नेगाफाइबोनैचि कोडिंग: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 93: | Line 93: | ||
fr:कोडेज डी फाइबोनैचि | fr:कोडेज डी फाइबोनैचि | ||
[[Category:Created On 07/07/2023|Negafibonacci Coding]] | |||
[[Category: Machine Translated Page]] | [[Category:Machine Translated Page|Negafibonacci Coding]] | ||
[[Category: | [[Category:Pages using sidebar with the child parameter|Negafibonacci Coding]] | ||
[[Category:Vigyan Ready]] | [[Category:Pages with script errors|Negafibonacci Coding]] | ||
[[Category:Templates Translated in Hindi|Negafibonacci Coding]] | |||
[[Category:Templates Vigyan Ready|Negafibonacci Coding]] |
Latest revision as of 10:34, 24 July 2023
गणित में, नेगाफाइबोनैचि कोडिंग सार्वभौमिक कोड (डेटा संपीड़न) है जो गैर-शून्य पूर्णांकों को बाइनरी कोड शब्द में एन्कोड करता है। इस प्रकार यह फाइबोनैचि कोडिंग के समान है,अतिरिक्त इसके कि यह धनात्मक और ऋणात्मक दोनों पूर्णांकों का प्रतिनिधित्व करने की अनुमति देता है। सभी कोड 11 के साथ समाप्त होते हैं और अंत से पहले कोई 11 नहीं होता है।
एन्कोडिंग विधि
एक गैर-शून्य पूर्णांक X को एन्कोड करने के लिए:
- 1 से n तक विषम (या सम) नेगाफाइबोनैचि संख्याओं का योग करके n बिट्स के साथ सबसे बड़ी (या सबसे छोटी) एन्कोडेबल संख्या की गणना करें।
- जब यह निर्धारित हो जाता है कि N बिट्स X को समाहित करने के लिए पर्याप्त हैं, इस प्रकार जिससे शेष का ध्यान रखते हुए, Nth नेगाफाइबोनैचि संख्या को X से घटाएं, और आउटपुट के Nth बिट में डालें।
- एनटी बिट से पहले बिट तक नीचे की ओर कार्य करते हुए, प्रत्येक संबंधित नेगाफाइबोनैचि संख्या की तुलना शेष से करें। यदि अंतर का पूर्ण मान कम है, और यदि अगले उच्च बिट में पहले से ही कोई नहीं है, तो इसे शेष से घटाएं जाते है। यदि घटाव किया जाता है तो उपयुक्त बिट में रखा जाता है, या नहीं तो शून्य रखा जाता है।
- समाप्त करने के लिए N+1 बिट में डालें।
कोड में टोकन को डीकोड करने के लिए, अंतिम 1 को हटा दें, शेष बिट्स को मान 1, −1, 2, −3, 5, −8, 13... (नेगाफाइबोनैचि संख्या) निर्दिष्ट करें, और 1 बिट्स जोड़ें।
नेगाफाइबोनैचि प्रतिनिधित्व
Part of a series on |
Numeral systems |
---|
List of numeral systems |
नेगाफाइबोनैचि कोडिंग, नेगाफाइबोनैचि प्रतिनिधित्व से निकटता से संबंधित है, जो कभी-कभी गणितज्ञों द्वारा उपयोग की जाने वाली स्थितीय अंक प्रणाली है। इस प्रकार किसी विशेष गैर-शून्य पूर्णांक के लिए नेगाफाइबोनैचि कोड पुर्णतः पूर्णांक के नेगाफाइबोनैचि प्रतिनिधित्व के समान होता है,अतिरिक्त इसके कि इसके अंकों का क्रम उलटा होता है और अंत में अतिरिक्त 1 जोड़ा जाता है। इस प्रकार सभी ऋणात्मक संख्याओं के लिए नेगाफाइबोनैचि कोड में अंकों की संख्या विषम होती है, जबकि सभी धनात्मक संख्याओं के लिए अंकों की संख्या सम होती है।
तालिका
इस प्रकार -11 से 11 तक के पूर्णांकों का कोड नीचे दिया गया है।
क्रमांक | नेगाफाइबोनैचि प्रतिनिधित्व | नेगाफाइबोनैचि कोड |
---|---|---|
−11 | 101000 | 0001011 |
−10 | 101001 | 1001011 |
−9 | 100010 | 0100011 |
−8 | 100000 | 0000011 |
−7 | 100001 | 1000011 |
−6 | 100100 | 0010011 |
−5 | 100101 | 1010011 |
−4 | 1010 | 01011 |
−3 | 1000 | 00011 |
−2 | 1001 | 10011 |
−1 | 10 | 011 |
0 | 0 | (एनकोड नहीं किया जा सकता) |
1 | 1 | 11 |
2 | 100 | 0011 |
3 | 101 | 1011 |
4 | 10010 | 010011 |
5 | 10000 | 000011 |
6 | 10001 | 100011 |
7 | 10100 | 001011 |
8 | 10101 | 101011 |
9 | 1001010 | 01010011 |
10 | 1001000 | 00010011 |
11 | 1001001 | 10010011 |
यह भी देखें
- फाइबोनैचि संख्याएँ
- गोल्डन अनुपात आधार
- ज़ेकेंडोर्फ का प्रमेय
संदर्भ
उद्धृत कार्य
- Knuth, Donald (2008). नेगाफाइबोनैचि संख्याएँ और हाइपरबोलिक तल. Annual meeting of the Mathematical Association of America. San Jose, California.
- Knuth, Donald (2009). कंप्यूटर प्रोग्रामिंग की कला, खंड 4, फ़ासिकल 1: बिटवाइज़ ट्रिक्स और तकनीकें; द्विआधारी निर्णय आरेख. ISBN 978-0-321-58050-4. अनुभाग 7.1.3 के पूर्व-प्रकाशन ड्राफ्ट में विशेष पृष्ठ 36-39 देखें।
- Margenstern, Maurice (2008). हाइपरबोलिक स्पेस में सेलुलर ऑटोमेटा. Advances in unconventional computing and cellular automata. Vol. 2. Archives contemporaines. p. 79. ISBN 9782914610834.
श्रेणी:गैर-मानक स्थितीय अंक प्रणाली
श्रेणी:दोषरहित संपीड़न एल्गोरिदम
श्रेणी:फाइबोनैचि संख्याएँ
fr:कोडेज डी फाइबोनैचि