क्रमिक रूप से संहतसमष्‍टि: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
Line 1: Line 1:
{{Short description|Topological space where every sequence has a convergent subsequence.}}
{{Short description|Topological space where every sequence has a convergent subsequence.}}
गणित में, [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल समष्टि]] <math>X</math>. क्रमिक रूप से संहतसमष्‍टि प्रत्येक हैं।  
गणित में, [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल समष्टि]] <math>X</math>. '''क्रमिक रूप से संहतसमष्‍टि''' प्रत्येक हैं।  


[[मीट्रिक स्थान|मापीय (मीट्रिक) समष्टि]] स्वाभाविक रूप से एक टोपोलॉजिकल समष्टि है, और मीट्रिक समष्टि के लिए,[[ सघन स्थान | सघन समष्टि]] और अनुक्रमिक  संहतता की धारणाएं समतुल्य हैं (यदि कोई गणनीय विकल्प के सिद्धांत को मानता है)। हालाँकि, क्रमिक रूप से संहत टोपोलॉजिकल समष्टि उपस्थित हैं जो संहत नहीं हैं, और संहत टोपोलॉजिकल समष्टि उपस्थित हैं जो क्रमिक रूप से संहत नहीं हैं।
[[मीट्रिक स्थान|मापीय (मीट्रिक) समष्टि]] स्वाभाविक रूप से एक टोपोलॉजिकल समष्टि है, और मीट्रिक समष्टि के लिए,[[ सघन स्थान | सघन समष्टि]] और अनुक्रमिक  संहतता की धारणाएं समतुल्य हैं (यदि कोई गणनीय विकल्प के सिद्धांत को मानता है)। हालाँकि, क्रमिक रूप से संहत टोपोलॉजिकल समष्टि उपस्थित हैं जो संहत नहीं हैं, और संहत टोपोलॉजिकल समष्टि उपस्थित हैं जो क्रमिक रूप से संहत नहीं हैं।

Latest revision as of 15:53, 29 August 2023

गणित में, टोपोलॉजिकल समष्टि . क्रमिक रूप से संहतसमष्‍टि प्रत्येक हैं।

मापीय (मीट्रिक) समष्टि स्वाभाविक रूप से एक टोपोलॉजिकल समष्टि है, और मीट्रिक समष्टि के लिए, सघन समष्टि और अनुक्रमिक संहतता की धारणाएं समतुल्य हैं (यदि कोई गणनीय विकल्प के सिद्धांत को मानता है)। हालाँकि, क्रमिक रूप से संहत टोपोलॉजिकल समष्टि उपस्थित हैं जो संहत नहीं हैं, और संहत टोपोलॉजिकल समष्टि उपस्थित हैं जो क्रमिक रूप से संहत नहीं हैं।

उदाहरण और गुण

मानक टोपोलॉजी के साथ सभी वास्तविक संख्याओं का समष्टि क्रमिक रूप से संकुचित नहीं होता है; क्रम द्वारा दिए गए सभी प्राकृतिक संख्याओं के लिए एक अनुक्रम है जिसका कोई अभिसरण अनुवर्ती नहीं है।

यदि कोई समष्टि एक मीट्रिक समष्टि है, तो यह क्रमिक रूप से संहत है यदि और केवल यदि यह संहत समष्टि है।[1] ऑर्डर टोपोलॉजी के साथ पहला अगणनीय क्रमसूचक क्रमिक रूप से संहत टोपोलॉजिकल समष्टि का एक उदाहरण है जो संहत नहीं है। उत्पाद टोपोलॉजी का सवृत इकाई अंतराल की प्रतियां संहत समष्टि का एक उदाहरण है जो क्रमिक रूप से संहत नहीं है।[2]

संबंधित धारणाएँ

एक टोपोलॉजिकल समष्टि यदि प्रत्येक अनंत उपसमुच्चय हो तो सीमा बिंदु संहत कहा जाता है में एक सीमा बिंदु है , और गणनीय रूप से सघन समष्टि यदि प्रत्येक गणनीय विवृत आवरण में एक परिमित उपकवर हो। मीट्रिक सअनुक्रमिक संहतता, सीमा बिंदु संहतता, गणनीय संहतता और संहत समष्टि की धारणाएं सभी समतुल्य हैं (यदि कोई पसंद के सिद्धांत को मानता है)।

अनुक्रमिक समष्टि में अनुक्रमिक (हॉसडॉर्फ) समष्टि अनुक्रमिक सघनता गणनीय सघनता के बराबर है।[3]

एक-बिंदु अनुक्रमिक संघनन की भी एक धारणा है - विचार यह है कि सभी गैर-अभिसरण अनुक्रमों को अतिरिक्त बिंदु पर एकत्रित होना चाहिए।[4]

यह भी देखें

टिप्पणियाँ

  1. Willard, 17G, p. 125.
  2. Steen and Seebach, Example 105, pp. 125—126.
  3. Engelking, General Topology, Theorem 3.10.31
    K.P. Hart, Jun-iti Nagata, J.E. Vaughan (editors), Encyclopedia of General Topology, Chapter d3 (by P. Simon)
  4. Brown, Ronald, "Sequentially proper maps and a sequential compactification", J. London Math Soc. (2) 7 (1973) 515-522.

संदर्भ

  • Munkres, James (1999). Topology (2nd ed.). Prentice Hall. ISBN 0-13-181629-2.
  • Steen, Lynn A. and Seebach, J. Arthur Jr.; Counterexamples in Topology, Holt, Rinehart and Winston (1970). ISBN 0-03-079485-4.
  • Willard, Stephen (2004). General Topology. Dover Publications. ISBN 0-486-43479-6.