स्थानीय परिमित समुच्चय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
गणित में, '''स्थानीय रूप से क्रमित समुच्चय''' एक [[आंशिक रूप से ऑर्डर किया गया सेट|आंशिक रूप से ऑर्डर किया गया समूह]] '''''P''''' है, जैसे कि सभी '''''x'', ''y'' ∈ ''P''''' के लिए, अंतराल '''[''x'', ''y'']''' में अनेक तत्वों का एक सीमित समूह होता है।
गणित में, '''स्थानीय परिमित समुच्चय''' एक [[आंशिक रूप से ऑर्डर किया गया सेट|आंशिक रूप से ऑर्डर किया गया समूह]] '''''P''''' है, जैसे कि सभी '''''x'', ''y'' ∈ ''P''''' के लिए, अंतराल '''[''x'', ''y'']''' में अनेक तत्वों का एक सीमित समूह होता है।


स्थानीय रूप से क्रमित समुच्चय '''''P''''' को देखते हुए हम इसकी ''[[घटना बीजगणित]]'' को परिभाषित कर सकते हैं। घटना बीजगणित के तत्व ऐसे कार्य हैं इस प्रकार जो '''''P''''' के प्रत्येक अंतराल '''[''x'', ''y'']''' को एक वास्तविक संख्या '''ƒ(x, y)''' निर्दिष्ट करते हैं। यह फलन परिभाषित उत्पाद के साथ एक सहयोगी बीजगणित बनाते हैं
स्थानीय रूप से परिमित समुच्चय '''''P''''' को देखते हुए हम इसकी ''[[घटना बीजगणित]]'' को परिभाषित कर सकते हैं। घटना बीजगणित के तत्व ऐसे कार्य हैं इस प्रकार जो '''''P''''' के प्रत्येक अंतराल '''[''x'', ''y'']''' को एक वास्तविक संख्या '''ƒ(x, y)''' निर्दिष्ट करते हैं। यह फलन परिभाषित उत्पाद के साथ एक सहयोगी बीजगणित बनाते हैं


: <math>(f * g)(x,y):=\sum_{x \leq z \leq y} f(x,z) g(z,y).</math>
: <math>(f * g)(x,y):=\sum_{x \leq z \leq y} f(x,z) g(z,y).</math>
[[घटना कोलजेब्रा]] की एक परिभाषा भी है।
[[घटना कोलजेब्रा]] की एक परिभाषा भी है।


[[सैद्धांतिक भौतिकी]] में '''स्थानीय रूप से क्रमित समुच्चय''' को [[कारण समुच्चय]] भी कहा जाता है और इस प्रकार इसे [[ अंतरिक्ष समय |अंतरिक्ष समय]] के लिए एक मॉडल के रूप में उपयोग किया गया है।
[[सैद्धांतिक भौतिकी]] में '''स्थानीय परिमित समुच्चय''' को [[कारण समुच्चय]] भी कहा जाता है और इस प्रकार इसे [[ अंतरिक्ष समय |अंतरिक्ष समय]] के लिए एक मॉडल के रूप में उपयोग किया गया है।


==संदर्भ==
==संदर्भ==

Latest revision as of 14:21, 24 August 2023

गणित में, स्थानीय परिमित समुच्चय एक आंशिक रूप से ऑर्डर किया गया समूह P है, जैसे कि सभी x, yP के लिए, अंतराल [x, y] में अनेक तत्वों का एक सीमित समूह होता है।

स्थानीय रूप से परिमित समुच्चय P को देखते हुए हम इसकी घटना बीजगणित को परिभाषित कर सकते हैं। घटना बीजगणित के तत्व ऐसे कार्य हैं इस प्रकार जो P के प्रत्येक अंतराल [x, y] को एक वास्तविक संख्या ƒ(x, y) निर्दिष्ट करते हैं। यह फलन परिभाषित उत्पाद के साथ एक सहयोगी बीजगणित बनाते हैं

घटना कोलजेब्रा की एक परिभाषा भी है।

सैद्धांतिक भौतिकी में स्थानीय परिमित समुच्चय को कारण समुच्चय भी कहा जाता है और इस प्रकार इसे अंतरिक्ष समय के लिए एक मॉडल के रूप में उपयोग किया गया है।

संदर्भ

स्टेनली, रिचर्ड पी. एन्यूमेरेटिव कॉम्बिनेटरिक्स, वॉल्यूम I. कैम्ब्रिज यूनिवर्सिटी प्रेस, 1997. पृष्ठ 98, 113-116।