, Klara; Schmeidel, Ewa (2012-11-14). "गैर-सजातीय रैखिक अंतर समीकरणों के समाधान की आवधिकता". Advances in Difference Equations. 2012 (1): 195. doi:10.1186/1687-1847-2012-195. ISSN 1687-1847. S2CID 122892501.
  5. Menezes, Alfred J.; Oorschot, Paul C. van; Vanstone, Scott A. (2018-12-07). एप्लाइड क्रिप्टोग्राफी की हैंडबुक (in English). CRC Press. ISBN 978-0-429-88132-9.
  6. 6.0 6.1 6.2 Weisstein, Eric W. "सबसे कम अवधि". mathworld.wolfram.com (in English). Retrieved 2021-08-13.
  7. Hosch, William L. (1 June 2018). "तर्कसंगत संख्या". Encyclopedia Britannica (in English). Retrieved 13 August 2021.{{cite web}}: CS1 maint: url-status (link)
  8. Cheng, SuiSun (2017-09-29). New Developments in Difference Equations and Applications: Proceedings of the Third International Conference on Difference Equations (in English). Routledge. ISBN 978-1-351-42880-4.
  9. Shlezinger, Nir; Todros, Koby (2019-01-01). "गैर-गाऊसी साइक्लोस्टेशनरी संकेतों के साथ एलएमएस फिल्टर का प्रदर्शन विश्लेषण". Signal Processing (in English). 154: 260–271. arXiv:1708.00635. doi:10.1016/j.sigpro.2018.08.008. ISSN 0165-1684. S2CID 53521677.