दोहरा (श्रेणी सिद्धांत): Difference between revisions
(Created page with "{{Short description|Correspondence between properties of a category and its opposite}} {{For|general notions of duality in mathematics|Duality (mathematics)}} श्रे...") |
No edit summary |
||
(7 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Correspondence between properties of a category and its opposite}} | {{Short description|Correspondence between properties of a category and its opposite}} | ||
{{For| | {{For|गणित में द्वैत की सामान्य धारणाएँ|द्वैत (गणित)}} | ||
[[श्रेणी सिद्धांत]] में, गणित की | [[श्रेणी सिद्धांत]] में, गणित की शाखा, '''द्वंद्व श्रेणी''' सी के गुणों और [[विपरीत श्रेणी]] सी<sup>ओपी</sup> के दोहरे गुणों के मध्य पत्राचार होता है। इस प्रकार श्रेणी सी के संबंध में कथन दिया गया है, अतः प्रत्येक रूपवाद के स्रोत और लक्ष्य को आपस में परिवर्तित करके साथ-साथ दो रूपवादों की रचना के क्रम को आपस में परिवर्तित, विपरीत श्रेणी सी<sup>ओपी</sup> के संबंध में संबंधित दोहरा कथन प्राप्त होता है। सामान्यतः द्वंद्व, इस प्रकार, यह प्रामाणित होता है कि कथनों पर इस ऑपरेशन के अनुसार सत्य अपरिवर्तनीय होता है। चूँकि दूसरे शब्दों में, यदि कोई कथन सी के बारे में सत्य होता है, तब उसका दोहरा कथन सी<sup>ओपी</sup> के बारे में सत्य होता है। अतः साथ ही, यदि कोई कथन सी के बारे में गलत होता है, तब उसका द्वैत सी<sup>ओपी</sup> के बारे में गलत होता है। | ||
सामान्यतः [[ठोस श्रेणी]] सी को देखते हुए, अधिकांशतः यह स्थिति होती है कि विपरीत श्रेणी सी<sup>ओपी</sup> वास्तव में अमूर्त होती है। इस प्रकार सी<sup>ओपी</sup> को गणितीय अभ्यास से उत्पन्न होने वाली श्रेणी होने की आवश्यकता नहीं होती है। इस स्थितियों में, अन्य श्रेणी डी को भी सी के साथ द्वंद्व में कहा जाता है यदि डी और सी<sup>ओपी</sup> श्रेणियों की समतुल्यता होती है। | |||
उस स्थिति में जब सी और उसके विपरीत सी<sup>ओपी</sup> समतुल्य हैं, ऐसी श्रेणी स्व-द्वैत होती है।<ref name="AdamekRosicky1994">{{cite book|author1=Jiří Adámek|author2=J. Rosicky|title=स्थानीय रूप से प्रस्तुत करने योग्य और सुलभ श्रेणियाँ|url=https://books.google.com/books?id=iXh6rOd7of0C&pg=PA62|year=1994|publisher=Cambridge University Press|isbn=978-0-521-42261-1|page=62}}</ref> | |||
==औपचारिक परिभाषा== | ==औपचारिक परिभाषा== | ||
हम श्रेणी सिद्धांत की प्रारंभिक भाषा को वस्तुओं और रूपवादों के साथ दो-क्रमबद्ध [[प्रथम क्रम की भाषा]] के रूप में परिभाषित करते हैं, साथ ही | हम श्रेणी सिद्धांत की प्रारंभिक भाषा को वस्तुओं और रूपवादों के साथ दो-क्रमबद्ध [[प्रथम क्रम की भाषा]] के रूप में परिभाषित करते हैं, अतः साथ ही वस्तु के संबंध रूपवाद का स्रोत या लक्ष्य और दो रूपवादों की रचना के लिए प्रतीक के रूप में परिभाषित करते हैं। | ||
मान लीजिए σ इस भाषा में कोई कथन है। हम दोहरी σ | मान लीजिए कि σ इस भाषा में कोई कथन होता है। इस प्रकार हम दोहरी σ<sup>ओपी</sup> बनाते हैं, जो इस प्रकार होते है: | ||
# σ में स्रोत की प्रत्येक घटना को लक्ष्य के साथ | # σ में स्रोत की प्रत्येक घटना को लक्ष्य के साथ परिवर्तित करते है। | ||
# आकृतियों की रचना के क्रम को | # आकृतियों की रचना के क्रम को परिवर्तित करते है। अर्थात्, प्रत्येक घटना को <math>g \circ f</math> और <math>f \circ g</math> के साथ प्रतिस्थापित करते है। | ||
अनौपचारिक रूप से, | अनौपचारिक रूप से, यह स्थितियाँ बताती हैं कि किसी कथन का द्वैत रूपवाद और कार्य संरचना को उलट कर बनता है। | ||
द्वंद्व यह अवलोकन है कि σ कुछ श्रेणी सी के लिए सत्य है | द्वंद्व यह अवलोकन होता है कि σ कुछ श्रेणी सी के लिए सत्य है और यदि σ<sup>ओपी</sup> ,सी<sup>ओपी</sup> के लिए सत्य होता है।{{sfn|Mac Lane|1978|p=33}}{{sfn|Awodey|2010|p=53-55}} | ||
==उदाहरण== | ==उदाहरण== | ||
* | * रूपवाद <math>f\colon A \to B</math> यदि [[एकरूपता]] है <math>f \circ g = f \circ h</math> तात्पर्य <math>g=h</math>. दोहरा ऑपरेशन करने पर हमें यह कथन मिलता है कि <math>g \circ f = h \circ f</math> जिसका तात्पर्य <math>g=h.</math> होता है। इस प्रकार रूपवाद के लिए <math>f\colon B \to A</math>, एफ के लिए [[एपिमोर्फिज्म]] होने का ठीक यही कारण होता है। अतः संक्षेप में, एकरूपता होने की संपत्ति एपिमोर्फिज्म होने की संपत्ति से दोहरी होती है। | ||
द्वंद्व को | द्वंद्व को क्रियान्वित करने पर, इसका कारण यह होता है कि कुछ श्रेणी सी में रूपवाद मोनोमोर्फिज्म है और यदि विपरीत श्रेणी सी<sup>ओपी</sup> में विपरीत रूपवाद और प्रतीकवाद होता है। | ||
* असमानताओं की दिशा को आंशिक क्रम में उलटने से | * असमानताओं की दिशा को आंशिक क्रम में उलटने से उदाहरण मिलता है। इसलिए यदि X समुच्चय (गणित) है और ≤ आंशिक क्रम संबंध होता है, तब हम नया आंशिक क्रम संबंध परिभाषित कर सकते हैं ≤<sub>नये</sub> द्वारा | ||
:: x ≤<sub>new</sub> y | :: x ≤<sub>new</sub> y और यदि y ≤ x. | ||
ऑर्डर पर यह उदाहरण | ऑर्डर पर यह उदाहरण विशेष स्थिति होती है, जिससे कि आंशिक ऑर्डर निश्चित प्रकार की श्रेणी से मेल खाते हैं जिसमें होम (ए, बी) में अधिकतम तत्व हो सकता है। इस प्रकार तर्क के अनुप्रयोगों में, यह निषेध का बहुत ही सामान्य विवरण जैसा दिखता है (अर्थात्, प्रमाण विपरीत दिशा में चलते हैं)। उदाहरण के लिए, यदि हम [[जाली सिद्धांत]] के विपरीत लेते हैं, तब हम पाते है कि मिलने और जुड़ने की भूमिकाएं आपस में परिवर्तित हो जाती हैं। यह डी मॉर्गन के नियमों या जालकों पर क्रियान्वित [[द्वैत (आदेश सिद्धांत)]] का अमूर्त रूप होता है। | ||
* [[सीमा (श्रेणी सिद्धांत)]] और सीमा (श्रेणी सिद्धांत) दोहरी धारणाएं हैं। | * [[सीमा (श्रेणी सिद्धांत)]] और सीमा (श्रेणी सिद्धांत) दोहरी धारणाएं होती हैं। | ||
* [[बीजगणितीय टोपोलॉजी]] और होमोटोपी सिद्धांत में [[कंपन]] और सह-फ़िब्रेशन दोहरी धारणाओं के उदाहरण हैं। इस संदर्भ में, द्वैत को | * [[बीजगणितीय टोपोलॉजी]] और होमोटोपी सिद्धांत में [[कंपन]] और सह-फ़िब्रेशन दोहरी धारणाओं के उदाहरण हैं। इस संदर्भ में, द्वैत को अधिकांशतः एकमैन-हिल्टन द्वैत कहा जाता है। | ||
==यह भी देखें== | ==यह भी देखें== | ||
Line 44: | Line 42: | ||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} | ||
* {{springer|title= | * {{springer|title=दोहरी श्रेणी|id=p/d034090}} | ||
* {{springer|title= | * {{springer|title=द्वैत सिद्धांत|id=p/d034130}} | ||
* {{springer|title=Duality|id=p/d034120}} | * {{springer|title=Duality|id=p/d034120}} | ||
* {{Cite book|title= | * {{Cite book|title=कार्यरत गणितज्ञ के लिए श्रेणियाँ|last=मैक लेन|first=सॉन्डर्स|date=1978|publisher=स्प्रिंगर न्यूयॉर्क|isbn=1441931236|edition=द्वितीय|location=न्यूयॉर्क, एनवाई|pages=33|oclc=851741862}} | ||
* {{Cite book|title= | * {{Cite book|title=श्रेणी सिद्धांत|last=अवोडे|first=स्टीव|date=2010|publisher=ऑक्सफ़ोर्ड विश्वविद्यालय प्रेस|isbn=978-0199237180|edition=2nd|location=ऑक्सफ़ोर्ड|pages=53–55|oclc=740446073}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:Created On 10/07/2023]] | [[Category:Created On 10/07/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:द्वैत सिद्धांत|श्रेणी सिद्धांत]] | |||
[[Category:श्रेणी सिद्धांत]] |
Latest revision as of 12:35, 28 July 2023
श्रेणी सिद्धांत में, गणित की शाखा, द्वंद्व श्रेणी सी के गुणों और विपरीत श्रेणी सीओपी के दोहरे गुणों के मध्य पत्राचार होता है। इस प्रकार श्रेणी सी के संबंध में कथन दिया गया है, अतः प्रत्येक रूपवाद के स्रोत और लक्ष्य को आपस में परिवर्तित करके साथ-साथ दो रूपवादों की रचना के क्रम को आपस में परिवर्तित, विपरीत श्रेणी सीओपी के संबंध में संबंधित दोहरा कथन प्राप्त होता है। सामान्यतः द्वंद्व, इस प्रकार, यह प्रामाणित होता है कि कथनों पर इस ऑपरेशन के अनुसार सत्य अपरिवर्तनीय होता है। चूँकि दूसरे शब्दों में, यदि कोई कथन सी के बारे में सत्य होता है, तब उसका दोहरा कथन सीओपी के बारे में सत्य होता है। अतः साथ ही, यदि कोई कथन सी के बारे में गलत होता है, तब उसका द्वैत सीओपी के बारे में गलत होता है।
सामान्यतः ठोस श्रेणी सी को देखते हुए, अधिकांशतः यह स्थिति होती है कि विपरीत श्रेणी सीओपी वास्तव में अमूर्त होती है। इस प्रकार सीओपी को गणितीय अभ्यास से उत्पन्न होने वाली श्रेणी होने की आवश्यकता नहीं होती है। इस स्थितियों में, अन्य श्रेणी डी को भी सी के साथ द्वंद्व में कहा जाता है यदि डी और सीओपी श्रेणियों की समतुल्यता होती है।
उस स्थिति में जब सी और उसके विपरीत सीओपी समतुल्य हैं, ऐसी श्रेणी स्व-द्वैत होती है।[1]
औपचारिक परिभाषा
हम श्रेणी सिद्धांत की प्रारंभिक भाषा को वस्तुओं और रूपवादों के साथ दो-क्रमबद्ध प्रथम क्रम की भाषा के रूप में परिभाषित करते हैं, अतः साथ ही वस्तु के संबंध रूपवाद का स्रोत या लक्ष्य और दो रूपवादों की रचना के लिए प्रतीक के रूप में परिभाषित करते हैं।
मान लीजिए कि σ इस भाषा में कोई कथन होता है। इस प्रकार हम दोहरी σओपी बनाते हैं, जो इस प्रकार होते है:
- σ में स्रोत की प्रत्येक घटना को लक्ष्य के साथ परिवर्तित करते है।
- आकृतियों की रचना के क्रम को परिवर्तित करते है। अर्थात्, प्रत्येक घटना को और के साथ प्रतिस्थापित करते है।
अनौपचारिक रूप से, यह स्थितियाँ बताती हैं कि किसी कथन का द्वैत रूपवाद और कार्य संरचना को उलट कर बनता है।
द्वंद्व यह अवलोकन होता है कि σ कुछ श्रेणी सी के लिए सत्य है और यदि σओपी ,सीओपी के लिए सत्य होता है।[2][3]
उदाहरण
- रूपवाद यदि एकरूपता है तात्पर्य . दोहरा ऑपरेशन करने पर हमें यह कथन मिलता है कि जिसका तात्पर्य होता है। इस प्रकार रूपवाद के लिए , एफ के लिए एपिमोर्फिज्म होने का ठीक यही कारण होता है। अतः संक्षेप में, एकरूपता होने की संपत्ति एपिमोर्फिज्म होने की संपत्ति से दोहरी होती है।
द्वंद्व को क्रियान्वित करने पर, इसका कारण यह होता है कि कुछ श्रेणी सी में रूपवाद मोनोमोर्फिज्म है और यदि विपरीत श्रेणी सीओपी में विपरीत रूपवाद और प्रतीकवाद होता है।
- असमानताओं की दिशा को आंशिक क्रम में उलटने से उदाहरण मिलता है। इसलिए यदि X समुच्चय (गणित) है और ≤ आंशिक क्रम संबंध होता है, तब हम नया आंशिक क्रम संबंध परिभाषित कर सकते हैं ≤नये द्वारा
- x ≤new y और यदि y ≤ x.
ऑर्डर पर यह उदाहरण विशेष स्थिति होती है, जिससे कि आंशिक ऑर्डर निश्चित प्रकार की श्रेणी से मेल खाते हैं जिसमें होम (ए, बी) में अधिकतम तत्व हो सकता है। इस प्रकार तर्क के अनुप्रयोगों में, यह निषेध का बहुत ही सामान्य विवरण जैसा दिखता है (अर्थात्, प्रमाण विपरीत दिशा में चलते हैं)। उदाहरण के लिए, यदि हम जाली सिद्धांत के विपरीत लेते हैं, तब हम पाते है कि मिलने और जुड़ने की भूमिकाएं आपस में परिवर्तित हो जाती हैं। यह डी मॉर्गन के नियमों या जालकों पर क्रियान्वित द्वैत (आदेश सिद्धांत) का अमूर्त रूप होता है।
- सीमा (श्रेणी सिद्धांत) और सीमा (श्रेणी सिद्धांत) दोहरी धारणाएं होती हैं।
- बीजगणितीय टोपोलॉजी और होमोटोपी सिद्धांत में कंपन और सह-फ़िब्रेशन दोहरी धारणाओं के उदाहरण हैं। इस संदर्भ में, द्वैत को अधिकांशतः एकमैन-हिल्टन द्वैत कहा जाता है।
यह भी देखें
- सहायक संचालिका
- दोहरी वस्तु
- द्वैत (गणित)
- विपरीत श्रेणी
- पुल्लेशन स्क्वायर
संदर्भ
- ↑ Jiří Adámek; J. Rosicky (1994). स्थानीय रूप से प्रस्तुत करने योग्य और सुलभ श्रेणियाँ. Cambridge University Press. p. 62. ISBN 978-0-521-42261-1.
- ↑ Mac Lane 1978, p. 33.
- ↑ Awodey 2010, p. 53-55.
- "दोहरी श्रेणी", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- "द्वैत सिद्धांत", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- "Duality", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- मैक लेन, सॉन्डर्स (1978). कार्यरत गणितज्ञ के लिए श्रेणियाँ (द्वितीय ed.). न्यूयॉर्क, एनवाई: स्प्रिंगर न्यूयॉर्क. p. 33. ISBN 1441931236. OCLC 851741862.
- अवोडे, स्टीव (2010). श्रेणी सिद्धांत (2nd ed.). ऑक्सफ़ोर्ड: ऑक्सफ़ोर्ड विश्वविद्यालय प्रेस. pp. 53–55. ISBN 978-0199237180. OCLC 740446073.