फिटनेस सन्निकटन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 4: Line 4:


===प्रेरणा===
===प्रेरणा===
इंजीनियरिंग समस्याओं सहित कई वास्तविक संसार की [[अनुकूलन समस्या|अनुकूलन समस्याओं]] में, उत्तम समाधान प्राप्त करने के लिए आवश्यक [[फिटनेस कार्य|फिटनेस फलन]] मूल्यांकन की संख्या [[अनुकूलन (गणित)]] व्यय पर आच्छादित होती है। कुशल अनुकूलन एल्गोरिदम प्राप्त करने के लिए, अनुकूलन प्रक्रिया के समय प्राप्त पूर्व जानकारी का उपयोग करना महत्वपूर्ण है। वैचारिक रूप से, ज्ञात पूर्व जानकारी का उपयोग करने का प्राकृतिक दृष्टिकोण मूल्यांकन के लिए उम्मीदवार समाधानों के चयन में सहायता के लिए फिटनेस फलन का प्रारूप बनाना है। कम्प्यूटेशनल रूप से उचित मूल्य अनुकूलन समस्याओं के लिए ऐसे प्रारूप के निर्माण के लिए विभिन्न तकनीकों पर विचार किया गया है, जिन्हें प्रायः सरोगेट्स, मेटाप्रारूप या [[सन्निकटन|एप्प्रोक्सीमेंशन]] प्रारूप भी कहा जाता है।
इंजीनियरिंग समस्याओं सहित कई वास्तविक संसार की [[अनुकूलन समस्या|अनुकूलन समस्याओं]] में, उत्तम समाधान प्राप्त करने के लिए आवश्यक [[फिटनेस कार्य|फिटनेस फलन]] मूल्यांकन की संख्या [[अनुकूलन (गणित)]] व्यय पर आच्छादित होती है। कुशल अनुकूलन एल्गोरिदम प्राप्त करने के लिए, अनुकूलन प्रक्रिया के समय प्राप्त पूर्व जानकारी का उपयोग करना महत्वपूर्ण है। वैचारिक रूप से, ज्ञात पूर्व जानकारी का उपयोग करने का प्राकृतिक दृष्टिकोण मूल्यांकन के लिए प्रत्याशी समाधानों के चयन में सहायता के लिए फिटनेस फलन का प्रारूप बनाना है। कम्प्यूटेशनल रूप से उचित मूल्य अनुकूलन समस्याओं के लिए ऐसे प्रारूप के निर्माण के लिए विभिन्न तकनीकों पर विचार किया गया है, जिन्हें प्रायः सरोगेट्स, मेटाप्रारूप या [[सन्निकटन|एप्प्रोक्सीमेंशन]] प्रारूप भी कहा जाता है।


===दृष्टिकोण===
===दृष्टिकोण===
Line 16: Line 16:
प्रशिक्षण प्रारूपों की सीमित संख्या और इंजीनियरिंग डिज़ाइन अनुकूलन में आने वाली उच्च आयामीता के कारण, विश्व स्तर पर मान्य अनुमानित प्रारूप का निर्माण करना कठिन बना हुआ है। परिणामस्वरूप, ऐसे अनुमानित फिटनेस फलनों का उपयोग करने वाले विकासवादी एल्गोरिदम [[स्थानीय ऑप्टिमा]] में परिवर्तित हो सकते हैं। इसलिए, अनुमानित प्रारूप के साथ मूल फिटनेस फलन का चयन करना लाभदायक हो सकता है।
प्रशिक्षण प्रारूपों की सीमित संख्या और इंजीनियरिंग डिज़ाइन अनुकूलन में आने वाली उच्च आयामीता के कारण, विश्व स्तर पर मान्य अनुमानित प्रारूप का निर्माण करना कठिन बना हुआ है। परिणामस्वरूप, ऐसे अनुमानित फिटनेस फलनों का उपयोग करने वाले विकासवादी एल्गोरिदम [[स्थानीय ऑप्टिमा]] में परिवर्तित हो सकते हैं। इसलिए, अनुमानित प्रारूप के साथ मूल फिटनेस फलन का चयन करना लाभदायक हो सकता है।


{{Wiktionary|fitness}}
{{Wiktionary|फिटनेस}}


==अनुकूली फजी फिटनेस ग्रैन्यूलेशन==
==अनुकूली फजी फिटनेस ग्रैन्यूलेशन==
अनुकूली फजी फिटनेस ग्रैनुलेशन (एएफएफजी) परिमित तत्व विधि या [[बायेसियन नेटवर्क]] संरचना की पुनरावृत्त फिटिंग में पारंपरिक कम्प्यूटेशनल रूप से उचित मूल्य बड़े पैमाने पर समस्या विश्लेषण जैसे (एल-एसपीए) के स्थान पर फिटनेस फलन के अनुमानित प्रारूप के निर्माण के लिए प्रस्तावित समाधान है। .
अनुकूली फजी फिटनेस ग्रैनुलेशन (एएफएफजी) परिमित तत्व विधि या [[बायेसियन नेटवर्क]] संरचना की पुनरावृत्त फिटिंग में पारंपरिक कम्प्यूटेशनल रूप से उचित मूल्य बड़े पैमाने पर समस्या विश्लेषण जैसे (एल-एसपीए) के स्थान पर फिटनेस फलन के अनुमानित प्रारूप के निर्माण के लिए प्रस्तावित समाधान है। .


अनुकूली फ़ज़ी फिटनेस ग्रैन्यूलेशन में, त्रुटिहीन गणना किए गए फिटनेस फलन परिणाम के साथ, [[फजी लॉजिक]] ग्रैन्यूल द्वारा दर्शाए गए समाधानों का अनुकूली पूल बनाए रखा जाता है। यदि कोई नया व्यक्ति उपस्थित ज्ञात फजी ग्रेन्युल के समान पर्याप्त है, तो उस ग्रेन्युल की फिटनेस का उपयोग अनुमान के रूप में किया जाता है। अन्यथा, उस व्यक्ति को नए फजी ग्रेन्युल के रूप में पूल में जोड़ा जाता है। पूल का आकार और साथ ही प्रत्येक ग्रेन्युल का प्रभाव त्रिज्या अनुकूली है और प्रत्येक ग्रेन्युल की उपयोगिता और समग्र जनसंख्या फिटनेस के आधार पर बढ़ेग या घटेगा। कम फलन मूल्यांकन को प्रोत्साहित करने के लिए, प्रत्येक ग्रेन्युल के प्रभाव की सीमा प्रारंभ में बड़ी होती है और विकास के पश्चात के चरणों में धीरे-धीरे कम हो जाता है। यह अधिक त्रुटिहीन फिटनेस मूल्यांकन को प्रोत्साहित करता है जब प्रतिस्पर्धा अधिक समान और अभिसरण समाधानों के मध्य समिष्ट होती है। इसके अतिरिक्त, पूल को अधिक बड़ा होने से अवरोध के लिए, उपयोग नहीं किए जाने वाले सीड्स को धीरे-धीरे विस्थापित कर दिया जाता है।
अनुकूली फ़ज़ी फिटनेस ग्रैन्यूलेशन में, त्रुटिहीन गणना किए गए फिटनेस फलन परिणाम के साथ, [[फजी लॉजिक]] ग्रैन्यूल द्वारा दर्शाए गए समाधानों का अनुकूली पूल बनाए रखा जाता है। यदि कोई नया व्यक्ति उपस्थित ज्ञात फजी ग्रेन्युल के समान पर्याप्त है, तो उस ग्रेन्युल की फिटनेस का उपयोग अनुमान के रूप में किया जाता है। अन्यथा, उस व्यक्ति को नए फजी ग्रेन्युल के रूप में पूल में जोड़ा जाता है। पूल का आकार और साथ ही प्रत्येक ग्रेन्युल का प्रभाव त्रिज्या अनुकूली है और प्रत्येक ग्रेन्युल की उपयोगिता और समग्र जनसंख्या फिटनेस के आधार पर बढ़ेगी या घटेगी। कम फलन मूल्यांकन को प्रोत्साहित करने के लिए, प्रत्येक ग्रेन्युल के प्रभाव की सीमा प्रारंभ में बड़ी होती है और विकास के पश्चात के चरणों में धीरे-धीरे कम हो जाती है। यह अधिक त्रुटिहीन फिटनेस मूल्यांकन को प्रोत्साहित करता है जब प्रतिस्पर्धा अधिक समान और अभिसरण समाधानों के मध्य समिष्ट होती है। इसके अतिरिक्त, पूल को अधिक बड़ा होने से अवरोध के लिए, उपयोग नहीं किए जाने वाले सीड्स को धीरे-धीरे विस्थापित कर दिया जाता है।


इसके अतिरिक्त, एएफएफजी मानव अनुभूति की दो विशेषताओं को प्रतिबिंबित करता है: (ए) ग्रैन्युलैरिटी (बी) समानता विश्लेषण। यह ग्रैनुलेशन-आधारित फिटनेस एप्प्रोक्सीमेंशन योजना कई संरचनात्मक अनुकूलन समस्याओं के अतिरिक्त [[डिजिटल वॉटरमार्किंग]] से वॉटरमार्क को ज्ञात करने के लिए सहित विभिन्न इंजीनियरिंग अनुकूलन समस्याओं को समाधान करने के लिए प्रारंभ की जाती है।
इसके अतिरिक्त, एएफएफजी मानव अनुभूति की दो विशेषताओं को प्रतिबिंबित करता है: (ए) ग्रैन्युलैरिटी (बी) समानता विश्लेषण। यह ग्रैनुलेशन-आधारित फिटनेस एप्प्रोक्सीमेंशन योजना कई संरचनात्मक अनुकूलन समस्याओं के अतिरिक्त [[डिजिटल वॉटरमार्किंग]] से वॉटरमार्क को ज्ञात करने सहित विभिन्न इंजीनियरिंग अनुकूलन समस्याओं को समाधान करने के लिए प्रारंभ की जाती है।


==यह भी देखें==
==यह भी देखें==
Line 32: Line 32:
{{Reflist}}
{{Reflist}}


[[Category: विकासवादी एल्गोरिदम]] [[Category: आनुवंशिक एल्गोरिदम]]
 


[[ca:Funció d'aptitud (algorisme genètic)]]
[[ca:Funció d'aptitud (algorisme genètic)]]
Line 39: Line 39:
[[ja:適応度関数]]
[[ja:適応度関数]]


[[Category: Machine Translated Page]]
[[Category:Created On 10/07/2023]]
[[Category:Created On 10/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:आनुवंशिक एल्गोरिदम]]
[[Category:विकासवादी एल्गोरिदम]]

Latest revision as of 13:50, 28 July 2023

फिटनेस एप्प्रोक्सीमेंशन[1] संख्यात्मक सिमुलेशन या भौतिक प्रयोगों से एकत्र किए गए डेटा के आधार पर मशीन लर्निंग प्रारूप का निर्माण करके विकासवादी अनुकूलन में उद्देश्य या फिटनेस फलनों का अनुमान लगाना है। फिटनेस एप्प्रोक्सीमेंशन के लिए मशीन लर्निंग प्रारूप को मेटा-प्रारूप या सरोगेट के रूप में भी जाना जाता है, और अनुमानित फिटनेस मूल्यांकन के आधार पर विकासवादी अनुकूलन को सरोगेट-सहायता विकासवादी एप्प्रोक्सीमेंशन के रूप में भी जाना जाता है।[2] विकासवादी अनुकूलन में फिटनेस एप्प्रोक्सीमेंशन को डेटा-संचालित विकासवादी अनुकूलन के उप-क्षेत्र के रूप में देखा जा सकता है।[3]

फलन अनुकूलन में अनुमानित प्रारूप

प्रेरणा

इंजीनियरिंग समस्याओं सहित कई वास्तविक संसार की अनुकूलन समस्याओं में, उत्तम समाधान प्राप्त करने के लिए आवश्यक फिटनेस फलन मूल्यांकन की संख्या अनुकूलन (गणित) व्यय पर आच्छादित होती है। कुशल अनुकूलन एल्गोरिदम प्राप्त करने के लिए, अनुकूलन प्रक्रिया के समय प्राप्त पूर्व जानकारी का उपयोग करना महत्वपूर्ण है। वैचारिक रूप से, ज्ञात पूर्व जानकारी का उपयोग करने का प्राकृतिक दृष्टिकोण मूल्यांकन के लिए प्रत्याशी समाधानों के चयन में सहायता के लिए फिटनेस फलन का प्रारूप बनाना है। कम्प्यूटेशनल रूप से उचित मूल्य अनुकूलन समस्याओं के लिए ऐसे प्रारूप के निर्माण के लिए विभिन्न तकनीकों पर विचार किया गया है, जिन्हें प्रायः सरोगेट्स, मेटाप्रारूप या एप्प्रोक्सीमेंशन प्रारूप भी कहा जाता है।

दृष्टिकोण

अल्प जनसंख्या के ज्ञात फिटनेस मानों से सीखने और प्रक्षेप के आधार पर अनुमानित प्रारूप बनाने के सामान्य विधियों में सम्मिलित हैं:

प्रशिक्षण प्रारूपों की सीमित संख्या और इंजीनियरिंग डिज़ाइन अनुकूलन में आने वाली उच्च आयामीता के कारण, विश्व स्तर पर मान्य अनुमानित प्रारूप का निर्माण करना कठिन बना हुआ है। परिणामस्वरूप, ऐसे अनुमानित फिटनेस फलनों का उपयोग करने वाले विकासवादी एल्गोरिदम स्थानीय ऑप्टिमा में परिवर्तित हो सकते हैं। इसलिए, अनुमानित प्रारूप के साथ मूल फिटनेस फलन का चयन करना लाभदायक हो सकता है।

अनुकूली फजी फिटनेस ग्रैन्यूलेशन

अनुकूली फजी फिटनेस ग्रैनुलेशन (एएफएफजी) परिमित तत्व विधि या बायेसियन नेटवर्क संरचना की पुनरावृत्त फिटिंग में पारंपरिक कम्प्यूटेशनल रूप से उचित मूल्य बड़े पैमाने पर समस्या विश्लेषण जैसे (एल-एसपीए) के स्थान पर फिटनेस फलन के अनुमानित प्रारूप के निर्माण के लिए प्रस्तावित समाधान है। .

अनुकूली फ़ज़ी फिटनेस ग्रैन्यूलेशन में, त्रुटिहीन गणना किए गए फिटनेस फलन परिणाम के साथ, फजी लॉजिक ग्रैन्यूल द्वारा दर्शाए गए समाधानों का अनुकूली पूल बनाए रखा जाता है। यदि कोई नया व्यक्ति उपस्थित ज्ञात फजी ग्रेन्युल के समान पर्याप्त है, तो उस ग्रेन्युल की फिटनेस का उपयोग अनुमान के रूप में किया जाता है। अन्यथा, उस व्यक्ति को नए फजी ग्रेन्युल के रूप में पूल में जोड़ा जाता है। पूल का आकार और साथ ही प्रत्येक ग्रेन्युल का प्रभाव त्रिज्या अनुकूली है और प्रत्येक ग्रेन्युल की उपयोगिता और समग्र जनसंख्या फिटनेस के आधार पर बढ़ेगी या घटेगी। कम फलन मूल्यांकन को प्रोत्साहित करने के लिए, प्रत्येक ग्रेन्युल के प्रभाव की सीमा प्रारंभ में बड़ी होती है और विकास के पश्चात के चरणों में धीरे-धीरे कम हो जाती है। यह अधिक त्रुटिहीन फिटनेस मूल्यांकन को प्रोत्साहित करता है जब प्रतिस्पर्धा अधिक समान और अभिसरण समाधानों के मध्य समिष्ट होती है। इसके अतिरिक्त, पूल को अधिक बड़ा होने से अवरोध के लिए, उपयोग नहीं किए जाने वाले सीड्स को धीरे-धीरे विस्थापित कर दिया जाता है।

इसके अतिरिक्त, एएफएफजी मानव अनुभूति की दो विशेषताओं को प्रतिबिंबित करता है: (ए) ग्रैन्युलैरिटी (बी) समानता विश्लेषण। यह ग्रैनुलेशन-आधारित फिटनेस एप्प्रोक्सीमेंशन योजना कई संरचनात्मक अनुकूलन समस्याओं के अतिरिक्त डिजिटल वॉटरमार्किंग से वॉटरमार्क को ज्ञात करने सहित विभिन्न इंजीनियरिंग अनुकूलन समस्याओं को समाधान करने के लिए प्रारंभ की जाती है।

यह भी देखें

संदर्भ

  1. Y. Jin. A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing, 9:3–12, 2005
  2. Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm and Evolutionary Computation, 1(2):61–70, 2011
  3. Y. Jin, H. Wang, T. Chugh, D. Guo and K. Miettinen. Data-driven evolutionary optimization -- An Overview and Case Studies or black-box optimization. 23(3):442-459, 2019
  4. Manzoni, L.; Papetti, D.M.; Cazzaniga, P.; Spolaor, S.; Mauri, G.; Besozzi, D.; Nobile, M.S. Surfing on Fitness Landscapes: A Boost on Optimization by Fourier Surrogate Modeling. Entropy 2020, 22, 285.