पियर्स अपघटन: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Decomposition method in algebra}} रिंग सिद्धांत में, एक पीयर्स अपघटन {{IPAc-en|ˈ|p|ɜr|s}} एक...")
 
No edit summary
 
(9 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{short description|Decomposition method in algebra}}
{{short description|Decomposition method in algebra}}
रिंग सिद्धांत में, एक पीयर्स अपघटन {{IPAc-en|ˈ|p|ɜr|s}} एक बीजगणित का एक अपघटन है जो [[निष्क्रिय तत्व (रिंग सिद्धांत)]] के [[eigenspace]] के योग के रूप में होता है।
वलय सिद्धांत में, '''पीयर्स अपघटन''' {{IPAc-en|ˈ|p|ɜr|s}} बीजगणित का एक अपघटन है जो [[निष्क्रिय तत्व (रिंग सिद्धांत)|इडेम्पोटेंट तत्व (वलय सिद्धांत)]] के [[eigenspace|ईजेनस्पेस]] के योग के रूप में होता है।
[[साहचर्य बीजगणित]] के लिए पीयर्स अपघटन की शुरुआत किसके द्वारा की गई थी? {{harvs|txt|authorlink=Benjamin Peirce|first=Benjamin|last= Peirce|year=1870|loc=proposition 41, page 13}}. [[जॉर्डन बीजगणित]] के लिए एक समान लेकिन अधिक जटिल पीयर्स अपघटन की शुरुआत की गई थी {{harvtxt|Albert|1947}}.


==साहचर्य बीजगणित के लिए पियर्स अपघटन==
[[साहचर्य बीजगणित|एसोसिएटिव बीजगणित]] के लिए पीयर्स अपघटन {{harvs|txt|authorlink=बेंजामिन पीयर्स|first=बेंजामिन|last= पीयर्स|year=1870|loc=प्रस्ताव 41, पृष्ठ 13}} द्वारा प्रस्तुत किया गया था। [[जॉर्डन बीजगणित]] के लिए एक समान किन्तु अधिक जटिल पीयर्स अपघटन {{harvtxt|अल्बर्ट|1947}} द्वारा प्रस्तुत किया गया था।


यदि ई एक निष्क्रिय व्यक्ति है (ई<sup>2</sup> = e) एक साहचर्य बीजगणित A में, फिर दो तरफा Peirce अपघटन A को eAe, eA(1 − e), (1 − e)Ae, और (1 − e) के प्रत्यक्ष योग के रूप में लिखता है। ए(1 − ई). बाएँ और दाएँ पियर्स अपघटन भी हैं, जहाँ बायाँ अपघटन A को eA और (1 - e)A के प्रत्यक्ष योग के रूप में लिखता है, और दायाँ A को Ae और A(1 - e) के प्रत्यक्ष योग के रूप में लिखता है।
==एसोसिएटिव बीजगणित के लिए पियर्स अपघटन==


अधिक सामान्यतः, यदि <sub>1</sub>, ..., यह है<sub>''n''</sub> योग 1 के साथ पारस्परिक रूप से ऑर्थोगोनल इडेम्पोटेंट हैं, तो रिक्त स्थान ई का प्रत्यक्ष योग है<sub>''i''</sub>लेकिन<sub>''j''</sub> 1 ≤ i, j ≤ n के लिए।
यदि एसोसिएटिव बीजगणित ''A'' में ''e'' एक इडेम्पोटेंट (''e''<sup>2</sup> = ''e'') है, तो दो तरफा पीयरस अपघटन ''A'' को ''eAe'', ''eA''(1 − ''e''), (1 − ''e'')''Ae'', और (1 − ''e'')''A''(1 − ''e'') के प्रत्यक्ष योग के रूप में लिखता है। बाएँ और दाएँ पियर्स अपघटन भी हैं, जहाँ बायाँ अपघटन ''A'' को ''eA'' और (1 − ''e'')''A'' के प्रत्यक्ष योग के रूप में लिखता है, और दायाँ ''A'' को Ae और ''A''(1 − ''e'') के प्रत्यक्ष योग के रूप में लिखता है।
 
अधिक सामान्यतः पर, यदि e<sub>1</sub>, ..., e<sub>n</sub> योग 1 के साथ पारस्परिक रूप से ऑर्थोगोनल इडेम्पोटेंट हैं, तो A 1 ≤ ''i'', ''j'' ≤ ''n'' के लिए रिक्त स्थान ''e<sub>i</sub>Ae<sub>j</sub>'' का प्रत्यक्ष योग है।


==ब्लॉक==
==ब्लॉक==


किसी रिंग के एक निष्क्रिय को केंद्रीय कहा जाता है यदि वह रिंग के सभी तत्वों के साथ संचार करता है।
किसी वलय के एक इडेम्पोटेंट को '''केंद्रीय''' कहा जाता है यदि वह वलय के सभी तत्वों के साथ संचार करता है।


दो इडेम्पोटेंट्स '''', ''एफ'' को ऑर्थोगोनल कहा जाता है यदि ''ईएफ'' = ''एफई'' = 0।
यदि ''ef'' = ''fe'' = 0 है तो दो इडेम्पोटेंट्स ''e'', ''f'' को '''ऑर्थोगोनल''' कहा जाता है।


एक इडेम्पोटेंट को आदिम कहा जाता है यदि यह शून्येतर है और इसे दो ऑर्थोगोनल नॉनजेरो इडेम्पोन्ट्स के योग के रूप में नहीं लिखा जा सकता है।
एक इडेम्पोटेंट को '''अभाज्य''' कहा जाता है यदि यह शून्येतर है और इसे दो ऑर्थोगोनल अशून्य इडेम्पोन्ट्स के योग के रूप में नहीं लिखा जा सकता है।


एक निष्क्रिय '''' को ब्लॉक या केंद्रीय रूप से आदिम कहा जाता है यदि यह गैर-शून्य और केंद्रीय है और इसे दो ऑर्थोगोनल गैर-शून्य केंद्रीय निष्क्रियता के योग के रूप में नहीं लिखा जा सकता है। इस मामले में आदर्श ''ईआर'' को कभी-कभी ब्लॉक भी कहा जाता है।
एक इडेम्पोटेंट ''e'' को एक '''ब्लॉक''' या '''केंद्रीय रूप से अभाज्य''' कहा जाता है यदि यह गैर-शून्य और केंद्रीय है और इसे दो ऑर्थोगोनल गैर-शून्य केंद्रीय इडेम्पोटेंट के योग के रूप में नहीं लिखा जा सकता है। इस स्थिति में आदर्श ''eR'' को कभी-कभी ब्लॉक भी कहा जाता है।


यदि किसी वलय की पहचान 1 ''R'' को योग के रूप में लिखा जा सकता है
यदि किसी वलय की पहचान ''1 R'' को योग के रूप में लिखा जा सकता है
:1 = ''''<sub>1</sub> + ... + और<sub>''n''</sub>
:1 = ''e''<sub>1</sub> + ... + ''e<sub>n</sub>''
ऑर्थोगोनल नॉनज़ेरो सेंट्रली प्रिमिटिव इडेम्पोटेंट के, तो ये इडेम्पोटेंट क्रम के अनुसार अद्वितीय होते हैं और इन्हें ब्लॉक या रिंग ''आर'' कहा जाता है। इस मामले में वलय ''आर'' को सीधे योग के रूप में लिखा जा सकता है
ऑर्थोगोनल नॉनज़ेरो सेंट्रली अभाज्य इडेम्पोटेंट्स के स्थिति में ये इडेम्पोटेंट क्रम के अनुसार अद्वितीय होते हैं और इन्हें ब्लॉक या वलय आर कहा जाता है। इस स्थिति में वलय R को अविभाज्य वलयों के प्रत्यक्ष योग
:''आर'' = ''''<sub>1</sub>आर + ... + <sub>''n''</sub>आर
:''R'' = ''e''<sub>1</sub>''R'' + ... + ''e<sub>n</sub>R''
अविभाज्य छल्लों का, जिन्हें कभी-कभी आर के ब्लॉक भी कहा जाता है।
के रूप में लिखा जा सकता है, जिन्हें कभी-कभी आर के ब्लॉक भी कहा जाता है।


==संदर्भ==
==संदर्भ==
Line 36: Line 37:
* {{springer|title=Peirce decomposition|id=p/p071970}}
* {{springer|title=Peirce decomposition|id=p/p071970}}
*[http://www.tricki.org/article/Decompose_your_ring_using_idempotents Peirce decomposition] on [http://www.tricki.org/ http://www.tricki.org/]
*[http://www.tricki.org/article/Decompose_your_ring_using_idempotents Peirce decomposition] on [http://www.tricki.org/ http://www.tricki.org/]
[[Category: अल्जेब्रास]]


[[Category: Machine Translated Page]]
[[Category:Created On 10/07/2023]]
[[Category:Created On 10/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Template SpringerEOM with broken ref|T]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:अल्जेब्रास]]

Latest revision as of 09:43, 26 July 2023

वलय सिद्धांत में, पीयर्स अपघटन /ˈpɜːrs/ बीजगणित का एक अपघटन है जो इडेम्पोटेंट तत्व (वलय सिद्धांत) के ईजेनस्पेस के योग के रूप में होता है।

एसोसिएटिव बीजगणित के लिए पीयर्स अपघटन बेंजामिन पीयर्स (1870, प्रस्ताव 41, पृष्ठ 13) द्वारा प्रस्तुत किया गया था। जॉर्डन बीजगणित के लिए एक समान किन्तु अधिक जटिल पीयर्स अपघटन अल्बर्ट (1947) द्वारा प्रस्तुत किया गया था।

एसोसिएटिव बीजगणित के लिए पियर्स अपघटन

यदि एसोसिएटिव बीजगणित A में e एक इडेम्पोटेंट (e2 = e) है, तो दो तरफा पीयरस अपघटन A को eAe, eA(1 − e), (1 − e)Ae, और (1 − e)A(1 − e) के प्रत्यक्ष योग के रूप में लिखता है। बाएँ और दाएँ पियर्स अपघटन भी हैं, जहाँ बायाँ अपघटन A को eA और (1 − e)A के प्रत्यक्ष योग के रूप में लिखता है, और दायाँ A को Ae और A(1 − e) के प्रत्यक्ष योग के रूप में लिखता है।

अधिक सामान्यतः पर, यदि e1, ..., en योग 1 के साथ पारस्परिक रूप से ऑर्थोगोनल इडेम्पोटेंट हैं, तो A 1 ≤ i, jn के लिए रिक्त स्थान eiAej का प्रत्यक्ष योग है।

ब्लॉक

किसी वलय के एक इडेम्पोटेंट को केंद्रीय कहा जाता है यदि वह वलय के सभी तत्वों के साथ संचार करता है।

यदि ef = fe = 0 है तो दो इडेम्पोटेंट्स e, f को ऑर्थोगोनल कहा जाता है।

एक इडेम्पोटेंट को अभाज्य कहा जाता है यदि यह शून्येतर है और इसे दो ऑर्थोगोनल अशून्य इडेम्पोन्ट्स के योग के रूप में नहीं लिखा जा सकता है।

एक इडेम्पोटेंट e को एक ब्लॉक या केंद्रीय रूप से अभाज्य कहा जाता है यदि यह गैर-शून्य और केंद्रीय है और इसे दो ऑर्थोगोनल गैर-शून्य केंद्रीय इडेम्पोटेंट के योग के रूप में नहीं लिखा जा सकता है। इस स्थिति में आदर्श eR को कभी-कभी ब्लॉक भी कहा जाता है।

यदि किसी वलय की पहचान 1 R को योग के रूप में लिखा जा सकता है

1 = e1 + ... + en

ऑर्थोगोनल नॉनज़ेरो सेंट्रली अभाज्य इडेम्पोटेंट्स के स्थिति में ये इडेम्पोटेंट क्रम के अनुसार अद्वितीय होते हैं और इन्हें ब्लॉक या वलय आर कहा जाता है। इस स्थिति में वलय R को अविभाज्य वलयों के प्रत्यक्ष योग

R = e1R + ... + enR

के रूप में लिखा जा सकता है, जिन्हें कभी-कभी आर के ब्लॉक भी कहा जाता है।

संदर्भ

  • Albert, A. Adrian (1947), "A structure theory for Jordan algebras", Annals of Mathematics, Second Series, 48: 546–567, doi:10.2307/1969128, ISSN 0003-486X, JSTOR 1969128, MR 0021546
  • Lam, T. Y. (2001), A first course in noncommutative rings, Graduate Texts in Mathematics, vol. 131 (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-387-95183-6, MR 1838439
  • Peirce, Benjamin (1870), Linear associative algebra, ISBN 978-0-548-94787-6
  • Skornyakov, L.A. (2001) [1994], "पियर्स अपघटन", Encyclopedia of Mathematics, EMS Press


बाहरी संबंध