सेरे द्वैत: Difference between revisions
No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 121: | Line 121: | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
*{{Citation | author1=The Stacks Project Authors | title=The Stacks Project | url=http://stacks.math.columbia.edu/}} | *{{Citation | author1=The Stacks Project Authors | title=The Stacks Project | url=http://stacks.math.columbia.edu/}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category: | |||
[[Category:Created On 07/07/2023]] | [[Category:Created On 07/07/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:जटिल अनेक गुना]] | |||
[[Category:द्वैत सिद्धांत]] | |||
[[Category:बीजगणितीय ज्यामिति की टोपोलॉजिकल विधियाँ]] |
Latest revision as of 09:49, 2 August 2023
बीजगणितीय ज्यामिति में, गणित की शाखा, सेरे द्वैत बीजगणितीय प्रकारों के सुसंगत शीफ सह समरूपता के लिए द्वैत (गणित) है, जिसे जीन पियरे सेरे द्वारा सिद्ध किया गया है। मूल संस्करण सहज प्रक्षेप्य प्रकार पर सदिश बंडलों पर लागू होता है, परन्तु अलेक्जेंडर ग्रोथेंडिक ने व्यापक सामान्यीकरण पाया, इस प्रकार से उदाहरण के लिए विलक्षण प्रकारों के लिए। एन-विमीय विविधता पर, प्रमेय कहता है कि एक सह समरूपता समूह दूसरे एक, की दोहरी समष्टि है। सेरे द्वैत टोपोलॉजी में पोंकारे द्वैत के सुसंगत शीफ सह समरूपता के लिए एनालॉग है, जिसमें विहित रेखा बंडल ओरिएंटेशन शीफ का स्थान लेता है।
सेरे द्वैत प्रमेय सम्मिश्र ज्यामिति में भी अधिक सामान्यतः सत्य है, संहत सम्मिश्र कई गुना के लिए जो आवश्यक रूप से प्रक्षेपीय विविधता सम्मिश्र बीजगणितीय विविधता नहीं हैं। इस समायोजन में, सेरे द्वैत प्रमेय डोल्बौल्ट सह समरूपता के लिए हॉज सिद्धांत का अनुप्रयोग है, और इसे अण्डाकार संक्रियकों के सिद्धांत में परिणाम के रूप में देखा जा सकता है।
सेरे द्वैत की ये दो अलग-अलग व्याख्याएं डॉल्बौल्ट के प्रमेय के अनुप्रयोग द्वारा डॉल्बौल्ट सह समरूपता से संबंधित शीफ सह समरूपता गैर-विलक्षण प्रक्षेपी सम्मिश्र बीजगणितीय प्रकारों के लिए मेल खाती हैं।
सदिश बंडलों के लिए क्रमिक द्वैत
बीजगणितीय प्रमेय
इस प्रकार से मान लीजिए कि X क्षेत्र k पर विमा n की सहज विविधता है। 'विहित रेखा बंडल' को को X पर एन-रूप के बंडल के रूप में परिभाषित करें, कोटिस्पर्श रेखा बंडल के शीर्ष का बाह्य परिमाण:
इसके अतिरिक्त मान लीजिए कि X, k पर उचित आकारिता(इस प्रकार से उदाहरण के लिए, प्रक्षेप्य विविधता) है। तब सेरे द्वैत कहता है: X और पूर्णांक i पर एक बीजगणितीय सदिश बंडल E के लिए, परिमित-विमीय k-सदिश रिक्त समष्टि की प्राकृतिक समरूपता
है। इस प्रकार से यहाँ सदिश बंडलों के टेंसर गुणनफल को दर्शाता है। इससे यह निष्कर्ष निकलता है कि दो सह-समरूपता समूहों की विमा समान हैं:
पोंकारे द्वैत के जैसे, सेरे द्वैत में समरूपता शीफ सह समरूपता में शीफ सह समरूपता कप गुणनफल से आती है। अर्थात्, पर प्राकृतिक अनुरेख प्रतिचित्र के साथ कप गुणनफल की संरचना आदर्श युग्मन है:
इस प्रकार से अनुरेख प्रतिचित्र डे रहम सह समरूपता में समाकलन के सुसंगत शीफ सह समरूपता के लिए एनालॉग है।[1]
समाकलित-ज्यामितीय प्रमेय
सेरे ने X (एक संहत सम्मिश्र कई गुना) और E (एक होलोमोर्फिक सदिश बंडल) के लिए भी समान द्वैत कथन सिद्ध किया था।[2] यहाँ, सेरे द्वैत प्रमेय हॉज सिद्धांत का परिणाम है। अर्थात्, रीमैनियन मीट्रिक से सुसज्जित संहत मिश्रित कई गुना पर, हॉज स्टार संक्रियक
है, जहां । इसके अतिरिक्त, चूंकि सम्मिश्र है, सम्मिश्र समाकलित रूपों को प्रकार के रूपों में विभाजित किया जाता है। हॉज स्टार संक्रियक (सम्मिश्र-रैखिक रूप से सम्मिश्र-मानित अंतर रूपों तक विस्तारित) इस श्रेणीकरण के साथ
- के रूप में परस्पर क्रिया करता है।
इस प्रकार से ध्यान दें कि होलोमोर्फिक और प्रति-होलोमोर्फिक सूचकांकों ने स्थान बदल लिया है। सम्मिश्र समाकलित रूपों पर संयुग्मन होता है जो प्रकार और के रूपों का आदान-प्रदान करता है, और यदि कोई द्वारा संयुग्म-रेखीय हॉज स्टार संक्रियक को परिभाषित करता है तो हमारे निकट
- होता है।
इस प्रकार से संयुग्म-रेखीय हॉज स्टार का उपयोग करके, कोई सम्मिश्र अंतर रूपों पर हर्मिटियन - आंतरिक गुणनफल को
द्वारा परिभाषित कर सकता है, जहाँ अब एक -रूपरूप है, और विशेष रूप से एक समिश्र-मानित -रूप है, और इसलिए इसे इसके विहित अभिविन्यास के संबंध में पर समाकलित किया जा सकता है। इसके अतिरिक्त, मान लीजिए हर्मिटियन होलोमोर्फिक सदिश बंडल है। फिर हर्मिटियन मीट्रिक , और इसके दोहरी सदिश बंडल मान लीजिए के बीच एक संयुग्म-रैखिक समरूपता देता है। को परिभाषित करते हुए, एक समरूपता
प्राप्त होता है जहां में सहज -मानित सम्मिश्र समाकलित रूप होते हैं। अतः और द्वारा दिए गए और के बीच युग्मन का उपयोग करके, कोई
द्वारा ऐसे -मानित रूपों पर एक हर्मिटियन -आंतरिक गुणनफल को परिभाषित कर सकता है, जहां इसका अर्थ है समाकलित रूपों का मध्यग गुणनफल है और बीच युग्मन का उपयोग करना है और द्वारा दिए गए हैं।
इस प्रकार से डॉल्बुल्ट सह समरूपता के लिए हॉज प्रमेय पर बल देता है कि यदि हम
को परिभाषित करते हैं जहाँ का डॉल्बुल्ट संक्रियक है और आंतरिक गुणनफल के संबंध में इसका औपचारिक मिलान है, फिर
बायीं ओर डोल्बौल्ट सह समरूपता है, और दायीं ओर
- हरात्मक -मानित समाकलित रूपों की सदिश समष्टि है।
अतः इस विवरण का उपयोग करते हुए, सेरे द्वैत प्रमेय को इस प्रकार कहा जा सकता है: समरूपता सम्मिश्र रैखिक समरूपता
- को प्रेरित करती है।
उपरोक्त हॉज सिद्धांत का उपयोग करके इसे सरलता से सिद्ध किया जा सकता है। अर्थात्, यदि अद्वितीय हरात्मक प्रतिनिधि के साथ में सह समरूपता वर्ग है, तो
समानता के साथ यदि और मात्र यदि है। विशेष रूप से, और के बीच सम्मिश्र रैखिक युग्मन
गैर-विक्षिप्त है, और सेरे द्वैत प्रमेय में समरूपता को प्रेरित करता है।
इस प्रकार से बीजगणितीय समायोजन में सेरे द्वैत का कथन लेकर पुनः प्राप्त किया जा सकता है, और डॉल्बुल्ट के प्रमेय को लागू करना है, जो यह बताता है कि
जहां बायीं ओर डॉल्बौल्ट सह समरूपता है और दाहिनी ओर शीफ सह समरूपता है, जहां होलोमोर्फिक -रूप के शीफ़ को दर्शाता है । विशेष रूप से, हम
प्राप्त करते हैं, जहां हमने उपयोग किया है कि होलोमोर्फिक -रूप के शीफ मात्र के विहित बंडल है ।
बीजगणितीय वक्र
सेरे द्वैत का मौलिक अनुप्रयोग बीजगणितीय वक्रों के लिए है। (सम्मिश्र संख्याओं पर, यह संहत रीमैन सतहों पर विचार करने के बराबर है।) क्षेत्र k पर सहज प्रक्षेप्य वक्र X पर एक पंक्ति बंडल L के लिए एकमात्र संभावित गैर-शून्य सहसंयोजक समूह और हैं।। सेरे द्वैत समूह (एक अलग रेखा बंडल के लिए) के संदर्भ में समूह का वर्णन करता है।[3] यह अधिक ठोस है, क्योंकि एक रेखा बंडल का केवल उसके अनुभागों की समष्टि है।
इस प्रकार से सेरे द्वैत वक्रों के लिए रीमैन-रोच प्रमेय के लिए विशेष रूप से प्रासंगिक है। जीनस (गणित) g के वक्र X पर परिमाण D के रेखा बंडल L के लिए, रीमैन-रोच प्रमेय कहता है कि
अतः सेरे द्वैत का उपयोग करते हुए, इसे और अधिक प्रारंभिक शब्दों में दोहराया जा सकता है:
बाद वाला कथन (भाजक (बीजगणितीय ज्यामिति) के संदर्भ में व्यक्त) वस्तुतः 19वीं शताब्दी के प्रमेय का मूल संस्करण है। यह मुख्य उपकरण है जिसका उपयोग यह विश्लेषण करने के लिए किया जाता है कि किसी दिए गए वक्र को प्रक्षेप्य समष्टि में कैसे अंतःस्थापित किया जा सकता है और इसलिए बीजगणितीय वक्रों को वर्गीकृत किया जा सकता है।
इस प्रकार से उदाहरण के लिए: ऋणात्मक परिमाण वाले रेखा बंडल के प्रत्येक वैश्विक खंड शून्य है। इसके अतिरिक्त, विहित बंडल का परिमाण है। इसलिए, रीमैन-रोच का तात्पर्य है कि एक रेखा बंडल के लिए परिमाण , का L, के बराबर है। जब जीनस g कम से कम 2 होता है, तो यह सेरे द्वैत का अनुसरण करता है जो कि है। यहाँ , X का प्रथम-क्रम विरूपण सिद्धांत है। यह दिखाने के लिए आवश्यक मूलभूत गणना है कि जीनस g के वक्रों के मॉड्यूलि समष्टि की विमा है।
सुसंगत शीव के लिए क्रमिक द्वैत
इस प्रकार से सेरे द्वैत का अन्य सूत्रीकरण मात्र सदिश बंडलों के लिए नहीं, बल्कि सभी सुसंगत शीव के लिए है। अतः सेरे द्वैत को सामान्य बनाने में पहले चरण के रूप में, ग्रोथेंडिक ने दिखाया कि यह संस्करण हल्की विलक्षणताओं वाली योजना (गणित) के लिए कार्य करता है, कोहेन-मैकाले वलय योजनाएं, न कि मात्र सहज योजनाएं हैं।
अर्थात्, क्षेत्र k पर शुद्ध विमा n की कोहेन-मैकाले योजना X के लिए, ग्रोथेंडिक ने X पर एक सुसंगत शीफ को परिभाषित किया था, जिसे "दोहरीकरण" शीफ़ कहा जाता है। (कुछ लेखक को शीफ कहते हैं ।) इसके अतिरिक्त मान लीजिए कि X, k के पर है। X पर सुसंगत शीफ़ E और पूर्णांक i के लिए, सेरे द्वैत कहता है कि परिमित-विमीय k-सदिश रिक्त समष्टि की प्राकृतिक समरूपता
है।[4] यहां एक्सट संक्रियक को मॉड्यूल -मॉड्यूल की एबेलियन श्रेणी में लिया गया है। इसमें पूर्व कथन सम्मिलित है, क्योंकि जब E सदिश बंडल है तो , के समरूपी है।
इस परिणाम का उपयोग करने के लिए, किसी को कम से कम विशेष स्थितियों में, स्पष्ट रूप से दोहरीकरण शीफ को निर्धारित करना होगा। जब X, k पर सहज होता है, तो ऊपर परिभाषित विहित रेखा बंडल है। अधिक सामान्यतः, यदि[5]
जब X एक सुचारु योजना Y में सह विमीय r का एक स्थानीय पूर्ण प्रतिच्छेदन होता है, तो एक अधिक प्रारंभिक विवरण होता है: Y में X का सामान्य बंडल पद r का एक सदिश बंडल होता है, और X का दोहरीकरण शीफ[6]
- द्वारा दिया जाता है।
इस प्रकार से इस स्थिति में, X कोहेन-मैकाले योजना है, जिसमें रेखा बंडल, जो कहता है कि X गोरेन्स्टीन योजना है।
उदाहरण: मान लीजिए कि X क्षेत्र k पर प्रक्षेप्य समष्टि में पूर्ण प्रतिच्छेदन है, जो परिमाण के सजातीय बहुपद द्वारा परिभाषित है। (यह कहने का अर्थ है कि यह पूर्ण प्रतिच्छेदन है कि X की विमा है।) पूर्णांक d के लिए पर रेखा बंडल O(d) हैं, इस गुण के साथ कि परिमाण d के सजातीय बहुपदों को O(d) के अनुभागों के रूप में देखा जा सकता है। फिर X का दोहरीकरण योजक सूत्र द्वारा शीफ रेखा बंडल
है। इस प्रकार से उदाहरण के लिए, परिमाण d के समतल वक्र X का दोहरीकरण शीफ है ।
कैलाबी-यौ तीन गुना का सम्मिश्र मॉड्यूल
विशेष रूप से, हम सेरे द्वैत का उपयोग करके, कैलाबी-यॉ प्रकार में क्विंटिक तीन गुना के लिए के बराबर सम्मिश्र विकृतियों की संख्या की गणना कर सकते हैं। चूँकि कैलाबी-यॉ गुण सेरे द्वैत सुनिश्चित करती है, इसलिए हमें पता चलता है कि सम्मिश्र मॉड्यूल की संख्या दिखाने वाला हॉज डायमंड में के बराबर है। इस प्रकार से निश्चित ही, अंतिम कथन बोगोमोलेव-तियान-टोडोरोव प्रमेय पर निर्भर करता है जो बताता है कि कैलाबी-याउ पर प्रत्येक विकृति अबाधित है।
ग्रोथेंडिक द्वैत
अतः ग्रोथेंडिक का सुसंगत द्वैत का सिद्धांत व्युत्पन्न श्रेणियों की भाषा का उपयोग करते हुए, सेरे द्वैत का व्यापक सामान्यीकरण है। क्षेत्र k पर परिमित प्रकार की किसी भी योजना X के लिए, X, पर सुसंगत शीव्स की सीमाबद्ध व्युत्पन्न श्रेणी की एक वस्तु होता है, जिसे k पर X का दोहरीकरण मिश्रित कहा जाता है। औपचारिक रूप से, असाधारण व्युत्क्रम प्रतिरूप कारक है, जहां f दिया गया आकारिता है। जब X शुद्ध विमा का कोहेन-मैकाले है तो है; अर्थात, यह ऊपर चर्चा की गई द्वैतीकरण शीफ है, जिसे (सहसंबद्ध) परिमाण -एन में एक सम्मिश्र के रूप में देखा जाता है। विशेष रूप से, जब X, k पर सहज होता है, तो परिमाण −n में रखा गया विहित रेखा बंडल होता है।
इस प्रकार से दोहरीकरण परिसर का उपयोग करते हुए, सेरे द्वैत किसी भी उचित योजना X को k से अधिक सामान्यीकृत करता है। अर्थात्, में किसी भी वस्तु E के लिए परिमित-विमीय k-सदिश रिक्त समष्टि
की एक प्राकृतिक समरूपता है।[7]
अधिक सामान्यतः, उचित योजना के लिए X ओवर के, ऑब्जेक्ट E इन , और एफ आदर्श परिसर है , के निकट सुंदर कथन है:
यहां टेंसर गुणनफल का अर्थ व्युत्पन्न टेंसर गुणनफल है, जैसा कि व्युत्पन्न श्रेणियों में स्वाभाविक है। (पूर्व सूत्रीकरण से तुलना करने के लिए, ध्यान दें कि को के रूप में देखा जा सकता है।) जब X भी k पर सुचारू होता है, तो में प्रत्येक वस्तु एक पूर्ण सम्मिश्र होती है, और इसलिए यह द्वंद्व में सभी E और F पर लागू होता है। ऊपर दिए गए कथन को यह कहते हुए संक्षेप में प्रस्तुत किया गया है कि , x के लिए पर एक सेरे कारक है और k के पर उचित है।[8]
अतः इस प्रकार से किसी क्षेत्र में उचित बीजगणितीय रिक्त समष्टि के लिए सेरे द्वैत अधिक सामान्यतः लागू होता है।[9]
टिप्पणियाँ
- ↑ Huybrechts (2005), exercise 3.2.3.
- ↑ Serre (1955); Huybrechts (2005), Proposition 4.1.15.
- ↑ For a curve, Serre duality is simpler but still nontrivial. One proof is given in Tate (1968).
- ↑ Hartshorne (1977), Theorem III.7.6.
- ↑ Hartshorne (1977), proof of Proposition III.7.5; Stacks Project, Tag 0A9X.
- ↑ Hartshorne (1977), Theorem III.7.11; Stacks Project, Tag 0BQZ.
- ↑ Hartshorne (1966), Corollary VII.3.4(c); Stacks Project, Tag 0B6I; Stacks Project, Tag 0B6S.
- ↑ Huybrechts (2006), Definition 1.28, Theorem 3.12.
- ↑ Stacks Project, Tag 0E58.
संदर्भ
- Hartshorne, Robin (1977), Algebraic geometry, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157, OCLC 13348052
- Hartshorne, Robin (1966), Residues and duality, Lecture Notes in Mathematics, vol. 20, Berlin, New York: Springer-Verlag, ISBN 978-3-540-03603-6, MR 0222093
- "Duality", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Huybrechts, Daniel (2005), Complex geometry, Berlin: Springer-Verlag, ISBN 3-540-21290-6, MR 2093043
- Huybrechts, Daniel (2006), Fourier–Mukai transforms in algebraic geometry, Oxford University Press, ISBN 978-0199296866, MR 2244106
- Serre, Jean-Pierre (1955), "Un théorème de dualité", Commentarii Mathematici Helvetici, 29: 9–26, doi:10.1007/BF02564268, MR 0067489
- Tate, John (1968), "Residues of differentials on curves" (PDF), Annales Scientifiques de l'École Normale Supérieure, Série 4, 1: 149–159, doi:10.24033/asens.1162, ISSN 0012-9593, MR 0227171
बाहरी संबंध
- The Stacks Project Authors, The Stacks Project