टोपोलॉजिकल प्रॉपर्टी: Difference between revisions

From Vigyanwiki
No edit summary
 
(7 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Mathematical property of a space}}
{{Short description|Mathematical property of a space}}
[[टोपोलॉजी]] और गणित के संबंधित क्षेत्रों में, टोपोलॉजिकल प्रॉपर्टी या टोपोलॉजिकल अपरिवर्तनीय [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल समिष्ट]] की प्रॉपर्टी है जो [[होमियोमोर्फिज्म]] के अनुसार अपरिवर्तनीय (गणित) है। वैकल्पिक रूप से, टोपोलॉजिकल प्रॉपर्टी टोपोलॉजिकल समिष्ट का [[वर्ग (सेट सिद्धांत)|वर्ग समुच्चय सिद्धांत]] है जो होमोमोर्फिज्म के अनुसार विवृत है। अर्थात्, समिष्ट की प्रॉपर्टी सांस्थितिक प्रॉपर्टी है यदि जब भी कोई समिष्ट ''X'' उस प्रॉपर्टी के पास होमोमॉर्फिक से ''X'' के पास वह गुण रखता है। सामान्यतः, सामयिक प्रॉपर्टी समिष्ट की प्रॉपर्टी है जिसे संवृत समुच्चयों का उपयोग करके व्यक्त किया जा सकता है।
[[टोपोलॉजी]] और गणित के संबंधित क्षेत्रों में, '''टोपोलॉजिकल प्रॉपर्टी''' या '''टोपोलॉजिकल अपरिवर्तनीय''' [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल समिष्ट]] की प्रॉपर्टी है इस प्रकार जो [[होमियोमोर्फिज्म]] के अनुसार अपरिवर्तनीय (गणित) है। वैकल्पिक रूप से, टोपोलॉजिकल प्रॉपर्टी टोपोलॉजिकल समिष्ट का [[वर्ग (सेट सिद्धांत)|वर्ग समुच्चय सिद्धांत]] है जो होमोमोर्फिज्म के अनुसार विवृत है। अर्थात्, इस प्रकार समिष्ट की प्रॉपर्टी सांस्थितिक प्रॉपर्टी है यदि जब भी कोई समिष्ट ''X'' उस प्रॉपर्टी के पास होमोमॉर्फिक से ''X'' के पास वह गुण रखता है। सामान्यतः, सामयिक प्रॉपर्टी समिष्ट की प्रॉपर्टी है जिसे संवृत समुच्चयों का उपयोग करके व्यक्त किया जा सकता है।


टोपोलॉजी में सामान्य समस्या यह तय करना है कि दो टोपोलॉजिकल समिष्ट [[होमियोमॉर्फिक]] हैं या नहीं है। यह सिद्ध करने के लिए कि दो समिष्ट होमियोमॉर्फिक नहीं हैं, यह सांस्थितिक गुण खोजने के लिए पर्याप्त है जो उनके द्वारा साझा नहीं किया गया है।
टोपोलॉजी में सामान्य समस्या यह तय करना है कि दो टोपोलॉजिकल समिष्ट [[होमियोमॉर्फिक]] हैं या नहीं है। इस प्रकार यह सिद्ध करने के लिए कि दो समिष्ट होमियोमॉर्फिक नहीं हैं, यह सांस्थितिक गुण खोजने के लिए पर्याप्त है जो उनके द्वारा साझा नहीं किया गया है।


== सामयिक गुणों के गुण ==
== सामयिक गुणों के गुण ==
Line 9: Line 9:
* अनुवांशिक, यदि प्रत्येक टोपोलॉजिकल समिष्ट के लिए <math>(X, \mathcal{T})</math> और ससाधारणतःमुच्चय <math>S \subseteq X,</math> [[सबस्पेस (टोपोलॉजी)|ससाधारणतःमिष्ट (टोपोलॉजी)]] <math>\left(S, \mathcal{T}|_S\right)</math> प्रॉपर्टी <math>P.</math> है  
* अनुवांशिक, यदि प्रत्येक टोपोलॉजिकल समिष्ट के लिए <math>(X, \mathcal{T})</math> और ससाधारणतःमुच्चय <math>S \subseteq X,</math> [[सबस्पेस (टोपोलॉजी)|ससाधारणतःमिष्ट (टोपोलॉजी)]] <math>\left(S, \mathcal{T}|_S\right)</math> प्रॉपर्टी <math>P.</math> है  
* दुर्बल अनुवांशिक, यदि प्रत्येक टोपोलॉजिकल समिष्ट के लिए <math>(X, \mathcal{T})</math> और विवृत उपसमुच्चय <math>S \subseteq X,</math> उप-समिष्ट <math>\left(S, \mathcal{T}|_S\right)</math> प्रॉपर्टी <math>P.</math> है  
* दुर्बल अनुवांशिक, यदि प्रत्येक टोपोलॉजिकल समिष्ट के लिए <math>(X, \mathcal{T})</math> और विवृत उपसमुच्चय <math>S \subseteq X,</math> उप-समिष्ट <math>\left(S, \mathcal{T}|_S\right)</math> प्रॉपर्टी <math>P.</math> है  
== सामान्य सामयिक गुण ==
== सामान्य सामयिक गुण ==


=== कार्डिनल फलन ===
=== कार्डिनल फलन ===
{{Main|कार्डिनल फलन#टोपोलॉजी में कार्डिनल फलन}}
{{Main|कार्डिनल फलन#टोपोलॉजी में कार्डिनल फलन}}
* [[ प्रमुखता ]] | x | समिष्ट का X है।
* [[ प्रमुखता | प्रमुखता]] | x | समिष्ट का X है।
* कार्डिनलिटी <math>\vert</math>T (X)<math>\vert</math> समिष्ट X की टोपोलॉजी (संवृत उपसमुच्चय का समुच्चय)।
* कार्डिनलिटी <math>\vert</math>T (X)<math>\vert</math> समिष्ट X की टोपोलॉजी (संवृत उपसमुच्चय का समुच्चय)।
* वजन डब्ल्यू (X), समिष्ट X के [[आधार (टोपोलॉजी)]] की कम से कम कार्डिनैलिटी।
* वजन डब्ल्यू (X), समिष्ट X के [[आधार (टोपोलॉजी)]] की कम से कम कार्डिनैलिटी।
* घनत्व d (X), X के ससाधारणतःमुच्चय की ससाधारणतःे कम कार्डिनैलिटी जिसका समापन X है।
* घनत्व d (X), X के ससाधारणतःमुच्चय की ससाधारणतः कम कार्डिनैलिटी जिसका समापन X है।


=== पृथक्करण ===
=== पृथक्करण ===
{{Main|पृथक्करण अभिगृहीत}}
{{Main|पृथक्करण अभिगृहीत}}


ध्यान दें कि इनमें से कुछ शब्द पुराने गणितीय साहित्य में अलग विधि से परिभाषित किए गए हैं; [[पृथक्करण स्वयंसिद्धों का इतिहास]] देखें।
ध्यान दें कि इनमें से कुछ शब्द प्राचीन गणितीय साहित्य में अलग विधि से परिभाषित किए गए हैं; [[पृथक्करण स्वयंसिद्धों का इतिहास]] देखें।


* T<sub>0</sub> या कोलमोगोरोव समिष्ट [[कोलमोगोरोव अंतरिक्ष|कोलमोगोरोव समिष्ट]] है यदि समिष्ट में अलग-अलग बिंदुओं ''x'' और ''y'' के प्रत्येक जोड़े के लिए, कम से कम या तो संवृत समुच्चय है जिसमें ''x'' है किन्तु ''y'' नहीं है, या संवृत समुच्चय जिसमें ''y'' है किन्तु ''x'' नहीं है।
* T<sub>0</sub> या कोलमोगोरोव समिष्ट [[कोलमोगोरोव अंतरिक्ष|कोलमोगोरोव समिष्ट]] है यदि समिष्ट में अलग-अलग बिंदुओं ''x'' और ''y'' के प्रत्येक जोड़े के लिए, इस प्रकार कम से कम या तो संवृत समुच्चय है जिसमें ''x'' है किन्तु ''y'' नहीं है, या संवृत समुच्चय जिसमें ''y'' है किन्तु ''x'' नहीं है।
* T<sub>1</sub> या फ्रेचेट समिष्ट T1 समिष्ट है। यदि समिष्ट में अलग-अलग बिंदुओं ''x'' और ''y'' के प्रत्येक जोड़े के लिए संवृत समुच्चय है जिसमें ''x'' है, किन्तु ''y'' नहीं है। (T<sub>0</sub> से तुलना करें; यहां, हमें यह निर्दिष्ट करने की अनुमति है कि संवृत समुच्चय में कौन सा बिंदु समाहित होगा।) समान रूप से, समिष्ट T<sub>1</sub> है यदि इसके सभी सिंगलटन विवृत हैं। T<sub>1</sub> समिष्ट सदैव T<sub>0</sub> होते हैं.
* T<sub>1</sub> या फ्रेचेट समिष्ट T1 समिष्ट है। यदि समिष्ट में अलग-अलग बिंदुओं ''x'' और ''y'' के प्रत्येक जोड़े के लिए संवृत समुच्चय है जिसमें ''x'' है, किन्तु ''y'' नहीं है। (T<sub>0</sub> से तुलना करें; यहां, हमें यह निर्दिष्ट करने की अनुमति है कि संवृत समुच्चय में कौन सा बिंदु समाहित होगा।) समान रूप से, समिष्ट T<sub>1</sub> है यदि इसके सभी सिंगलटन विवृत हैं। T<sub>1</sub> समिष्ट सदैव T<sub>0</sub> होते हैं.
* समिष्ट [[ शांत स्थान | क्लोज्ड समिष्ट]] है यदि प्रत्येक इर्रिड्यूसिबल क्लोज्ड समुच्चय ''C'' का अद्वितीय सामान्य बिंदु ''p'' है। दूसरे शब्दों में, यदि ''C'' दो छोटे विवृत उपसमुच्चयों का (संभवत: अविच्छिन्न) मिलन नहीं है, तो ''p'' ऐसा है कि {''p''} का विवृत होना ''C' के बराबर है। और 'p' इस प्रॉपर्टी के साथ एकमात्र बिंदु है।''
* समिष्ट [[ शांत स्थान |क्लोज्ड समिष्ट]] है यदि प्रत्येक इर्रिड्यूसिबल क्लोज्ड समुच्चय ''C'' का अद्वितीय सामान्य बिंदु ''p'' है। दूसरे शब्दों में, यदि ''C'' दो छोटे विवृत उपसमुच्चयों का (संभवत: अविच्छिन्न) मिलन नहीं है, तो ''p'' ऐसा है कि {''p''} का विवृत होना ''C' के समान है। और 'p' इस प्रॉपर्टी के साथ एकमात्र बिंदु है।''
* T<sub>2</sub>या हॉसडॉर्फ समिष्ट हौसडॉर्फ समिष्ट है यदि प्रत्येक दो अलग-अलग बिंदुओं में असंबद्ध निकट हैं। T<sub>2</sub> समिष्ट सदैव T<sub>1</sub> होते हैं.
* T<sub>2</sub>या हॉसडॉर्फ समिष्ट हौसडॉर्फ समिष्ट है यदि प्रत्येक दो अलग-अलग बिंदुओं में असंबद्ध निकट हैं। T<sub>2</sub> समिष्ट सदैव T<sub>1</sub> होते हैं.
* T<sub>2½</sub>या उरीसोहन समिष्ट उरीसोहन है और पुर्णतः हौसडॉर्फ समिष्ट है यदि प्रत्येक दो अलग-अलग बिंदुओं में ''विवृत'' निकट हैं। T<sub>2½</sub> समिष्ट सदैव T होते हैं<sub>2</sub>.
* T<sub>2½</sub>या उरीसोहन समिष्ट उरीसोहन है और पुर्णतः हौसडॉर्फ समिष्ट है यदि प्रत्येक दो अलग-अलग बिंदुओं में ''विवृत'' निकट हैं। T<sub>2½</sub> समिष्ट सदैव T होते हैं<sub>2</sub>.
*पुर्णतः T<sub>2</sub> या पुर्णतः हॉसडॉर्फ समिष्ट पुर्णतः हौसडॉर्फ समिष्ट है | पुर्णतः T<sub>2</sub> यदि प्रत्येक दो अलग-अलग बिंदुओं को फलन द्वारा अलग किया जाता है। हर पुर्णतः हॉउसडॉर्फ समिष्ट उरीसोहन है।
*पुर्णतः T<sub>2</sub> या पुर्णतः हॉसडॉर्फ समिष्ट पुर्णतः हौसडॉर्फ समिष्ट है | इस प्रकार पुर्णतः T<sub>2</sub> यदि प्रत्येक दो अलग-अलग बिंदुओं को फलन द्वारा अलग किया जाता है। हर पुर्णतः हॉउसडॉर्फ समिष्ट उरीसोहन है।
* नियमित समिष्ट [[नियमित स्थान|नियमित समिष्ट]] है यदि जब भी ''C'' विवृत समुच्चय है और ''P'' ''C'' में नहीं है, तो ''C'' और ''P'' के आस-पास निकट हैं।
* नियमित समिष्ट [[नियमित स्थान|नियमित समिष्ट]] है यदि जब भी ''C'' विवृत समुच्चय है और ''P'' ''C'' में नहीं है, तो ''C'' और ''P'' के आस-पास निकट हैं।
* T<sub>3</sub>या नियमित हॉसडॉर्फ समिष्ट [[नियमित हॉसडॉर्फ स्थान|नियमित हॉसडॉर्फ समिष्ट]] है यदि यह नियमित T है<sub>0</sub> समिष्ट (एक नियमित समिष्ट हॉसडॉर्फ है यदि और केवल यदि यह T<sub>0</sub> है, इसलिए शब्दावली सुसंगत है।)
* T<sub>3</sub>या नियमित हॉसडॉर्फ समिष्ट [[नियमित हॉसडॉर्फ स्थान|नियमित हॉसडॉर्फ समिष्ट]] है यदि यह नियमित T है<sub>0</sub> समिष्ट (एक नियमित समिष्ट हॉसडॉर्फ है यदि और केवल यदि यह T<sub>0</sub> है, इसलिए शब्दावली सुसंगत है।)
*पुर्णतः नियमित समिष्ट [[टायचोनॉफ स्पेस|टायचोनॉफ समिष्ट]] है यदि जब भी ''C'' विवृत समुच्चय है और ''P'' बिंदु है जो ''C'' में नहीं है, तो ''C'' और {''P''} द्वारा अलग किया जाता है ।
*पुर्णतः नियमित समिष्ट [[टायचोनॉफ स्पेस|टायचोनॉफ समिष्ट]] है यदि जब भी ''C'' विवृत समुच्चय है और ''P'' बिंदु है जो ''C'' में नहीं है, तो ''C'' और {''P''} द्वारा अलग किया जाता है ।
* T<sub>3½</sub>, टाइकोनॉफ़, पुर्णतः नियमित हॉसडॉर्फ या पुर्णतः T<sub>3</sub>. टाइकोनॉफ समिष्ट पुर्णतः नियमित T<sub>0</sub> समिष्ट है। (एक पुर्णतः नियमित समिष्ट हौसडॉर्फ है यदि और केवल यदि यह T<sub>0</sub> है, इसलिए शब्दावली सुसंगत है।) टायकोनॉफ़ समिष्ट सदैव नियमित हौसडॉर्फ होते हैं।
* T<sub>3½</sub>, टाइकोनॉफ़, पुर्णतः नियमित हॉसडॉर्फ या पुर्णतः T<sub>3</sub>. टाइकोनॉफ समिष्ट पुर्णतः नियमित T<sub>0</sub> समिष्ट है। (एक पुर्णतः नियमित समिष्ट हौसडॉर्फ है इस प्रकार यदि और केवल यदि यह T<sub>0</sub> है, इसलिए शब्दावली सुसंगत है।) टायकोनॉफ़ समिष्ट सदैव नियमित हौसडॉर्फ होते हैं।
* सामान्य समिष्ट [[सामान्य स्थान|सामान्य समिष्ट]] है यदि किन्हीं भी दो अलग-अलग विवृत समुच्चयों में अलग-अलग निकट हैं। सामान्य समिष्ट एकता के विभाजन को स्वीकार करते हैं।
* सामान्य समिष्ट [[सामान्य स्थान|सामान्य समिष्ट]] है यदि किन्हीं भी दो अलग-अलग विवृत समुच्चयों में अलग-अलग निकट हैं। सामान्य समिष्ट एकता के विभाजन को स्वीकार करते हैं।
* T<sub>4</sub>या सामान्य हॉसडॉर्फ सामान्य समिष्ट हौसडॉर्फ है यदि और केवल यदि यह T<sub>1</sub> है. सामान्य हॉसडॉर्फ समिष्ट सदैव टाइकोनॉफ होते हैं।
* T<sub>4</sub>या सामान्य हॉसडॉर्फ सामान्य समिष्ट हौसडॉर्फ है यदि और केवल यदि यह T<sub>1</sub> है. सामान्य हॉसडॉर्फ समिष्ट सदैव टाइकोनॉफ होते हैं।
Line 55: Line 53:
* [[पूरी तरह से डिस्कनेक्ट|पुर्णतः डिस्कनेक्ट]] समिष्ट पुर्णतः डिस्कनेक्ट हो जाता है यदि इसमें से अधिक बिंदुओं के साथ कोई संयोजित उपसमुच्चय नहीं है।
* [[पूरी तरह से डिस्कनेक्ट|पुर्णतः डिस्कनेक्ट]] समिष्ट पुर्णतः डिस्कनेक्ट हो जाता है यदि इसमें से अधिक बिंदुओं के साथ कोई संयोजित उपसमुच्चय नहीं है।
* पथ-संयोजित समिष्ट ''X [[स्थानीय रूप से पथ से जुड़ा हुआ|समिष्टीय रूप से पथ से संयोजित]] है यदि ''X'' में हर दो बिंदु ''x'', ''y'' के लिए, ''x'' से ''p'' के लिए पाथ y है , अर्थात, सतत मैप ''p'': [0,1] → ''X'' with ''p''(0) = ''x'' और ''p''( 1) = ''y है''। पथ से जुड़े समिष्ट सदैव जुड़े रहते हैं।''
* पथ-संयोजित समिष्ट ''X [[स्थानीय रूप से पथ से जुड़ा हुआ|समिष्टीय रूप से पथ से संयोजित]] है यदि ''X'' में हर दो बिंदु ''x'', ''y'' के लिए, ''x'' से ''p'' के लिए पाथ y है , अर्थात, सतत मैप ''p'': [0,1] → ''X'' with ''p''(0) = ''x'' और ''p''( 1) = ''y है''। पथ से जुड़े समिष्ट सदैव जुड़े रहते हैं।''
* समिष्टीय रूप से पथ से जुड़े समिष्ट समिष्टीय रूप से [[पथ से जुड़ा हुआ|पथ से संयोजित]] है यदि प्रत्येक बिंदु में समिष्टीय आधार है जिसमें पथ से जुड़े समुच्चय सम्मिलित हैं। समिष्टीय रूप से पथ से जुड़ा समिष्ट संयोजित है यदि और केवल यदि यह पथ से संयोजित है।
* समिष्टीय रूप से पथ से जुड़े समिष्ट समिष्टीय रूप से [[पथ से जुड़ा हुआ|पथ से संयोजित]] है यदि प्रत्येक बिंदु में समिष्टीय आधार है जिसमें पथ से जुड़े समुच्चय सम्मिलित हैं। इस प्रकार समिष्टीय रूप से पथ से जुड़ा समिष्ट संयोजित है यदि और केवल यदि यह पथ से संयोजित है।
* चाप से संयोजित समिष्ट ''X'' चाप से संयोजित है यदि ''X'' में प्रत्येक दो बिंदुओं ''x'', ''y'' के लिए, ''x'' से चाप ''f y'' है , अर्थात, [[ इंजेक्शन ]] कंटीन्यूअस मैप ''f'': [0,1] → ''X'' with ''p''(0) = ''x'' and ''p'' (1) = ''य'' [[चाप जुड़ा हुआ|चाप संयोजित]] समिष्ट पाथ-कनेक्टेड होते हैं
* चाप से संयोजित समिष्ट ''X'' चाप से संयोजित है यदि ''X'' में प्रत्येक दो बिंदुओं ''x'', ''y'' के लिए, ''x'' से चाप ''f y'' है , अर्थात, [[ इंजेक्शन |इंजेक्शन]] कंटीन्यूअस मैप ''f'': [0,1] → ''X'' with ''p''(0) = ''x'' and ''p'' (1) = ''य'' [[चाप जुड़ा हुआ|चाप संयोजित]] समिष्ट पाथ-कनेक्टेड होते हैं
*[[बस जुड़ा हुआ है|साधारणतः संयोजित है]]। समिष्ट ''X'' केवल संयोजित है यदि यह पथ से संयोजित है और प्रत्येक निरंतर मैप ''f'': S<sup>1</sup> → X स्थिर मैप के लिए समरूप है।
*[[बस जुड़ा हुआ है|साधारणतः संयोजित है]]। समिष्ट ''X'' केवल संयोजित है यदि यह पथ से संयोजित है और प्रत्येक निरंतर मैप ''f'': S<sup>1</sup> → X स्थिर मैप के लिए समरूप है।
*'समिष्टीय रूप से सरलता से जुड़ा' समिष्ट X [[स्थानीय रूप से बस जुड़ा हुआ स्थान|समिष्टीय रूप से साधारणतः संयोजित समिष्ट]] है यदि X में प्रत्येक बिंदु x का निकट U का समिष्टीय आधार है जो साधारणतः संयोजित है।
*'समिष्टीय रूप से सरलता से जुड़ा' समिष्ट X [[स्थानीय रूप से बस जुड़ा हुआ स्थान|समिष्टीय रूप से साधारणतः संयोजित समिष्ट]] है यदि X में प्रत्येक बिंदु x का निकट U का समिष्टीय आधार है जो साधारणतः संयोजित है।
*'[[अर्ध-स्थानीय रूप से जुड़ा हुआ है|अर्ध-समिष्टीय रूप से संयोजित है]] समिष्ट X अर्ध-समिष्टीय रूप से सरल रूप से संयोजित है यदि प्रत्येक बिंदु का निकट U का समिष्टीय आधार है जैसे कि U में प्रत्येक लूप X में अनुबंधित है। अर्ध-समिष्टीय सरल कनेक्टिविटी, समिष्टीय सरल कनेक्टिविटी की तुलना में सख्त अशक्त स्थिति, के लिए आवश्यक नियम है [[सार्वभौमिक आवरण]] का अस्तित्व है।
*'[[अर्ध-स्थानीय रूप से जुड़ा हुआ है|अर्ध-समिष्टीय रूप से संयोजित है]] समिष्ट X अर्ध-समिष्टीय रूप से सरल रूप से संयोजित है यदि प्रत्येक बिंदु का निकट U का समिष्टीय आधार है जैसे कि U में प्रत्येक लूप X में अनुबंधित है। अर्ध-समिष्टीय सरल कनेक्टिविटी, समिष्टीय सरल कनेक्टिविटी की तुलना में जटिल अशक्त स्थिति, के लिए आवश्यक नियम है [[सार्वभौमिक आवरण]] का अस्तित्व है।
* 'संविदात्मक' समिष्ट X अनुबंधित समिष्ट है यदि X पर पहचान कार्य स्थिर मैप के लिए [[होमोटोपिक]] है। अनुबंधित समिष्ट सदैव साधारणतः जुड़े होते हैं।
* 'संविदात्मक' समिष्ट X अनुबंधित समिष्ट है यदि X पर पहचान कार्य स्थिर मैप के लिए [[होमोटोपिक]] है। अनुबंधित समिष्ट सदैव साधारणतः जुड़े होते हैं।
* '[[ hyperconnected |हाइपरकनेक्टेड]]' यदि कोई दो गैर-शून्य संवृत समुच्चय असंयुक्त नहीं हैं, तो समिष्ट हाइपरकनेक्टेड है। प्रत्येक हाइपरकनेक्टेड समिष्ट संयोजित है।
* '[[ hyperconnected |हाइपरकनेक्टेड]]' यदि कोई दो गैर-शून्य संवृत समुच्चय असंयुक्त नहीं हैं, तो समिष्ट हाइपरकनेक्टेड है। प्रत्येक हाइपरकनेक्टेड समिष्ट संयोजित है।
* '[[अल्ट्राकनेक्टेड]]' यदि कोई दो गैर-शून्य विवृत समुच्चय अलग नहीं होते हैं तो समिष्ट अल्ट्राकनेक्टेड होता है। प्रत्येक अल्ट्राकनेक्टेड समिष्ट पाथ-कनेक्टेड है।
* '[[अल्ट्राकनेक्टेड]]' यदि कोई दो गैर-शून्य विवृत समुच्चय अलग नहीं होते हैं तो समिष्ट अल्ट्राकनेक्टेड होता है। प्रत्येक अल्ट्राकनेक्टेड समिष्ट पाथ-कनेक्टेड है।
* 'अविवेकी' या 'सामान्य समिष्ट अंधाधुंध समिष्ट है यदि केवल संवृत समुच्चय शून्य समुच्चय और स्वयं हैं। कहा जाता है कि इस तरह के समिष्ट में [[तुच्छ टोपोलॉजी|सामान्य टोपोलॉजी]] होती है।
* 'अविवेकी' या 'सामान्य समिष्ट अंधाधुंध समिष्ट है यदि केवल संवृत समुच्चय शून्य समुच्चय और स्वयं हैं। कहा जाता है कि इस प्रकार के समिष्ट में [[तुच्छ टोपोलॉजी|सामान्य टोपोलॉजी]] होती है।


=== सघनता ===
=== सघनता ===
* सघन समिष्ट [[ कॉम्पैक्ट जगह | सघन समिष्ट]] होता है यदि प्रत्येक संवृत आवरण में परिमित ''सब आवरण'' होता है। कुछ लेखक इन समिष्टों को हॉसडॉर्फ समिष्ट समिष्ट के लिए क्वै C सघन और रिजर्व सघन कहते हैं, जहां हर संवृत आवरण में परिमित उपआवरण होता है। सघन समिष्ट सदैव लिंडेलोफ़ और [[ परा-सुसंहत | हॉसडॉर्फ़]] होते हैं। सघन हौसडॉर्फ समिष्ट इसलिए सामान्य हैं।
* सघन समिष्ट [[ कॉम्पैक्ट जगह |सघन समिष्ट]] होता है यदि प्रत्येक संवृत आवरण में परिमित ''सब आवरण'' होता है। कुछ लेखक इन समिष्टों को हॉसडॉर्फ समिष्ट समिष्ट के लिए क्वै C सघन और रिजर्व सघन कहते हैं, जहां हर संवृत आवरण में परिमित उपआवरण होता है। सघन समिष्ट सदैव लिंडेलोफ़ और [[ परा-सुसंहत |हॉसडॉर्फ़]] होते हैं। सघन हौसडॉर्फ समिष्ट इसलिए सामान्य हैं।
* [[क्रमिक रूप से कॉम्पैक्ट|क्रमिक रूप से सघन]] होता है यदि प्रत्येक अनुक्रम में अभिसारी क्रम होता है।
* [[क्रमिक रूप से कॉम्पैक्ट|क्रमिक रूप से सघन]] होता है यदि प्रत्येक अनुक्रम में अभिसारी क्रम होता है।
* गणनात्मक रूप से सघन यदि प्रत्येक गणनीय संवृत आवरण में परिमित उपआवरण होता है, जिससे समिष्ट गणनात्मक रूप से सघन होता है।
* गणनात्मक रूप से सघन यदि प्रत्येक गणनीय संवृत आवरण में परिमित उपआवरण होता है, जिससे समिष्ट गणनात्मक रूप से सघन होता है।
* [[ pseudocompact | स्यूडोसघन]] । समिष्ट स्यूडोसघन है यदि समिष्ट पर प्रत्येक निरंतर वास्तविक-मूल्यवान कार्य C की कमी है।
* [[ pseudocompact | स्यूडोसघन]] । समिष्ट स्यूडोसघन है यदि समिष्ट पर प्रत्येक निरंतर वास्तविक-मूल्यवान कार्य C की कमी है।
Line 73: Line 71:
* लिंडेलोफ समिष्ट लिंडेलोफ समिष्ट है | लिंडेलोफ यदि हर संवृत आवरण में गणनीय उपआवरण होता है।
* लिंडेलोफ समिष्ट लिंडेलोफ समिष्ट है | लिंडेलोफ यदि हर संवृत आवरण में गणनीय उपआवरण होता है।
* पैराकॉम्पैक्ट समिष्ट पैराकॉम्पैक्ट होता है यदि प्रत्येक संवृत आवरण में समिष्टीय रूप से परिमित परिशोधन होता है। पैराकॉम्पैक्ट हौसडॉर्फ समिष्ट सामान्य हैं।
* पैराकॉम्पैक्ट समिष्ट पैराकॉम्पैक्ट होता है यदि प्रत्येक संवृत आवरण में समिष्टीय रूप से परिमित परिशोधन होता है। पैराकॉम्पैक्ट हौसडॉर्फ समिष्ट सामान्य हैं।
* [[स्थानीय रूप से कॉम्पैक्ट|समिष्टीय रूप से सघन]] या समिष्ट समिष्टीय रूप से सघन होता है यदि प्रत्येक बिंदु में सघन निकट से युक्त समिष्टीय आधार होता है। थोड़ी अलग परिभाषाओं का भी उपयोग किया जाता है। समिष्टीय रूप से सघन हौसडॉर्फ समिष्ट सदैव टाइकोनॉफ होते हैं।
* [[स्थानीय रूप से कॉम्पैक्ट|समिष्टीय रूप से सघन]] या समिष्ट समिष्टीय रूप से सघन होता है यदि प्रत्येक बिंदु में सघन निकट से युक्त समिष्टीय आधार होता है। थोड़ी अलग परिभाषाओं का भी उपयोग किया जाता है। समिष्टीय रूप से सघन हौसडॉर्फ समिष्ट सदैव टाइकोनॉफ होते हैं।
* अल्ट्राकनेक्टेड सघन या अल्ट्रा-कनेक्टेड सघन समिष्ट ''X'' में प्रत्येक संवृत आवरण में ''X'' ही होना चाहिए। गैर-शून्य अल्ट्रा-कनेक्टेड सघन समिष्ट में ससाधारणतः बड़ा उचित संवृत उपसमुच्चय होता है जिसे मोनोलिथ कहा जाता है।
* अल्ट्राकनेक्टेड सघन या अल्ट्रा-कनेक्टेड सघन समिष्ट ''X'' में प्रत्येक संवृत आवरण में ''X'' ही होना चाहिए। गैर-शून्य अल्ट्रा-कनेक्टेड सघन समिष्ट में ससाधारणतः बड़ा उचित संवृत उपसमुच्चय होता है जिसे मोनोलिथ कहा जाता है।


=== मेट्रिज़ेबिलिटी ===
=== मेट्रिज़ेबिलिटी ===
* मेट्रिजेबल या समिष्ट मेट्रिक योग्य समिष्ट है यदि यह [[मीट्रिक स्थान|मीट्रिक समिष्ट]] के लिए होमोमोर्फिक है। [[मेट्रिजेबल स्पेस|मेट्रिजेबल समिष्ट]] सदैव हौसडॉर्फ और पैराकॉम्पैक्ट (और इसलिए सामान्य और टाइकोनॉफ़) होते हैं, और पहले-गिनने योग्य होते हैं। इसके अतिरिक्त, टोपोलॉजिकल समिष्ट (X, T) को मेट्रिजेबल कहा जाता है यदि X के लिए मीट्रिक उपस्थित है जैसे कि मीट्रिक टोपोलॉजी T (d) टोपोलॉजी T के समान है।
* मेट्रिजेबल या समिष्ट मेट्रिक योग्य समिष्ट है यदि यह [[मीट्रिक स्थान|मीट्रिक समिष्ट]] के लिए होमोमोर्फिक है। [[मेट्रिजेबल स्पेस|मेट्रिजेबल समिष्ट]] सदैव हौसडॉर्फ और पैराकॉम्पैक्ट (और इसलिए सामान्य और टाइकोनॉफ़) होते हैं, और पहले-गिनने योग्य होते हैं। इसके अतिरिक्त, टोपोलॉजिकल समिष्ट (X, T) को मेट्रिजेबल कहा जाता है यदि X के लिए मीट्रिक उपस्थित है जैसे कि मीट्रिक टोपोलॉजी T (d) टोपोलॉजी T के समान है।
* पोलिश या समिष्ट को [[पोलिश स्थान|पोलिश समिष्ट]] कहा जाता है यदि यह वियोज्य और पूर्ण मीट्रिक के साथ मेट्रिजेबल है।
* पोलिश या समिष्ट को [[पोलिश स्थान|पोलिश समिष्ट]] कहा जाता है यदि यह वियोज्य और पूर्ण मीट्रिक के साथ मेट्रिजेबल है।
* समिष्टीय रूप से मेट्रिजेबल या समिष्ट समिष्टीय रूप से मेट्रिज़ेबल है यदि प्रत्येक बिंदु में मेट्रिज़ेबल निकट है।
* समिष्टीय रूप से मेट्रिजेबल या समिष्ट समिष्टीय रूप से मेट्रिज़ेबल है यदि प्रत्येक बिंदु में मेट्रिज़ेबल निकट है।


=== विविध ===
=== विविध ===
* बायर समिष्ट या समिष्ट ''X'' [[बाहर की जगह|बाहर की समिष्ट]] है यदि यह अपने आप में कम समुच्चय नहीं है। समान रूप से, ''X'' बायर समिष्ट है यदि गिने-चुने घने संवृत समुच्चयों का प्रतिच्छेदन सघन है।
* बायर समिष्ट या समिष्ट ''X'' [[बाहर की जगह|बाहर की समिष्ट]] है यदि यह अपने आप में कम समुच्चय नहीं है। समान रूप से, ''X'' बायर समिष्ट है यदि गिने-चुने घने संवृत समुच्चयों का प्रतिच्छेदन सघन है।
* [[दरवाजे की जगह|दरवाजे की समिष्ट]]टोपोलॉजिकल समिष्ट डोर समिष्ट है यदि हर ससाधारणतःमुच्चय संवृत या विवृत (या दोनों) है।
* [[दरवाजे की जगह|डोर समिष्ट]] या टोपोलॉजिकल समिष्ट डोर समिष्ट है यदि हर ससाधारणतःमुच्चय संवृत या विवृत (या दोनों) है।
* टोपोलॉजिकल एकरूपता। समिष्ट ''X'' (स्थलीय रूप से) [[सजातीय स्थान|सजातीय समिष्ट]] है यदि ''X'' में प्रत्येक ''x'' और ''y'' के लिए होमोमोर्फिज्म है <math>f : X \to X</math> ऐसा है कि <math>f(x) = y.</math> सहज रूप से बोलते हुए, इसका मतलब है कि समिष्ट हर बिंदु पर समान दिखता है। सभी [[टोपोलॉजिकल समूह]] सजातीय हैं।
* टोपोलॉजिकल एकरूपता समिष्ट ''X'' (स्थलीय रूप से) [[सजातीय स्थान|सजातीय समिष्ट]] है यदि ''X'' में प्रत्येक ''x'' और ''y'' के लिए होमोमोर्फिज्म <math>f : X \to X</math> है ऐसा है कि <math>f(x) = y.</math> सहज रूप से बोलते हुए, इसका कारण है कि समिष्ट हर बिंदु पर समान दिखता है। सभी [[टोपोलॉजिकल समूह]] सजातीय हैं।
* अंतिम रूप से उत्पन्न या अलेक्जेंड्रोव। समिष्ट ''X'' [[अलेक्जेंडर टोपोलॉजी]] है यदि ''X'' में संवृत समुच्चयों के मनमाना चौराहे संवृत हैं, या समतुल्य हैं यदि विवृत समुच्चयों के मनमाना संघ विवृत हैं। ये टोपोलॉजिकल समिष्ट और निरंतर मैपों की श्रेणी के स्पष्ट रूप से जेनरेट किए गए ऑब्जेक्ट सदस्य हैं।
* अंतिम रूप से उत्पन्न या अलेक्जेंड्रोव या समिष्ट ''X'' [[अलेक्जेंडर टोपोलॉजी]] है यदि ''X'' में संवृत समुच्चयों के सही प्रतिच्छेदन संवृत हैं, या समतुल्य हैं यदि विवृत समुच्चयों के सही संघ विवृत हैं। ये टोपोलॉजिकल समिष्ट और निरंतर मैपों की श्रेणी के स्पष्ट रूप से जेनरेट किए गए ऑब्जेक्ट सदस्य हैं।
* [[शून्य आयामी]]समिष्ट शून्य-आयामी है यदि उसके पास क्लोपेन समुच्चय का आधार है। ये '0' के छोटे [[आगमनात्मक आयाम]] वाले समिष्ट हैं।
* [[शून्य आयामी]] या समिष्ट शून्य-आयामी है यदि उसके पास क्लोपेन समुच्चय का आधार है। ये '0' के छोटे [[आगमनात्मक आयाम]] वाले समिष्ट हैं।
* [[लगभग असतत]]यदि प्रत्येक संवृत समुच्चय विवृत है (इसलिए क्लोपेन) तो समिष्ट लगभग असतत है। लगभग असतत समिष्ट स्पष्ट रूप से उत्पन्न शून्य-आयामी समिष्ट हैं।
* [[लगभग असतत]] या यदि प्रत्येक संवृत समुच्चय विवृत है (इसलिए क्लोपेन) तो समिष्ट लगभग असतत है। लगभग असतत समिष्ट स्पष्ट रूप से उत्पन्न शून्य-आयामी समिष्ट हैं।
* बूलियन। समिष्ट बूलियन समिष्ट है यदि यह शून्य-आयामी, सघन और हॉसडॉर्फ (समकक्ष रूप से, पुर्णतः डिस्कनेक्ट, सघन और हॉसडॉर्फ) है। ये ठीक वे समिष्ट हैं जो [[बूलियन बीजगणित (संरचना)]] के स्टोन समिष्ट के लिए होमोमोर्फिक हैं।
* बूलियन या समिष्ट बूलियन समिष्ट है यदि यह शून्य-आयामी, सघन और हॉसडॉर्फ (समकक्ष रूप से, पुर्णतः डिस्कनेक्ट, सघन और हॉसडॉर्फ) है। ये ठीक वे समिष्ट हैं जो [[बूलियन बीजगणित (संरचना)]] के स्टोन समिष्ट के लिए होमोमोर्फिक हैं।
* रिडेमिस्टर मरोड़
* रिडेमिस्टर मरोड़
*<math>\kappa</math>- हल करने योग्य। समिष्ट को κ-रिज़ॉल्वेबल कहा जाता है<ref>{{cite journal|last=Juhász|first=István|author2=Soukup, Lajos |author3=Szentmiklóssy, Zoltán |title=संकल्पशीलता और मोनोटोन सामान्यता|journal=[[Israel Journal of Mathematics]]|year=2008|volume=166|issue=1|pages=1–16|doi=10.1007/s11856-008-1017-y|doi-access=free|issn=0021-2172|arxiv=math/0609092|s2cid=14743623}}</ref> (क्रमशः: लगभग κ-रिज़ॉल्वेबल) यदि इसमें κ सघन समुच्चय होते हैं जो जोड़ीदार रूप से अलग होते हैं (क्रमशः: कहीं नहीं घने उपसमुच्चय के आदर्श पर लगभग अलग)। यदि समिष्ट नहीं है <math>\kappa</math>- हल करने योग्य तो इसे कहा जाता है <math>\kappa</math>-अनिवार्य।
*<math>\kappa</math>- हल करने योग्य या समिष्ट को κ-रिज़ॉल्वेबल कहा जाता है <ref>{{cite journal|last=Juhász|first=István|author2=Soukup, Lajos |author3=Szentmiklóssy, Zoltán |title=संकल्पशीलता और मोनोटोन सामान्यता|journal=[[Israel Journal of Mathematics]]|year=2008|volume=166|issue=1|pages=1–16|doi=10.1007/s11856-008-1017-y|doi-access=free|issn=0021-2172|arxiv=math/0609092|s2cid=14743623}}</ref> (क्रमशः: लगभग κ-रिज़ॉल्वेबल) यदि इसमें κ सघन समुच्चय होते हैं जो जोड़ीदार रूप से अलग होते हैं (क्रमशः: कहीं नहीं घने उपसमुच्चय के आदर्श पर लगभग अलग)। यदि समिष्ट नहीं है <math>\kappa</math>- हल करने योग्य तो इसे <math>\kappa</math>-अनिवार्य कहा जाता है।
* अधिकतम हल करने योग्य। समिष्ट <math>X</math> यदि यह है तो अधिकतम हल करने योग्य है <math>\Delta(X)</math>- हल करने योग्य, कहाँ <math>\Delta(X) =
* अधिकतम हल करने योग्य समिष्ट <math>X</math> यदि यह है तो अधिकतम हल करने योग्य है <math>\Delta(X)</math> हल करने योग्य है, जहाँ <math>\Delta(X) =
\min\{|G| : G\neq \varnothing, G\mbox{ is open}\}.</math> संख्या <math>\Delta(X)</math> का फैलाव लक्षण कहलाता है <math>X.</math>
\min\{|G| : G\neq \varnothing, G\mbox{ is open}\}.</math> संख्या <math>\Delta(X)</math> का फैलाव लक्षण <math>X.</math> कहलाता है
* अत्यधिक असतत। तय करना <math>D</math> समिष्ट का दृढ़ता से असतत उपसमुच्चय है <math>X</math> यदि अंक में <math>D</math> जोड़ीदार असंबद्ध निकट द्वारा अलग किया जा सकता है। समिष्ट <math>X</math> कहा जाता है कि यदि प्रत्येक गैर-पृथक बिंदु दृढ़ता से असतत है <math>X</math> कुछ अत्यधिक असतत समुच्चय का [[सीमा बिंदु|Cमा बिंदु]] है।
* अत्यधिक असतत या तय करना <math>D</math> समिष्ट का दृढ़ता से असतत उपसमुच्चय <math>X</math> है यदि अंक में <math>D</math> जोड़ीदार असंबद्ध निकट द्वारा अलग किया जा सकता है। समिष्ट <math>X</math> कहा जाता है कि यदि प्रत्येक गैर-पृथक बिंदु <math>X</math> दृढ़ता से असतत है कुछ अत्यधिक असतत समुच्चय का [[सीमा बिंदु]] है।


== गैर-स्थलीय गुण ==
== गैर-टोपोलॉजिकल गुण ==
मेट्रिक समिष्ट आदि के गुणों के कई उदाहरण हैं, जो टोपोलॉजिकल गुण नहीं हैं। प्रॉपर्टी दिखाने के लिए <math>P</math> टोपोलॉजिकल नहीं है, यह दो होमियोमॉर्फिक टोपोलॉजिकल समिष्ट खोजने के लिए पर्याप्त है <math>X \cong Y</math> ऐसा है कि <math>X</math> है <math>P</math>, किन्तु <math>Y</math> नहीं है <math>P</math>.
मेट्रिक समिष्ट आदि के गुणों के कई उदाहरण हैं, जो टोपोलॉजिकल गुण नहीं हैं। प्रॉपर्टी दिखाने के लिए <math>P</math> टोपोलॉजिकल नहीं है, यह दो होमियोमॉर्फिक टोपोलॉजिकल समिष्ट <math>X \cong Y</math> खोजने के लिए पर्याप्त है ऐसा है कि <math>X</math> <math>P</math> है , किन्तु <math>Y</math> <math>P</math> नहीं है .


उदाहरण के लिए, मेट्रिक समिष्ट के मीट्रिक समिष्ट गुण # बाउंडेड और पुर्णतः बाउंड समिष्ट और मेट्रिक समिष्ट # कम्प्लीट समिष्ट टोपोलॉजिकल गुण नहीं हैं। होने देना <math>X = \R</math> और <math>Y = (-\tfrac{\pi}{2},\tfrac{\pi}{2})</math> मानक मीट्रिक के साथ मीट्रिक समिष्ट हो। तब, <math>X \cong Y</math> होमोमोर्फिज्म के माध्यम से <math>\operatorname{arctan}\colon X \to Y</math>. हालाँकि, <math>X</math> पूर्ण है किन्तु बाध्य नहीं है, जबकि <math>Y</math> बंधा हुआ है किन्तु पूरा नहीं है।
उदाहरण के लिए, मेट्रिक समिष्ट के मीट्रिक समिष्ट गुण बाउंडेड और पुर्णतः बाउंड समिष्ट और मेट्रिक समिष्ट पूर्ण समिष्ट टोपोलॉजिकल गुण नहीं हैं। माना <math>X = \R</math> और <math>Y = (-\tfrac{\pi}{2},\tfrac{\pi}{2})</math> मानक मीट्रिक के साथ मीट्रिक समिष्ट होते है। तब, <math>X \cong Y</math> होमोमोर्फिज्म के माध्यम से <math>\operatorname{arctan}\colon X \to Y</math>. है चूँकि, <math>X</math> पूर्ण है किन्तु बाध्य नहीं है, जबकि <math>Y</math> बंधा हुआ है किन्तु पूर्ण नहीं है।


== यह भी देखें ==
== यह भी देखें ==
* {{annotated link|Characteristic class}}
* {{annotated link|विशेषता वर्ग}}
* {{annotated link|Characteristic numbers}}
* {{annotated link|विशिष्ट संख्याएँ}}
* {{annotated link|Chern class}}
* {{annotated link|चेर्न वर्ग}}
* {{annotated link|Euler characteristic}}
* {{annotated link|यूलर विशेषता}}
* {{annotated link|Fixed-point property}}
* {{annotated link|निश्चित-बिंदु प्रोपर्टी}}
* [[सह-समरूपता]] (गणित) और कोहोलॉजी
* [[सह-समरूपता]] (गणित) और कोहोलॉजी
* [[ होमोटॉपी समूह | होमोटॉP समूह]] और [[कोहोमोटॉपी समूह|कोहोमोटॉP समूह]]
* [[ होमोटॉपी समूह | होमोटॉपी समूह]] और [[कोहोमोटॉपी समूह]]
* {{annotated link|Knot invariant}}
* {{annotated link|क्नॉट अपरिवर्तनीय}}
* {{annotated link|Linking number}}
* {{annotated link|लिंकिंग नंबर}}
* {{annotated link|List of topologies}}
* {{annotated link|टोपोलॉजी की सूची}}
* {{annotated link|Quantum invariant}}
* {{annotated link|क्वांटम अपरिवर्तनीय}}
* {{annotated link|Topological quantum number}}
* {{annotated link|टोपोलॉजिकल क्वांटम संख्या}}
* {{annotated link|Winding number}}
* {{annotated link|वाइंडिंग संख्या}}


== उद्धरण ==
== उद्धरण ==
{{Reflist}}
{{Reflist}}
== संदर्भ ==
== संदर्भ ==
{{refbegin}}
{{refbegin}}
Line 124: Line 120:
* {{cite book|author-last=Munkres|author-first=James R.|author-link=James Munkres|title=Topology|date=2000|publisher=[[Prentice Hall|Prentice-Hall]]|isbn=0-13-181629-2}} <!-- {{sfn|Munkres|2000|p=}} -->
* {{cite book|author-last=Munkres|author-first=James R.|author-link=James Munkres|title=Topology|date=2000|publisher=[[Prentice Hall|Prentice-Hall]]|isbn=0-13-181629-2}} <!-- {{sfn|Munkres|2000|p=}} -->
{{refend}}
{{refend}}
[2] Simon Moulieras, Maciej Lewenstein and Graciana Puentes, Entanglement engineering and topological protection by discrete-time quantum walks, Journal of Physics B: Atomic, Molecular and Optical Physics 46 (10), 104005 (2013).
[2] Simon Moulieras, Maciej Lewenstein and Graciana Puentes, Entanglement engineering and topological protection by discrete-time quantum walks, Journal of Physics B: Atomic, Molecular and Optical Physics 46 (10), 104005 (2013).
https://iopscience.iop.org/article/10.1088/0953-4075/46/10/104005/pdf
https://iopscience.iop.org/article/10.1088/0953-4075/46/10/104005/pdf
[[Category: टोपोलॉजिकल स्पेस के गुण | टोपोलॉजिकल स्पेस के गुण ]] [[Category: होमोमोर्फिज्म]]
 


[[ru:Топологический инвариант]]
[[ru:Топологический инвариант]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 28/02/2023]]
[[Category:Created On 28/02/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:टोपोलॉजिकल स्पेस के गुण| टोपोलॉजिकल स्पेस के गुण ]]
[[Category:होमोमोर्फिज्म]]

Latest revision as of 11:44, 8 September 2023

टोपोलॉजी और गणित के संबंधित क्षेत्रों में, टोपोलॉजिकल प्रॉपर्टी या टोपोलॉजिकल अपरिवर्तनीय टोपोलॉजिकल समिष्ट की प्रॉपर्टी है इस प्रकार जो होमियोमोर्फिज्म के अनुसार अपरिवर्तनीय (गणित) है। वैकल्पिक रूप से, टोपोलॉजिकल प्रॉपर्टी टोपोलॉजिकल समिष्ट का वर्ग समुच्चय सिद्धांत है जो होमोमोर्फिज्म के अनुसार विवृत है। अर्थात्, इस प्रकार समिष्ट की प्रॉपर्टी सांस्थितिक प्रॉपर्टी है यदि जब भी कोई समिष्ट X उस प्रॉपर्टी के पास होमोमॉर्फिक से X के पास वह गुण रखता है। सामान्यतः, सामयिक प्रॉपर्टी समिष्ट की प्रॉपर्टी है जिसे संवृत समुच्चयों का उपयोग करके व्यक्त किया जा सकता है।

टोपोलॉजी में सामान्य समस्या यह तय करना है कि दो टोपोलॉजिकल समिष्ट होमियोमॉर्फिक हैं या नहीं है। इस प्रकार यह सिद्ध करने के लिए कि दो समिष्ट होमियोमॉर्फिक नहीं हैं, यह सांस्थितिक गुण खोजने के लिए पर्याप्त है जो उनके द्वारा साझा नहीं किया गया है।

सामयिक गुणों के गुण

एक प्रॉपर्टी है:

  • अनुवांशिक, यदि प्रत्येक टोपोलॉजिकल समिष्ट के लिए और ससाधारणतःमुच्चय ससाधारणतःमिष्ट (टोपोलॉजी) प्रॉपर्टी है
  • दुर्बल अनुवांशिक, यदि प्रत्येक टोपोलॉजिकल समिष्ट के लिए और विवृत उपसमुच्चय उप-समिष्ट प्रॉपर्टी है

सामान्य सामयिक गुण

कार्डिनल फलन

  • प्रमुखता | x | समिष्ट का X है।
  • कार्डिनलिटी T (X) समिष्ट X की टोपोलॉजी (संवृत उपसमुच्चय का समुच्चय)।
  • वजन डब्ल्यू (X), समिष्ट X के आधार (टोपोलॉजी) की कम से कम कार्डिनैलिटी।
  • घनत्व d (X), X के ससाधारणतःमुच्चय की ससाधारणतः कम कार्डिनैलिटी जिसका समापन X है।

पृथक्करण

ध्यान दें कि इनमें से कुछ शब्द प्राचीन गणितीय साहित्य में अलग विधि से परिभाषित किए गए हैं; पृथक्करण स्वयंसिद्धों का इतिहास देखें।

  • T0 या कोलमोगोरोव समिष्ट कोलमोगोरोव समिष्ट है यदि समिष्ट में अलग-अलग बिंदुओं x और y के प्रत्येक जोड़े के लिए, इस प्रकार कम से कम या तो संवृत समुच्चय है जिसमें x है किन्तु y नहीं है, या संवृत समुच्चय जिसमें y है किन्तु x नहीं है।
  • T1 या फ्रेचेट समिष्ट T1 समिष्ट है। यदि समिष्ट में अलग-अलग बिंदुओं x और y के प्रत्येक जोड़े के लिए संवृत समुच्चय है जिसमें x है, किन्तु y नहीं है। (T0 से तुलना करें; यहां, हमें यह निर्दिष्ट करने की अनुमति है कि संवृत समुच्चय में कौन सा बिंदु समाहित होगा।) समान रूप से, समिष्ट T1 है यदि इसके सभी सिंगलटन विवृत हैं। T1 समिष्ट सदैव T0 होते हैं.
  • समिष्ट क्लोज्ड समिष्ट है यदि प्रत्येक इर्रिड्यूसिबल क्लोज्ड समुच्चय C का अद्वितीय सामान्य बिंदु p है। दूसरे शब्दों में, यदि C दो छोटे विवृत उपसमुच्चयों का (संभवत: अविच्छिन्न) मिलन नहीं है, तो p ऐसा है कि {p} का विवृत होना C' के समान है। और 'p' इस प्रॉपर्टी के साथ एकमात्र बिंदु है।
  • T2या हॉसडॉर्फ समिष्ट हौसडॉर्फ समिष्ट है यदि प्रत्येक दो अलग-अलग बिंदुओं में असंबद्ध निकट हैं। T2 समिष्ट सदैव T1 होते हैं.
  • Tया उरीसोहन समिष्ट उरीसोहन है और पुर्णतः हौसडॉर्फ समिष्ट है यदि प्रत्येक दो अलग-अलग बिंदुओं में विवृत निकट हैं। T समिष्ट सदैव T होते हैं2.
  • पुर्णतः T2 या पुर्णतः हॉसडॉर्फ समिष्ट पुर्णतः हौसडॉर्फ समिष्ट है | इस प्रकार पुर्णतः T2 यदि प्रत्येक दो अलग-अलग बिंदुओं को फलन द्वारा अलग किया जाता है। हर पुर्णतः हॉउसडॉर्फ समिष्ट उरीसोहन है।
  • नियमित समिष्ट नियमित समिष्ट है यदि जब भी C विवृत समुच्चय है और P C में नहीं है, तो C और P के आस-पास निकट हैं।
  • T3या नियमित हॉसडॉर्फ समिष्ट नियमित हॉसडॉर्फ समिष्ट है यदि यह नियमित T है0 समिष्ट (एक नियमित समिष्ट हॉसडॉर्फ है यदि और केवल यदि यह T0 है, इसलिए शब्दावली सुसंगत है।)
  • पुर्णतः नियमित समिष्ट टायचोनॉफ समिष्ट है यदि जब भी C विवृत समुच्चय है और P बिंदु है जो C में नहीं है, तो C और {P} द्वारा अलग किया जाता है ।
  • T, टाइकोनॉफ़, पुर्णतः नियमित हॉसडॉर्फ या पुर्णतः T3. टाइकोनॉफ समिष्ट पुर्णतः नियमित T0 समिष्ट है। (एक पुर्णतः नियमित समिष्ट हौसडॉर्फ है इस प्रकार यदि और केवल यदि यह T0 है, इसलिए शब्दावली सुसंगत है।) टायकोनॉफ़ समिष्ट सदैव नियमित हौसडॉर्फ होते हैं।
  • सामान्य समिष्ट सामान्य समिष्ट है यदि किन्हीं भी दो अलग-अलग विवृत समुच्चयों में अलग-अलग निकट हैं। सामान्य समिष्ट एकता के विभाजन को स्वीकार करते हैं।
  • T4या सामान्य हॉसडॉर्फ सामान्य समिष्ट हौसडॉर्फ है यदि और केवल यदि यह T1 है. सामान्य हॉसडॉर्फ समिष्ट सदैव टाइकोनॉफ होते हैं।
  • पूर्णतः सामान्य समिष्ट पुर्णतः सामान्य है यदि दो अलग-अलग समुच्चय में असंबद्ध निकट हैं।
  • T5या पुर्णतः सामान्य हौसडॉर्फ हॉउसडॉर्फ पुर्णतः सामान्य समिष्ट है यदि और केवल यदि यह T1 है. पुर्णतः सामान्य हॉउसडॉर्फ समिष्ट सदैव सामान्य हॉसडॉर्फ होते हैं।
  • पुर्णतः सामान्य समिष्ट पुर्णतः सामान्य समिष्ट है यदि कोई भी दो अलग-अलग विवृत समुच्चय कि C फलन द्वारा स्पष्ट रूप से अलग हो जाते हैं। पुर्णतः सामान्य समिष्ट भी पुर्णतः सामान्य होना चाहिए।
  • T6या पुर्णतः सामान्य हॉसडॉर्फ, या पुर्णतः T4. समिष्ट पुर्णतः सामान्य हौसडॉर्फ समिष्ट है, यदि यह पुर्णतः सामान्य और T1 दोनों है. पुर्णतः सामान्य हॉउसडॉर्फ समिष्ट भी पुर्णतः सामान्य हॉउसडॉर्फ होना चाहिए।
  • असतत समिष्ट असतत समिष्ट है यदि इसके सभी बिंदु पुर्णतः अलग-थलग हैं, अर्थात यदि कोई उपसमुच्चय संवृत है।
  • पृथक बिंदुओं की संख्या टोपोलॉजिकल समिष्ट के पृथक बिंदुओं की संख्या है।

गणना के नियम

  • वियोज्य समिष्ट वियोज्य (टोपोलॉजी) है यदि इसमें गणनीय सघन उपसमुच्चय है।
  • प्रथम-गणनीय समिष्ट प्रथम-गणनीय समिष्ट है | प्रथम-गणनीय है यदि प्रत्येक बिंदु का गणनीय समिष्टीय आधार है।
  • दूसरा-गणनीय समिष्ट दूसरी-गणना योग्य समिष्ट है | दूसरी-गणना योग्य है यदि इसकी टोपोलॉजी के लिए गणनीय आधार है। द्वितीय-गणनीय समिष्ट सदैव वियोज्य होते हैं, प्रथम-गणनीय और लिंडेलोफ़ है।

संबद्धता

  • कनेक्टेड समिष्ट संयोजित समिष्ट है यदि यह असंयुक्त गैर-शून्य संवृत समुच्चयों की जोड़ी का मिलन नहीं है। समतुल्य रूप से, समिष्ट संयोजित है यदि केवल क्लोपेन समुच्चय शून्य समुच्चय और स्वयं हैं।
  • समिष्टीय रूप से संयोजित समिष्ट समिष्टीय रूप से संयोजित है यदि प्रत्येक बिंदु का समिष्टीय आधार है जिसमें कनेक्टेड समुच्चय सम्मिलित हैं।
  • पुर्णतः डिस्कनेक्ट समिष्ट पुर्णतः डिस्कनेक्ट हो जाता है यदि इसमें से अधिक बिंदुओं के साथ कोई संयोजित उपसमुच्चय नहीं है।
  • पथ-संयोजित समिष्ट X समिष्टीय रूप से पथ से संयोजित है यदि X में हर दो बिंदु x, y के लिए, x से p के लिए पाथ y है , अर्थात, सतत मैप p: [0,1] → X with p(0) = x और p( 1) = y है। पथ से जुड़े समिष्ट सदैव जुड़े रहते हैं।
  • समिष्टीय रूप से पथ से जुड़े समिष्ट समिष्टीय रूप से पथ से संयोजित है यदि प्रत्येक बिंदु में समिष्टीय आधार है जिसमें पथ से जुड़े समुच्चय सम्मिलित हैं। इस प्रकार समिष्टीय रूप से पथ से जुड़ा समिष्ट संयोजित है यदि और केवल यदि यह पथ से संयोजित है।
  • चाप से संयोजित समिष्ट X चाप से संयोजित है यदि X में प्रत्येक दो बिंदुओं x, y के लिए, x से चाप f y है , अर्थात, इंजेक्शन कंटीन्यूअस मैप f: [0,1] → X with p(0) = x and p (1) = चाप संयोजित समिष्ट पाथ-कनेक्टेड होते हैं
  • साधारणतः संयोजित है। समिष्ट X केवल संयोजित है यदि यह पथ से संयोजित है और प्रत्येक निरंतर मैप f: S1 → X स्थिर मैप के लिए समरूप है।
  • 'समिष्टीय रूप से सरलता से जुड़ा' समिष्ट X समिष्टीय रूप से साधारणतः संयोजित समिष्ट है यदि X में प्रत्येक बिंदु x का निकट U का समिष्टीय आधार है जो साधारणतः संयोजित है।
  • 'अर्ध-समिष्टीय रूप से संयोजित है समिष्ट X अर्ध-समिष्टीय रूप से सरल रूप से संयोजित है यदि प्रत्येक बिंदु का निकट U का समिष्टीय आधार है जैसे कि U में प्रत्येक लूप X में अनुबंधित है। अर्ध-समिष्टीय सरल कनेक्टिविटी, समिष्टीय सरल कनेक्टिविटी की तुलना में जटिल अशक्त स्थिति, के लिए आवश्यक नियम है सार्वभौमिक आवरण का अस्तित्व है।
  • 'संविदात्मक' समिष्ट X अनुबंधित समिष्ट है यदि X पर पहचान कार्य स्थिर मैप के लिए होमोटोपिक है। अनुबंधित समिष्ट सदैव साधारणतः जुड़े होते हैं।
  • 'हाइपरकनेक्टेड' यदि कोई दो गैर-शून्य संवृत समुच्चय असंयुक्त नहीं हैं, तो समिष्ट हाइपरकनेक्टेड है। प्रत्येक हाइपरकनेक्टेड समिष्ट संयोजित है।
  • 'अल्ट्राकनेक्टेड' यदि कोई दो गैर-शून्य विवृत समुच्चय अलग नहीं होते हैं तो समिष्ट अल्ट्राकनेक्टेड होता है। प्रत्येक अल्ट्राकनेक्टेड समिष्ट पाथ-कनेक्टेड है।
  • 'अविवेकी' या 'सामान्य समिष्ट अंधाधुंध समिष्ट है यदि केवल संवृत समुच्चय शून्य समुच्चय और स्वयं हैं। कहा जाता है कि इस प्रकार के समिष्ट में सामान्य टोपोलॉजी होती है।

सघनता

  • सघन समिष्ट सघन समिष्ट होता है यदि प्रत्येक संवृत आवरण में परिमित सब आवरण होता है। कुछ लेखक इन समिष्टों को हॉसडॉर्फ समिष्ट समिष्ट के लिए क्वै C सघन और रिजर्व सघन कहते हैं, जहां हर संवृत आवरण में परिमित उपआवरण होता है। सघन समिष्ट सदैव लिंडेलोफ़ और हॉसडॉर्फ़ होते हैं। सघन हौसडॉर्फ समिष्ट इसलिए सामान्य हैं।
  • क्रमिक रूप से सघन होता है यदि प्रत्येक अनुक्रम में अभिसारी क्रम होता है।
  • गणनात्मक रूप से सघन यदि प्रत्येक गणनीय संवृत आवरण में परिमित उपआवरण होता है, जिससे समिष्ट गणनात्मक रूप से सघन होता है।
  • स्यूडोसघन । समिष्ट स्यूडोसघन है यदि समिष्ट पर प्रत्येक निरंतर वास्तविक-मूल्यवान कार्य C की कमी है।
  • σ-सघन। समिष्ट σ-सघन समिष्ट है | σ-सघन यदि यह गिनती के कई सघन ससाधारणतःमुच्चय का मिलन है।
  • लिंडेलोफ समिष्ट लिंडेलोफ समिष्ट है | लिंडेलोफ यदि हर संवृत आवरण में गणनीय उपआवरण होता है।
  • पैराकॉम्पैक्ट समिष्ट पैराकॉम्पैक्ट होता है यदि प्रत्येक संवृत आवरण में समिष्टीय रूप से परिमित परिशोधन होता है। पैराकॉम्पैक्ट हौसडॉर्फ समिष्ट सामान्य हैं।
  • समिष्टीय रूप से सघन या समिष्ट समिष्टीय रूप से सघन होता है यदि प्रत्येक बिंदु में सघन निकट से युक्त समिष्टीय आधार होता है। थोड़ी अलग परिभाषाओं का भी उपयोग किया जाता है। समिष्टीय रूप से सघन हौसडॉर्फ समिष्ट सदैव टाइकोनॉफ होते हैं।
  • अल्ट्राकनेक्टेड सघन या अल्ट्रा-कनेक्टेड सघन समिष्ट X में प्रत्येक संवृत आवरण में X ही होना चाहिए। गैर-शून्य अल्ट्रा-कनेक्टेड सघन समिष्ट में ससाधारणतः बड़ा उचित संवृत उपसमुच्चय होता है जिसे मोनोलिथ कहा जाता है।

मेट्रिज़ेबिलिटी

  • मेट्रिजेबल या समिष्ट मेट्रिक योग्य समिष्ट है यदि यह मीट्रिक समिष्ट के लिए होमोमोर्फिक है। मेट्रिजेबल समिष्ट सदैव हौसडॉर्फ और पैराकॉम्पैक्ट (और इसलिए सामान्य और टाइकोनॉफ़) होते हैं, और पहले-गिनने योग्य होते हैं। इसके अतिरिक्त, टोपोलॉजिकल समिष्ट (X, T) को मेट्रिजेबल कहा जाता है यदि X के लिए मीट्रिक उपस्थित है जैसे कि मीट्रिक टोपोलॉजी T (d) टोपोलॉजी T के समान है।
  • पोलिश या समिष्ट को पोलिश समिष्ट कहा जाता है यदि यह वियोज्य और पूर्ण मीट्रिक के साथ मेट्रिजेबल है।
  • समिष्टीय रूप से मेट्रिजेबल या समिष्ट समिष्टीय रूप से मेट्रिज़ेबल है यदि प्रत्येक बिंदु में मेट्रिज़ेबल निकट है।

विविध

  • बायर समिष्ट या समिष्ट X बाहर की समिष्ट है यदि यह अपने आप में कम समुच्चय नहीं है। समान रूप से, X बायर समिष्ट है यदि गिने-चुने घने संवृत समुच्चयों का प्रतिच्छेदन सघन है।
  • डोर समिष्ट या टोपोलॉजिकल समिष्ट डोर समिष्ट है यदि हर ससाधारणतःमुच्चय संवृत या विवृत (या दोनों) है।
  • टोपोलॉजिकल एकरूपता समिष्ट X (स्थलीय रूप से) सजातीय समिष्ट है यदि X में प्रत्येक x और y के लिए होमोमोर्फिज्म है ऐसा है कि सहज रूप से बोलते हुए, इसका कारण है कि समिष्ट हर बिंदु पर समान दिखता है। सभी टोपोलॉजिकल समूह सजातीय हैं।
  • अंतिम रूप से उत्पन्न या अलेक्जेंड्रोव या समिष्ट X अलेक्जेंडर टोपोलॉजी है यदि X में संवृत समुच्चयों के सही प्रतिच्छेदन संवृत हैं, या समतुल्य हैं यदि विवृत समुच्चयों के सही संघ विवृत हैं। ये टोपोलॉजिकल समिष्ट और निरंतर मैपों की श्रेणी के स्पष्ट रूप से जेनरेट किए गए ऑब्जेक्ट सदस्य हैं।
  • शून्य आयामी या समिष्ट शून्य-आयामी है यदि उसके पास क्लोपेन समुच्चय का आधार है। ये '0' के छोटे आगमनात्मक आयाम वाले समिष्ट हैं।
  • लगभग असतत या यदि प्रत्येक संवृत समुच्चय विवृत है (इसलिए क्लोपेन) तो समिष्ट लगभग असतत है। लगभग असतत समिष्ट स्पष्ट रूप से उत्पन्न शून्य-आयामी समिष्ट हैं।
  • बूलियन या समिष्ट बूलियन समिष्ट है यदि यह शून्य-आयामी, सघन और हॉसडॉर्फ (समकक्ष रूप से, पुर्णतः डिस्कनेक्ट, सघन और हॉसडॉर्फ) है। ये ठीक वे समिष्ट हैं जो बूलियन बीजगणित (संरचना) के स्टोन समिष्ट के लिए होमोमोर्फिक हैं।
  • रिडेमिस्टर मरोड़
  • - हल करने योग्य या समिष्ट को κ-रिज़ॉल्वेबल कहा जाता है [1] (क्रमशः: लगभग κ-रिज़ॉल्वेबल) यदि इसमें κ सघन समुच्चय होते हैं जो जोड़ीदार रूप से अलग होते हैं (क्रमशः: कहीं नहीं घने उपसमुच्चय के आदर्श पर लगभग अलग)। यदि समिष्ट नहीं है - हल करने योग्य तो इसे -अनिवार्य कहा जाता है।
  • अधिकतम हल करने योग्य समिष्ट यदि यह है तो अधिकतम हल करने योग्य है हल करने योग्य है, जहाँ संख्या का फैलाव लक्षण कहलाता है
  • अत्यधिक असतत या तय करना समिष्ट का दृढ़ता से असतत उपसमुच्चय है यदि अंक में जोड़ीदार असंबद्ध निकट द्वारा अलग किया जा सकता है। समिष्ट कहा जाता है कि यदि प्रत्येक गैर-पृथक बिंदु दृढ़ता से असतत है कुछ अत्यधिक असतत समुच्चय का सीमा बिंदु है।

गैर-टोपोलॉजिकल गुण

मेट्रिक समिष्ट आदि के गुणों के कई उदाहरण हैं, जो टोपोलॉजिकल गुण नहीं हैं। प्रॉपर्टी दिखाने के लिए टोपोलॉजिकल नहीं है, यह दो होमियोमॉर्फिक टोपोलॉजिकल समिष्ट खोजने के लिए पर्याप्त है ऐसा है कि है , किन्तु नहीं है .

उदाहरण के लिए, मेट्रिक समिष्ट के मीट्रिक समिष्ट गुण बाउंडेड और पुर्णतः बाउंड समिष्ट और मेट्रिक समिष्ट पूर्ण समिष्ट टोपोलॉजिकल गुण नहीं हैं। माना और मानक मीट्रिक के साथ मीट्रिक समिष्ट होते है। तब, होमोमोर्फिज्म के माध्यम से . है चूँकि, पूर्ण है किन्तु बाध्य नहीं है, जबकि बंधा हुआ है किन्तु पूर्ण नहीं है।

यह भी देखें

उद्धरण

  1. Juhász, István; Soukup, Lajos; Szentmiklóssy, Zoltán (2008). "संकल्पशीलता और मोनोटोन सामान्यता". Israel Journal of Mathematics. 166 (1): 1–16. arXiv:math/0609092. doi:10.1007/s11856-008-1017-y. ISSN 0021-2172. S2CID 14743623.

संदर्भ

[2] Simon Moulieras, Maciej Lewenstein and Graciana Puentes, Entanglement engineering and topological protection by discrete-time quantum walks, Journal of Physics B: Atomic, Molecular and Optical Physics 46 (10), 104005 (2013). https://iopscience.iop.org/article/10.1088/0953-4075/46/10/104005/pdf