चक्रीय समरूपता: Difference between revisions
(Created page with "गैर-अनुवांशिक ज्यामिति और गणित की संबंधित शाखाओं में, चक्रीय समर...") |
No edit summary |
||
(7 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
[[गैर-अनुवांशिक ज्यामिति]] और गणित की संबंधित शाखाओं में, चक्रीय समरूपता और चक्रीय समरूपता [[साहचर्य बीजगणित]] के लिए निश्चित (सह) समरूपता सिद्धांत हैं जो | [[गैर-अनुवांशिक ज्यामिति]] और गणित की संबंधित शाखाओं में, चक्रीय समरूपता और चक्रीय समरूपता [[साहचर्य बीजगणित]] के लिए निश्चित (सह) समरूपता सिद्धांत हैं जो विविध्स के डी राम सह समरूपता को सामान्यीकृत करते हैं। इन धारणाओं को स्वतंत्र रूप से [[बोरिस त्स्यगन]] (समरूपता) <ref>Boris L. Tsygan. Homology of matrix Lie algebras over rings and the [[Hochschild homology]]. Uspekhi Mat. Nauk, 38(2(230)):217–218, 1983. Translation in Russ. Math. Survey 38(2) (1983), 198–199. | ||
</ref> और [[एलेन कोन्स]] ( | </ref> और [[एलेन कोन्स]] (सह-समरूपता)<ref>Alain Connes. Noncommutative differential geometry. Inst. Hautes Études Sci. Publ. Math., 62:257–360, 1985. | ||
</ref> उन्नीस सौ अस्सी के दशक | </ref> द्वारा प्रस्तुत किया गया था उन्नीस सौ अस्सी के दशक में, इन अपरिवर्तनीयों के गणित की कई पुरानी शाखाओं के साथ कई दिलचस्प संबंध हैं, जिनमें डी राम सिद्धांत, होशचाइल्ड (सह) समरूपता, समूह सह समरूपता और के-सिद्धांत सम्मिलित हैं। सिद्धांत के विकास में योगदानकर्ताओं में [[मैक्स करौबी]], यूरी एल. डेलेत्स्की, [[बोरिस फागिन]], [[जीन-ल्यूक ब्रिलिंस्की]], [[मारियस वोड्ज़िकी]], [[जीन लुई लोडे]], विक्टर निस्टर, [[डेनियल क्विलेन]], [[जोआचिम कुंत्ज़]], रिस्ज़र्ड नेस्ट, राल्फ़ मेयर और माइकल पुश्निग्ग सम्मिलित हैं। | ||
== परिभाषा के बारे में संकेत == | == परिभाषा के बारे में संकेत == | ||
[[विशेषता (बीजगणित)]] शून्य के क्षेत्र पर रिंग ए की चक्रीय समरूपता की पहली परिभाषा, निरूपित | [[विशेषता (बीजगणित)]] शून्य के क्षेत्र पर रिंग ए की चक्रीय समरूपता की पहली परिभाषा, निरूपित | ||
: | :H<sub>''n''</sub>(A) या H<sub>''n''</sub><sup>λ</sup>(A), | ||
ए के [[होशचाइल्ड होमोलॉजी]] से संबंधित निम्नलिखित स्पष्ट श्रृंखला कॉम्प्लेक्स के माध्यम से आगे बढ़ा, जिसे '[[श्रृंखला जटिल]]' कहा जाता है: | ए के [[होशचाइल्ड होमोलॉजी|होशचाइल्ड समरूपता]] से संबंधित निम्नलिखित स्पष्ट श्रृंखला कॉम्प्लेक्स के माध्यम से आगे बढ़ा, जिसे '[[श्रृंखला जटिल]]' कहा जाता है: | ||
किसी भी प्राकृतिक संख्या n ≥ 0 के लिए, संकारक को परिभाषित करें <math> t_n </math> जो की प्राकृतिक चक्रीय क्रिया उत्पन्न करता है <math> \mathbb{Z}/ n \mathbb{Z} </math> ए के एन-वें टेंसर उत्पाद पर: | किसी भी प्राकृतिक संख्या n ≥ 0 के लिए, संकारक को परिभाषित करें <math> t_n </math> जो की प्राकृतिक चक्रीय क्रिया उत्पन्न करता है <math> \mathbb{Z}/ n \mathbb{Z} </math> ए के एन-वें टेंसर उत्पाद पर: | ||
Line 15: | Line 15: | ||
t_n : A^{\otimes n} \to A^{\otimes n}, \quad a_1 \otimes \dots \otimes a_n \mapsto (-1)^{n-1} a_n \otimes a_1 \otimes \dots \otimes a_{n-1}. | t_n : A^{\otimes n} \to A^{\otimes n}, \quad a_1 \otimes \dots \otimes a_n \mapsto (-1)^{n-1} a_n \otimes a_1 \otimes \dots \otimes a_{n-1}. | ||
\end{align}</math> | \end{align}</math> | ||
याद रखें कि ए | याद रखें कि ए में गुणांक वाले होशचाइल्ड जटिल समूह <math> HC_n(A) := A^{\otimes n+1} </math> , A में गुणांक के साथ सेटिंग द्वारा दिए गए हैं सभी n ≥ 0 के लिए। फिर कॉन्स कॉम्प्लेक्स के घटकों को <math> C^\lambda_n(A) := HC_n(A)/ \langle 1 - t_{n+1} \rangle </math> के रूप में परिभाषित किया गया है , <math> C^\lambda_n(A) := HC_n(A)/ \langle 1 - t_{n+1} \rangle </math>और अंतर <math> d : C^\lambda_n(A) \to C^\lambda_{n-1}(A)</math> इस भागफल के लिए होशचाइल्ड अंतर का प्रतिबंध है। कोई यह जांच सकता है कि होशचाइल्ड अंतर वास्तव में संयोग के इस स्थान को प्रभावित करता है।<ref>Jean-Louis Loday. Cyclic Homology. Vol. 301. Springer Science & Business Media, 1997.</ref> | ||
<ref>Jean-Louis Loday. Cyclic Homology. Vol. 301. Springer Science & Business Media, 1997.</ref> | |||
चक्रीय समरूपता की एक | कॉन्स ने बाद में [[एबेलियन श्रेणी]] में चक्रीय वस्तु की धारणा का उपयोग करके चक्रीय समरूपता के लिए एक अधिक स्पष्ट दृष्टिकोण पाया, जो [[सरल वस्तु]] की धारणा के अनुरूप है। इस तरह, चक्रीय समरूपता (और सह-समरूपता) की व्याख्या एक [[व्युत्पन्न फ़ंक्टर]] के रूप में की जा सकती है, जिसे स्पष्ट रूप से (''B'', ''B'')-बाइकॉम्प्लेक्स के माध्यम से गणना की जा सकती है। यदि क्षेत्र ''k'' में तर्कसंगत संख्याएं सम्मिलित हैं, तो कॉन्स कॉम्प्लेक्स के संदर्भ में परिभाषा समान समरूपता की गणना करती है। | ||
== क्रमविनिमेय वलय का | चक्रीय समरूपता की एक उल्लेखनीय विशेषता होशचाइल्ड और चक्रीय समरूपता को जोड़ने वाले एक लंबे सटीक अनुक्रम का अस्तित्व है। इस लंबे सटीक अनुक्रम को आवधिकता अनुक्रम कहा जाता है। | ||
== क्रमविनिमेय वलय का घटना == | |||
गुणात्मक शून्य के क्षेत्र k पर एक [[एफ़िन बीजगणितीय विविधता]] पर नियमित कार्यों के क्रमविनिमेय बीजगणित ए की चक्रीय सह-समरूपता की गणना [[ग्रोथेंडिक]] के क्रिस्टलीय सह-समरूपता के संदर्भ में की जा सकती है।<ref>Boris L. Fegin and Boris L. Tsygan. Additive K-theory and crystalline cohomology. Funktsional. Anal. i Prilozhen., 19(2):52–62, 96, 1985.</ref> विशेष रूप से, यदि विविधता V=स्पेक A चिकनी है, तो A की चक्रीय सहसंयोजीता को V की डी राम सहसंयोजी के रूप में इस प्रकार व्यक्त किया जाता है: | गुणात्मक शून्य के क्षेत्र k पर एक [[एफ़िन बीजगणितीय विविधता]] पर नियमित कार्यों के क्रमविनिमेय बीजगणित ए की चक्रीय सह-समरूपता की गणना [[ग्रोथेंडिक]] के क्रिस्टलीय सह-समरूपता के संदर्भ में की जा सकती है।<ref>Boris L. Fegin and Boris L. Tsygan. Additive K-theory and crystalline cohomology. Funktsional. Anal. i Prilozhen., 19(2):52–62, 96, 1985.</ref> विशेष रूप से, यदि विविधता V=स्पेक A चिकनी है, तो A की चक्रीय सहसंयोजीता को V की डी राम सहसंयोजी के रूप में इस प्रकार व्यक्त किया जाता है: | ||
:<math> HC_n(A)\simeq \Omega^n\!A/d\Omega^{n-1}\!A\oplus \bigoplus_{i\geq 1}H^{n-2i}_{DR}(V).</math> | :<math> HC_n(A)\simeq \Omega^n\!A/d\Omega^{n-1}\!A\oplus \bigoplus_{i\geq 1}H^{n-2i}_{DR}(V).</math> | ||
यह सूत्र एक गैर-अनुवांशिक बीजगणित ए के 'गैर-अनुवांशिक स्पेक्ट्रम' के लिए डी राम | यह सूत्र एक गैर-अनुवांशिक बीजगणित ए के 'गैर-अनुवांशिक स्पेक्ट्रम' के लिए डी राम सह-समरूपता को परिभाषित करने का एक तरीका सुझाता है, जिसे कॉन्स द्वारा बड़े पैमाने पर विकसित किया गया था। | ||
== चक्रीय समरूपता के प्रकार == | == चक्रीय समरूपता के प्रकार == | ||
चक्रीय समरूपता की एक प्रेरणा K-सिद्धांत के एक सन्निकटन की आवश्यकता थी जिसे K-सिद्धांत के विपरीत, एक श्रृंखला परिसर की समरूपता के रूप में परिभाषित किया गया है। चक्रीय | चक्रीय समरूपता की एक प्रेरणा K-सिद्धांत के एक सन्निकटन की आवश्यकता थी जिसे K-सिद्धांत के विपरीत, एक श्रृंखला परिसर की समरूपता के रूप में परिभाषित किया गया है। चक्रीय सह-समरूपता वास्तव में K-सिद्धांत के साथ एक जोड़ी के साथ संपन्न है, और एक आशा है कि यह जोड़ी गैर-पतित होगी। | ||
ऐसे कई प्रकार परिभाषित किए गए हैं जिनका उद्देश्य | ऐसे कई प्रकार परिभाषित किए गए हैं जिनका उद्देश्य सांस्थिति के साथ बीजगणित के साथ बेहतर ढंग से फिट होना है, जैसे फ़्रेचेट बीजगणित, <math>C^*</math>-बीजगणित आदि। इसका कारण यह है कि K-सिद्धांत अतिरिक्त संरचना के बिना बीजगणित की तुलना में [[बानाच बीजगणित]] या [[सी*-बीजगणित|C*-बीजगणित]] जैसे संस्थानिक बीजगणित पर बहुत बेहतर व्यवहार करता है। चूँकि, दूसरी ओर, C*-बीजगणित पर चक्रीय समरूपता का ह्रास होता है, इसलिए संशोधित सिद्धांतों को परिभाषित करने की आवश्यकता उत्पन्न हुई। इनमें एलेन कोन्स के कारण संपूर्ण चक्रीय समरूपता, राल्फ़ मेयर के कारण विश्लेषणात्मक चक्रीय समरूपता या माइकल पुश्निग्ग के कारण स्पर्शोन्मुख और स्थानीय चक्रीय समरूपता सम्मिलित हैं।<ref> | ||
Ralf Meyer. Analytic cyclic cohomology. PhD thesis, Universität Münster, 1999</ref> | Ralf Meyer. Analytic cyclic cohomology. PhD thesis, Universität Münster, 1999</ref>।<ref>Michael Puschnigg. Diffeotopy functors of ind-algebras and local cyclic cohomology. Doc. | ||
Math., 8:143–245 (electronic), 2003.</ref> आखिरी वाला के-सिद्धांत के बहुत करीब है क्योंकि यह [[केके-सिद्धांत]] के द्विवेरिएंट [[चेर्न चरित्र]] से संपन्न है। | Math., 8:143–245 (electronic), 2003.</ref> आखिरी वाला के-सिद्धांत के बहुत करीब है क्योंकि यह [[केके-सिद्धांत]] के द्विवेरिएंट [[चेर्न चरित्र]] से संपन्न है। | ||
==अनुप्रयोग== | ==अनुप्रयोग== | ||
चक्रीय समरूपता के अनुप्रयोगों में से एक अतियाह-सिंगर सूचकांक प्रमेय के नए प्रमाण और सामान्यीकरण | चक्रीय समरूपता के अनुप्रयोगों में से एक अतियाह-सिंगर सूचकांक प्रमेय के नए प्रमाण और सामान्यीकरण अन्वेषण है। इन सामान्यीकरणों में वर्णक्रमीय त्रिगुणों पर आधारित सूचकांक प्रमेय हैं<ref>Alain Connes and Henri Moscovici. The local index formula in noncommutative geometry. Geom. Funct. Anal., 5(2):174–243, 1995.</ref> और [[पॉइसन मैनिफ़ोल्ड]] का [[विरूपण परिमाणीकरण]]।<ref>Ryszard Nest and Boris Tsygan. Algebraic index theorem. Comm. Math. Phys., 172(2):223–262, 1995.</ref><!-- needs to be a good representative of the theory, with enough context and relevance. The index theorem for quantum tori is linked to the [[quantum Hall effect]],<ref>http://citeseer.ist.psu.edu/old/404503.html {{Bare URL inline|date=May 2022}}</ref> and the index theorem for deformation quantization to the study of band energy redistribution in the [[Born-Oppenheimer approximation]] in molecular physics.<ref>http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.3618 {{Bare URL inline|date=May 2022}}</ref> --> | ||
सुगठित चिकना विविध पर एक अण्डाकार ऑपरेटर डी, के समरूपता में एक वर्ग को परिभाषित करता है। इस वर्ग का एक अपरिवर्तनीय ऑपरेटर का विश्लेषणात्मक सूचकांक है। इसे HC(C(M)) में तत्व 1 के साथ वर्ग [D] की जोड़ी के रूप में देखा जाता है। चक्रीय सह-समरूपता को न केवल चिकनी विविध् के लिए, बल्कि गैर-अनुवांशिक ज्यामिति में दिखाई देने वाले पत्ते, [[कक्षीय मोड़]] और एकवचन रिक्त स्थान के लिए अण्डाकार अंतर ऑपरेटरों के उच्च अपरिवर्तनीयता प्राप्त करने के एक तरीके के रूप में देखा जा सकता है। | |||
==[[बीजगणितीय K-सिद्धांत]] की गणना== | ==[[बीजगणितीय K-सिद्धांत]] की गणना== | ||
[[ साइक्लोटोमिक ट्रेस मानचित्र ]] बीजगणितीय के-सिद्धांत (एक रिंग | [[ साइक्लोटोमिक ट्रेस मानचित्र ]] बीजगणितीय के-सिद्धांत (एक रिंग A, मान लीजिए) से लेकर चक्रीय समरूपता तक का एक मानचित्र है: | ||
:<math>tr: K_n (A) \to HC_{n-1} (A).</math> | :<math>tr: K_n (A) \to HC_{n-1} (A).</math> | ||
कुछ स्थितियों में, इस मानचित्र का उपयोग इस मानचित्र के माध्यम से K-सिद्धांत की गणना करने के लिए किया जा सकता है। इस दिशा में एक अग्रणी परिणाम एक प्रमेय है {{harvtxt| | कुछ स्थितियों में, इस मानचित्र का उपयोग इस मानचित्र के माध्यम से K-सिद्धांत की गणना करने के लिए किया जा सकता है। इस दिशा में एक अग्रणी परिणाम एक प्रमेय है {{harvtxt|सद्भावना|1986}}: यह दावा करता है कि नक्शा | ||
:<math>K_n(A, I) \otimes \mathbf Q \to HC_{n-1} (A, I) \otimes \mathbf Q </math> | :<math>K_n(A, I) \otimes \mathbf Q \to HC_{n-1} (A, I) \otimes \mathbf Q </math> | ||
एक निलपोटेंट दो-तरफा आदर्श | एक निलपोटेंट दो-तरफा आदर्श के संबंध में A के सापेक्ष K-सिद्धांत के बीच सापेक्ष चक्रीय समरूपता (A और A/I के K-सिद्धांत या चक्रीय समरूपता के बीच अंतर को मापना) n≥1 के लिए एक समरूपता है। | ||
जबकि | जबकि सद्भावना का परिणाम मनमाने छल्ले के लिए है, एक त्वरित कमी से पता चलता है कि यह संक्षेप में केवल <math>A \otimes_{\mathbf Z} \mathbf Q</math> एक बयान है उन रिंगों के लिए जिनमें Q नहीं है, K-सिद्धांत के साथ घनिष्ठ संबंध बनाए रखने के लिए चक्रीय समरूपता को संस्थानिक चक्रीय समरूपता द्वारा प्रतिस्थापित किया जाना चाहिए। (यदि Q, ''A'' में समाहित है, तो चक्रीय समरूपता और ''A'' की संस्थानिक चक्रीय समरूपता सहमत हैं।) यह इस तथ्य के अनुरूप है कि (शास्त्रीय) होशचाइल्ड समरूपता, संस्थानिक होशचाइल्ड समरूपता की तुलना में कम अच्छा व्यवहार करती है। उन छल्लों के लिए जिनमें Q सम्मिलित नहीं है। {{harvtxt|क्लॉसन|मैथ्यू|मोरो|2018}} ने सद्भावना के परिणाम का एक दूरगामी सामान्यीकरण साबित हुआ, जिसमें कहा गया कि एक क्रमविनिमेय रिंग A के लिए ताकि [[हेन्सेलियन अंगूठी]] आदर्श के संबंध में बनी रहे, सापेक्ष K-सिद्धांत सापेक्ष संस्थानिक चक्रीय समरूपता(बिना) के लिए आइसोमोर्फिक है ('Q के साथ दोनों को टेंसर करना) । उनके परिणाम में {{harvtxt|गैबर|1992}} एक प्रमेय भी सम्मिलित है , यह दावा करते हुए कि इस स्थिति में सापेक्ष K-सिद्धांत स्पेक्ट्रम मॉड्यूल एक पूर्णांक n जो A में उलटा है गायब हो जाता है। {{harvtxt|जार्डिन|1993}} [[परिमित क्षेत्र]]ों के K-सिद्धांत की क्विलेन की गणना को गलत ठहराने के लिए गैबर के परिणाम और [[सुस्लिन कठोरता]] का उपयोग किया। | ||
==यह भी देखें== | ==यह भी देखें== | ||
* | * अविनिमेय ज्यामिति | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
{{reflist}} | {{reflist}} | ||
== संदर्भ == | == संदर्भ == | ||
* {{citation|last=जार्डिन|first=जे. एफ.|title=परिमित क्षेत्रों के K-सिद्धांत पर दोबारा गौर किया गया|journal=कश्मीर सिद्धांत|volume=7|year=1993|issue=6|pages=579–595|mr=1268594|doi=10.1007/BF00961219}} | |||
* {{citation|last= | * {{citation|last=लोडे|first=जीन लुइस|author-link=जीन-लुई लोडे|title=चक्रीय समरूपता|series=ग्रुंडलह्रेन डेर मैथेमेटिसचेन विसेंसचाफ्टन|volume=301|publisher=कोंपल|year=1998|isbn=978-3-540-63074-6}} | ||
* {{citation|last= | * {{citation|last=बड़बड़ानेवाला|first=ओफ़र|author-link=ओफ़र गब्बर|chapter=हेन्सेलियन स्थानीय वलय और हेन्सेलियन जोड़े का ''के'' सिद्धांत|title=बीजगणितीय ''K''-सिद्धांत, क्रमविनिमेय बीजगणित, और बीजगणितीय ज्यामिति (सांता मार्गेरिटा लिगुर, 1989)|volume=126|series=समकालीन. गणित।|pages=59–70|publisher=एएमएस|year=1992}} | ||
* {{citation|last= | * {{cite arXiv |title=के-सिद्धांत और हेन्सेलियन जोड़े की टोपोलॉजिकल चक्रीय समरूपता|last1=क्लॉसन|first1=डस्टिन|first2=अखिल|last2=मैथ्यू|first3=मैथ्यू|last3=मोरो|eprint=1803.10897|mode=सीएस2|class=गणित.के.टी|year=2018}} | ||
* {{cite arXiv |title= | * {{citation|last=सद्भावना|first=थॉमस जी.|title=सापेक्ष बीजगणितीय ''K''-सिद्धांत और चक्रीय समरूपता|journal=गणित के इतिहास |series=दूसरी शृंखला|volume=124|year=1986|issue=2|pages=347–402|mr=855300|doi=10.2307/1971283|jstor=1971283}} | ||
* {{citation|last= | * {{Citation | last1=रोसेनबर्ग | first1=जोनाथन | authorlink=जोनाथन रोसेनबर्ग (गणितज्ञ) | title=बीजगणितीय K-सिद्धांत और उसके अनुप्रयोग | url=https://books.google.com/books?id=TtMkTEZbYoYC | publisher=[[स्प्रिंगर-वेरलाग]] | location=बर्लिन, न्यूयॉर्क | series=[[गणित में स्नातक पाठ]] | isbn=978-0-387-94248-3 | mr=1282290 | zbl=0801.19001 | year=1994 | volume=147}}. [http://www-users.math.umd.edu/~jmr/KThy_errata2.pdf शुद्धिपत्र] | ||
* {{Citation | last1= | |||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
* {{springer|title= | * {{springer|title=चक्रीय सहसंरचना|id=p/c110500}} | ||
* [https://web.archive.org/web/20110722132557/http://mathsci.kaist.ac.kr/~jinhyun/note/cyclic/cyclic.pdf | * [https://web.archive.org/web/20110722132557/http://mathsci.kaist.ac.kr/~jinhyun/note/cyclic/cyclic.pdf होशचाइल्ड और चक्रीय समरूपता पर एक व्यक्तिगत टिप्पणी] | ||
{{DEFAULTSORT:Cyclic Homology}} | |||
[[Category: | [[Category:CS1 errors|Cyclic Homology]] | ||
[[Category:Created On 08/07/2023]] | [[Category:Created On 08/07/2023|Cyclic Homology]] | ||
[[Category:Machine Translated Page|Cyclic Homology]] | |||
[[Category:Pages with script errors|Cyclic Homology]] | |||
[[Category:Templates Vigyan Ready|Cyclic Homology]] | |||
[[Category:सजातीय बीजगणित|Cyclic Homology]] |
Latest revision as of 09:47, 27 July 2023
गैर-अनुवांशिक ज्यामिति और गणित की संबंधित शाखाओं में, चक्रीय समरूपता और चक्रीय समरूपता साहचर्य बीजगणित के लिए निश्चित (सह) समरूपता सिद्धांत हैं जो विविध्स के डी राम सह समरूपता को सामान्यीकृत करते हैं। इन धारणाओं को स्वतंत्र रूप से बोरिस त्स्यगन (समरूपता) [1] और एलेन कोन्स (सह-समरूपता)[2] द्वारा प्रस्तुत किया गया था उन्नीस सौ अस्सी के दशक में, इन अपरिवर्तनीयों के गणित की कई पुरानी शाखाओं के साथ कई दिलचस्प संबंध हैं, जिनमें डी राम सिद्धांत, होशचाइल्ड (सह) समरूपता, समूह सह समरूपता और के-सिद्धांत सम्मिलित हैं। सिद्धांत के विकास में योगदानकर्ताओं में मैक्स करौबी, यूरी एल. डेलेत्स्की, बोरिस फागिन, जीन-ल्यूक ब्रिलिंस्की, मारियस वोड्ज़िकी, जीन लुई लोडे, विक्टर निस्टर, डेनियल क्विलेन, जोआचिम कुंत्ज़, रिस्ज़र्ड नेस्ट, राल्फ़ मेयर और माइकल पुश्निग्ग सम्मिलित हैं।
परिभाषा के बारे में संकेत
विशेषता (बीजगणित) शून्य के क्षेत्र पर रिंग ए की चक्रीय समरूपता की पहली परिभाषा, निरूपित
- Hn(A) या Hnλ(A),
ए के होशचाइल्ड समरूपता से संबंधित निम्नलिखित स्पष्ट श्रृंखला कॉम्प्लेक्स के माध्यम से आगे बढ़ा, जिसे 'श्रृंखला जटिल' कहा जाता है:
किसी भी प्राकृतिक संख्या n ≥ 0 के लिए, संकारक को परिभाषित करें जो की प्राकृतिक चक्रीय क्रिया उत्पन्न करता है ए के एन-वें टेंसर उत्पाद पर:
याद रखें कि ए में गुणांक वाले होशचाइल्ड जटिल समूह , A में गुणांक के साथ सेटिंग द्वारा दिए गए हैं सभी n ≥ 0 के लिए। फिर कॉन्स कॉम्प्लेक्स के घटकों को के रूप में परिभाषित किया गया है , और अंतर इस भागफल के लिए होशचाइल्ड अंतर का प्रतिबंध है। कोई यह जांच सकता है कि होशचाइल्ड अंतर वास्तव में संयोग के इस स्थान को प्रभावित करता है।[3]
कॉन्स ने बाद में एबेलियन श्रेणी में चक्रीय वस्तु की धारणा का उपयोग करके चक्रीय समरूपता के लिए एक अधिक स्पष्ट दृष्टिकोण पाया, जो सरल वस्तु की धारणा के अनुरूप है। इस तरह, चक्रीय समरूपता (और सह-समरूपता) की व्याख्या एक व्युत्पन्न फ़ंक्टर के रूप में की जा सकती है, जिसे स्पष्ट रूप से (B, B)-बाइकॉम्प्लेक्स के माध्यम से गणना की जा सकती है। यदि क्षेत्र k में तर्कसंगत संख्याएं सम्मिलित हैं, तो कॉन्स कॉम्प्लेक्स के संदर्भ में परिभाषा समान समरूपता की गणना करती है।
चक्रीय समरूपता की एक उल्लेखनीय विशेषता होशचाइल्ड और चक्रीय समरूपता को जोड़ने वाले एक लंबे सटीक अनुक्रम का अस्तित्व है। इस लंबे सटीक अनुक्रम को आवधिकता अनुक्रम कहा जाता है।
क्रमविनिमेय वलय का घटना
गुणात्मक शून्य के क्षेत्र k पर एक एफ़िन बीजगणितीय विविधता पर नियमित कार्यों के क्रमविनिमेय बीजगणित ए की चक्रीय सह-समरूपता की गणना ग्रोथेंडिक के क्रिस्टलीय सह-समरूपता के संदर्भ में की जा सकती है।[4] विशेष रूप से, यदि विविधता V=स्पेक A चिकनी है, तो A की चक्रीय सहसंयोजीता को V की डी राम सहसंयोजी के रूप में इस प्रकार व्यक्त किया जाता है:
यह सूत्र एक गैर-अनुवांशिक बीजगणित ए के 'गैर-अनुवांशिक स्पेक्ट्रम' के लिए डी राम सह-समरूपता को परिभाषित करने का एक तरीका सुझाता है, जिसे कॉन्स द्वारा बड़े पैमाने पर विकसित किया गया था।
चक्रीय समरूपता के प्रकार
चक्रीय समरूपता की एक प्रेरणा K-सिद्धांत के एक सन्निकटन की आवश्यकता थी जिसे K-सिद्धांत के विपरीत, एक श्रृंखला परिसर की समरूपता के रूप में परिभाषित किया गया है। चक्रीय सह-समरूपता वास्तव में K-सिद्धांत के साथ एक जोड़ी के साथ संपन्न है, और एक आशा है कि यह जोड़ी गैर-पतित होगी।
ऐसे कई प्रकार परिभाषित किए गए हैं जिनका उद्देश्य सांस्थिति के साथ बीजगणित के साथ बेहतर ढंग से फिट होना है, जैसे फ़्रेचेट बीजगणित, -बीजगणित आदि। इसका कारण यह है कि K-सिद्धांत अतिरिक्त संरचना के बिना बीजगणित की तुलना में बानाच बीजगणित या C*-बीजगणित जैसे संस्थानिक बीजगणित पर बहुत बेहतर व्यवहार करता है। चूँकि, दूसरी ओर, C*-बीजगणित पर चक्रीय समरूपता का ह्रास होता है, इसलिए संशोधित सिद्धांतों को परिभाषित करने की आवश्यकता उत्पन्न हुई। इनमें एलेन कोन्स के कारण संपूर्ण चक्रीय समरूपता, राल्फ़ मेयर के कारण विश्लेषणात्मक चक्रीय समरूपता या माइकल पुश्निग्ग के कारण स्पर्शोन्मुख और स्थानीय चक्रीय समरूपता सम्मिलित हैं।[5]।[6] आखिरी वाला के-सिद्धांत के बहुत करीब है क्योंकि यह केके-सिद्धांत के द्विवेरिएंट चेर्न चरित्र से संपन्न है।
अनुप्रयोग
चक्रीय समरूपता के अनुप्रयोगों में से एक अतियाह-सिंगर सूचकांक प्रमेय के नए प्रमाण और सामान्यीकरण अन्वेषण है। इन सामान्यीकरणों में वर्णक्रमीय त्रिगुणों पर आधारित सूचकांक प्रमेय हैं[7] और पॉइसन मैनिफ़ोल्ड का विरूपण परिमाणीकरण।[8]
सुगठित चिकना विविध पर एक अण्डाकार ऑपरेटर डी, के समरूपता में एक वर्ग को परिभाषित करता है। इस वर्ग का एक अपरिवर्तनीय ऑपरेटर का विश्लेषणात्मक सूचकांक है। इसे HC(C(M)) में तत्व 1 के साथ वर्ग [D] की जोड़ी के रूप में देखा जाता है। चक्रीय सह-समरूपता को न केवल चिकनी विविध् के लिए, बल्कि गैर-अनुवांशिक ज्यामिति में दिखाई देने वाले पत्ते, कक्षीय मोड़ और एकवचन रिक्त स्थान के लिए अण्डाकार अंतर ऑपरेटरों के उच्च अपरिवर्तनीयता प्राप्त करने के एक तरीके के रूप में देखा जा सकता है।
बीजगणितीय K-सिद्धांत की गणना
साइक्लोटोमिक ट्रेस मानचित्र बीजगणितीय के-सिद्धांत (एक रिंग A, मान लीजिए) से लेकर चक्रीय समरूपता तक का एक मानचित्र है:
कुछ स्थितियों में, इस मानचित्र का उपयोग इस मानचित्र के माध्यम से K-सिद्धांत की गणना करने के लिए किया जा सकता है। इस दिशा में एक अग्रणी परिणाम एक प्रमेय है सद्भावना (1986): यह दावा करता है कि नक्शा
एक निलपोटेंट दो-तरफा आदर्श के संबंध में A के सापेक्ष K-सिद्धांत के बीच सापेक्ष चक्रीय समरूपता (A और A/I के K-सिद्धांत या चक्रीय समरूपता के बीच अंतर को मापना) n≥1 के लिए एक समरूपता है।
जबकि सद्भावना का परिणाम मनमाने छल्ले के लिए है, एक त्वरित कमी से पता चलता है कि यह संक्षेप में केवल एक बयान है उन रिंगों के लिए जिनमें Q नहीं है, K-सिद्धांत के साथ घनिष्ठ संबंध बनाए रखने के लिए चक्रीय समरूपता को संस्थानिक चक्रीय समरूपता द्वारा प्रतिस्थापित किया जाना चाहिए। (यदि Q, A में समाहित है, तो चक्रीय समरूपता और A की संस्थानिक चक्रीय समरूपता सहमत हैं।) यह इस तथ्य के अनुरूप है कि (शास्त्रीय) होशचाइल्ड समरूपता, संस्थानिक होशचाइल्ड समरूपता की तुलना में कम अच्छा व्यवहार करती है। उन छल्लों के लिए जिनमें Q सम्मिलित नहीं है। क्लॉसन, मैथ्यू & मोरो (2018) ने सद्भावना के परिणाम का एक दूरगामी सामान्यीकरण साबित हुआ, जिसमें कहा गया कि एक क्रमविनिमेय रिंग A के लिए ताकि हेन्सेलियन अंगूठी आदर्श के संबंध में बनी रहे, सापेक्ष K-सिद्धांत सापेक्ष संस्थानिक चक्रीय समरूपता(बिना) के लिए आइसोमोर्फिक है ('Q के साथ दोनों को टेंसर करना) । उनके परिणाम में गैबर (1992) एक प्रमेय भी सम्मिलित है , यह दावा करते हुए कि इस स्थिति में सापेक्ष K-सिद्धांत स्पेक्ट्रम मॉड्यूल एक पूर्णांक n जो A में उलटा है गायब हो जाता है। जार्डिन (1993) परिमित क्षेत्रों के K-सिद्धांत की क्विलेन की गणना को गलत ठहराने के लिए गैबर के परिणाम और सुस्लिन कठोरता का उपयोग किया।
यह भी देखें
- अविनिमेय ज्यामिति
टिप्पणियाँ
- ↑ Boris L. Tsygan. Homology of matrix Lie algebras over rings and the Hochschild homology. Uspekhi Mat. Nauk, 38(2(230)):217–218, 1983. Translation in Russ. Math. Survey 38(2) (1983), 198–199.
- ↑ Alain Connes. Noncommutative differential geometry. Inst. Hautes Études Sci. Publ. Math., 62:257–360, 1985.
- ↑ Jean-Louis Loday. Cyclic Homology. Vol. 301. Springer Science & Business Media, 1997.
- ↑ Boris L. Fegin and Boris L. Tsygan. Additive K-theory and crystalline cohomology. Funktsional. Anal. i Prilozhen., 19(2):52–62, 96, 1985.
- ↑ Ralf Meyer. Analytic cyclic cohomology. PhD thesis, Universität Münster, 1999
- ↑ Michael Puschnigg. Diffeotopy functors of ind-algebras and local cyclic cohomology. Doc. Math., 8:143–245 (electronic), 2003.
- ↑ Alain Connes and Henri Moscovici. The local index formula in noncommutative geometry. Geom. Funct. Anal., 5(2):174–243, 1995.
- ↑ Ryszard Nest and Boris Tsygan. Algebraic index theorem. Comm. Math. Phys., 172(2):223–262, 1995.
संदर्भ
- जार्डिन, जे. एफ. (1993), "परिमित क्षेत्रों के K-सिद्धांत पर दोबारा गौर किया गया", कश्मीर सिद्धांत, 7 (6): 579–595, doi:10.1007/BF00961219, MR 1268594
- लोडे, जीन लुइस (1998), चक्रीय समरूपता, ग्रुंडलह्रेन डेर मैथेमेटिसचेन विसेंसचाफ्टन, vol. 301, कोंपल, ISBN 978-3-540-63074-6
- बड़बड़ानेवाला, ओफ़र (1992), "हेन्सेलियन स्थानीय वलय और हेन्सेलियन जोड़े का के सिद्धांत", बीजगणितीय K-सिद्धांत, क्रमविनिमेय बीजगणित, और बीजगणितीय ज्यामिति (सांता मार्गेरिटा लिगुर, 1989), समकालीन. गणित।, vol. 126, एएमएस, pp. 59–70
- क्लॉसन, डस्टिन; मैथ्यू, अखिल; मोरो, मैथ्यू (2018). "के-सिद्धांत और हेन्सेलियन जोड़े की टोपोलॉजिकल चक्रीय समरूपता". arXiv:1803.10897 [गणित.के.टी].
{{cite arXiv}}
: Invalid|mode=सीएस2
(help) - सद्भावना, थॉमस जी. (1986), "सापेक्ष बीजगणितीय K-सिद्धांत और चक्रीय समरूपता", गणित के इतिहास, दूसरी शृंखला, 124 (2): 347–402, doi:10.2307/1971283, JSTOR 1971283, MR 0855300
- रोसेनबर्ग, जोनाथन (1994), बीजगणितीय K-सिद्धांत और उसके अनुप्रयोग, गणित में स्नातक पाठ, vol. 147, बर्लिन, न्यूयॉर्क: स्प्रिंगर-वेरलाग, ISBN 978-0-387-94248-3, MR 1282290, Zbl 0801.19001. शुद्धिपत्र