सरल क्षेत्र: Difference between revisions

From Vigyanwiki
(Created page with "ज्यामिति और साहचर्य में, एक सरल (या कॉम्बिनेटरियल) ''डी''-स्फीयर ए...")
 
No edit summary
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
[[ ज्यामिति ]] और [[साहचर्य]] में, एक सरल (या कॉम्बिनेटरियल) ''डी''-स्फीयर एन-स्फीयर|''डी''-आयामी क्षेत्र के लिए एक [[सरल जटिल]] [[होम्योमॉर्फिक]] है। कुछ सरल गोले [[उत्तल पॉलीटोप]]्स की सीमाओं के रूप में उत्पन्न होते हैं, हालाँकि, उच्च आयामों में अधिकांश सरल गोले इस तरह से प्राप्त नहीं किए जा सकते हैं।
[[ ज्यामिति ]]और [[साहचर्य]] में, एक '''प्रतिसमुच्‍चीय''' (या संयोg) डी- गोला, [[डी-आयामी|''डी''-आयामी]] क्षेत्र के लिए एक [[सरल जटिल|प्रतिसमुच्‍चीयसंकुल]] [[होम्योमॉर्फिक]] है। कुछ प्रतिसमुच्‍चीय गोले [[उत्तल पॉलीटोप|उत्तल बहुतलीय]] की सीमाओं के रूप में उत्पन्न होते हैं, हालाँकि, उच्च आयामों में अधिकांश प्रतिसमुच्‍चीय गोले इस तरह से प्राप्त नहीं किए जा सकते हैं।
 
क्षेत्र में एक महत्वपूर्ण खुली समस्या [[पीटर मैकमुलेन]] द्वारा तैयार किया गया जी-अनुमान था, जो एक सरल क्षेत्र के विभिन्न आयामों के चेहरों की संभावित संख्या के बारे में पूछता है। दिसंबर 2018 में, तर्कसंगत होमोलॉजी क्षेत्रों के अधिक सामान्य संदर्भ में जी-अनुमान को [[करीम आदिप्रासिटो]] द्वारा सिद्ध किया गया था।<ref name=":0">{{Cite arXiv|arxiv=1812.10454|first=Karim|last=Adiprasito|title=सकारात्मकता से परे कॉम्बिनेटोरियल लेफ्शेट्ज़ प्रमेय|date=2019}}</ref><ref name=":1" />
 


इस क्षेत्र में एक महत्वपूर्ण विवृत प्रश्न [[पीटर मैकमुलेन]] द्वारा तैयार किया गया g-अनुमान था, जो एक प्रतिसमुच्‍चीय गोला के विभिन्न आयामों के फलको की संभावित संख्या के बारे में पता लगता है। दिसंबर 2018 में, तर्कसंगत समजातता क्षेत्रों के अधिक सामान्य संदर्भ में g-अनुमान को [[करीम आदिप्रासिटो|करीम एडिप्रासिटो]] द्वारा सिद्ध किया गया था।<ref name=":0">{{Cite arXiv|arxiv=1812.10454|first=Karim|last=Adiprasito|title=सकारात्मकता से परे कॉम्बिनेटोरियल लेफ्शेट्ज़ प्रमेय|date=2019}}</ref><ref name=":1" />
== उदाहरण ==
== उदाहरण ==
* किसी भी n ≥ 3 के लिए, चक्र ग्राफ़|सरल n-चक्र C<sub>''n''</sub> एक सरल वृत्त है, अर्थात आयाम 1 का एक सरल क्षेत्र। यह निर्माण सभी सरल वृत्तों का निर्माण करता है।
* किसी भी n ≥ 3 के लिए, [[प्रतिसमुच्‍चीय n-चक्र]] C<sub>''n''</sub> एक प्रतिसमुच्‍चीय वृत्त है, अर्थात आयाम 1 का एक प्रतिसमुच्‍चीय गोला है। यह निर्माण सभी प्रतिसमुच्‍चीय वृत्तों का निर्माण करता है।
* R में उत्तल बहुफलक की सीमा<sup>3</sup>त्रिकोणीय फलकों के साथ, जैसे [[अष्टफलक]] या [[विंशतिफलक]], एक सरल 2-गोला है।
* R<sup>3</sup> में त्रिकोणीय फलकों वाले उत्तल [[बहुफलक]] की सीमा, जैसे [[अष्टफलक]] या [[विंशतिफलक]], एक प्रतिसमुच्‍चीय 2-गोला है।
* अधिक आम तौर पर, यूक्लिडियन अंतरिक्ष में किसी भी (डी+1)-आयामी [[ सघन स्थान ]] (या घिरा हुआ सेट) सरल उत्तल पॉलीटोप की सीमा एक सरल डी-क्षेत्र है।
* सामान्य रूप से, [[यूक्लिडियन समष्टि]] में किसी भी (d+1)-आयामी[[ सघन स्थान | सघन]] (या [[परिबद्ध]]) प्रतिसमुच्‍चीय उत्तल बहुतलीय की सीमा एक प्रतिसमुच्‍चीय d-गोला है।


== गुण ==
== गुण ==
यह यूलर विशेषता | यूलर के सूत्र से इस प्रकार है कि n शीर्षों वाले किसी भी सरल 2-गोले में 3n - 6 किनारे और 2n - 4 फलक होते हैं। n = 4 का मामला चतुष्फलक द्वारा साकार होता है। बैरीसेंट्रिक उपखंड को बार-बार निष्पादित करके, किसी भी n ≥ 4 के लिए एक सरल क्षेत्र का निर्माण करना आसान है। इसके अलावा, [[अर्नेस्ट स्टीनिट्ज़]] ने 'आर' में उत्तल पॉलीटोप्स के 1-स्केलेटा (या किनारे ग्राफ) की एक स्टीनित्ज़ प्रमेय | विशेषता दी है।<sup>3</sup> इसका अर्थ यह है कि कोई भी सरल 2-गोला एक उत्तल पॉलीटोप की सीमा है।
[[यूलर के सूत्र]] से यह पता चलता है कि n शीर्षों वाले किसी भी प्रतिसमुच्‍चीय 2-गोले में 3n - 6 किनारे और 2n - 4 फलक होते हैं। n = 4 की स्थिति चतुष्फलक द्वारा संपादित होती है। [[बैरीसेंट्रिक उपखंड]] को बार-बार निष्पादित करके, किसी भी n ≥ 4 के लिए एक प्रतिसमुच्‍चीय गोले का निर्माण करना आसान है। इसके अलावा, [[अर्नेस्ट स्टीनिट्ज़]] ने 'R<sup>3</sup>' में उत्तल बहुतलीय के [[1-स्केलेटा]] (या किनारे ग्राफ) का एक लक्षण वर्णन दिया, इसका अर्थ यह है कि कोई भी प्रतिसमुच्‍चीय 2-गोला एक उत्तल बहुतलीय की सीमा है।
 
ब्रैंको ग्रुनबाम ने एक गैर-पॉलीटोपल सरल क्षेत्र का एक उदाहरण बनाया (अर्थात, एक सरल क्षेत्र जो एक पॉलीटोप की सीमा नहीं है)। [[गिल कलाई]] ने साबित किया कि, वास्तव में, अधिकांश सरल क्षेत्र गैर-बहुपद हैं। सबसे छोटा उदाहरण आयाम d = 4 का है और इसमें f है<sub>0</sub> = 8 शीर्ष.
 
[[ऊपरी सीमा प्रमेय]] संख्याओं f के लिए ऊपरी सीमा देता है<sub>''i''</sub> एफ के साथ किसी भी सरल डी-क्षेत्र के आई-फेस का<sub>0</sub> = n शीर्ष. यह अनुमान 1970 में पीटर मैकमुलेन द्वारा सरल उत्तल पॉलीटोप्स के लिए सिद्ध किया गया था<ref>{{cite journal |last=McMullen |first=P. |title=उत्तल पॉलीटोप्स के लिए ऊपरी सीमा वाले अनुमान पर|journal=Journal of Combinatorial Theory, Series B |volume=10 |year=1971 |pages=187–200 |doi=10.1016/0095-8956(71)90042-6 |doi-access=free }}</ref> और 1975 में सामान्य सरल क्षेत्रों के लिए रिचर्ड पी. स्टेनली द्वारा।


1970 में मैकमुलेन द्वारा तैयार किया गया ''जी''-अनुमान, सरल ''डी''-क्षेत्रों के ''एफ''-वेक्टरों के संपूर्ण लक्षण वर्णन के लिए कहता है। दूसरे शब्दों में, एक सरल ''डी''-गोले के लिए प्रत्येक आयाम के चेहरों की संख्या का संभावित क्रम क्या है? बहुपदीय क्षेत्रों के मामले में, उत्तर ''जी''-प्रमेय द्वारा दिया गया है, जिसे 1979 में बिलेरा और ली (अस्तित्व) और स्टेनली (आवश्यकता) द्वारा सिद्ध किया गया था। यह अनुमान लगाया गया है कि सामान्य सरल क्षेत्रों के लिए समान स्थितियाँ आवश्यक हैं। यह अनुमान दिसंबर 2018 में करीम एडिप्रासिटो द्वारा सिद्ध किया गया था।<ref name=":0" /><ref name=":1">{{Cite web|url=https://gilkalai.wordpress.com/2018/12/25/amazing-karim-adiprasito-proved-the-g-conjecture-for-spheres/|title=Amazing: Karim Adiprasito proved the g-conjecture for spheres!|last=Kalai|first=Gil|date=2018-12-25|website=Combinatorics and more|language=en|access-date=2018-12-25}}</ref>
[[ब्रैंको ग्रुनबाम]] ने एक गैर-बहुपद प्रतिसमुच्‍चीय गोले का एक उदाहरण बनाया (अर्थात, एक  प्रतिसमुच्‍चीय गोला जो एक पॉलीटोप की सीमा नहीं है)। [[गिल कलाई]] ने साबित किया कि, वास्तव में, अधिकांश  प्रतिसमुच्‍चीय गोले गैर-बहुपद हैं। सबसे छोटा उदाहरण आयाम d = 4 का है और इसमें f<sub>0</sub> = 8 शीर्ष हैं।


[[ऊपरी सीमा प्रमेय]] f<sub>0</sub> = n शीर्षों के साथ किसी भी प्रतिसमुच्‍चीय ''d''-गोले के i-फलक की फाई  के लिए ऊपरी सीमाएं देता है। इस अनुमान को 1970 में [[पीटर मैकमुलेन]] द्वारा  प्रतिसमुच्‍चीय उत्तल बहुतलीय के लिए<ref>{{cite journal |last=McMullen |first=P. |title=उत्तल पॉलीटोप्स के लिए ऊपरी सीमा वाले अनुमान पर|journal=Journal of Combinatorial Theory, Series B |volume=10 |year=1971 |pages=187–200 |doi=10.1016/0095-8956(71)90042-6 |doi-access=free }}</ref> और 1975 में सामान्य प्रतिसमुच्‍चीय गोलाों के लिए [[रिचर्ड पी. स्टेनली|रिचर्ड स्टेनली]] द्वारा सिद्ध किया गया था।


1970 में मैकमुलेन द्वारा तैयार किया गया '''''g''-अनुमान''', प्रतिसमुच्‍चीय ''d''-गोला के ''f''-सदिशो के संपूर्ण लक्षण वर्णन के लिए कहता है। दूसरे शब्दों में, एक  प्रतिसमुच्‍चीय d-गोले के लिए प्रत्येक आयाम के फलको की संख्या का संभावित क्रम क्या है? बहुपदीय गोलों की स्थिति में, उत्तर '''''g''-प्रमेय''' द्वारा दिया गया है, जिसे 1979 में बिलेरा और ली (अस्तित्व) और स्टेनली (आवश्यकता) द्वारा सिद्ध किया गया था। यह अनुमान लगाया गया है कि सामान्य  प्रतिसमुच्‍चीय गोलाों के लिए समान स्थितियाँ आवश्यक हैं। यह अनुमान दिसंबर 2018 में [[करीम एडिप्रासिटो]] द्वारा सिद्ध किया गया था।<ref name=":0" /><ref name=":1">{{Cite web|url=https://gilkalai.wordpress.com/2018/12/25/amazing-karim-adiprasito-proved-the-g-conjecture-for-spheres/|title=Amazing: Karim Adiprasito proved the g-conjecture for spheres!|last=Kalai|first=Gil|date=2018-12-25|website=Combinatorics and more|language=en|access-date=2018-12-25}}</ref>
== यह भी देखें ==
== यह भी देखें ==
* डेन-सोमरविले समीकरण
* [[डेन-सोमरविले समीकरण]]


== संदर्भ ==
== संदर्भ ==
<references />
<references />
*{{cite book |authorlink=Richard P. Stanley |first=Richard |last=Stanley |title=Combinatorics and commutative algebra |edition=Second |series=Progress in Mathematics |volume=41 |publisher=Birkhäuser |location=Boston |year=1996 |isbn=0-8176-3836-9 }}
*{{cite book |authorlink=Richard P. Stanley |first=Richard |last=Stanley |title=Combinatorics and commutative algebra |edition=Second |series=Progress in Mathematics |volume=41 |publisher=Birkhäuser |location=Boston |year=1996 |isbn=0-8176-3836-9 }}
[[Category: बीजगणितीय कॉम्बिनेटरिक्स]] [[Category: टोपोलॉजी]]


[[Category: Machine Translated Page]]
[[Category:CS1 English-language sources (en)]]
[[Category:Created On 10/07/2023]]
[[Category:Created On 10/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Templates Vigyan Ready]]
[[Category:टोपोलॉजी]]
[[Category:बीजगणितीय कॉम्बिनेटरिक्स]]

Latest revision as of 10:35, 2 August 2023

ज्यामिति और साहचर्य में, एक प्रतिसमुच्‍चीय (या संयोg) डी- गोला, डी-आयामी क्षेत्र के लिए एक प्रतिसमुच्‍चीयसंकुल होम्योमॉर्फिक है। कुछ प्रतिसमुच्‍चीय गोले उत्तल बहुतलीय की सीमाओं के रूप में उत्पन्न होते हैं, हालाँकि, उच्च आयामों में अधिकांश प्रतिसमुच्‍चीय गोले इस तरह से प्राप्त नहीं किए जा सकते हैं।

इस क्षेत्र में एक महत्वपूर्ण विवृत प्रश्न पीटर मैकमुलेन द्वारा तैयार किया गया g-अनुमान था, जो एक प्रतिसमुच्‍चीय गोला के विभिन्न आयामों के फलको की संभावित संख्या के बारे में पता लगता है। दिसंबर 2018 में, तर्कसंगत समजातता क्षेत्रों के अधिक सामान्य संदर्भ में g-अनुमान को करीम एडिप्रासिटो द्वारा सिद्ध किया गया था।[1][2]

उदाहरण

  • किसी भी n ≥ 3 के लिए, प्रतिसमुच्‍चीय n-चक्र Cn एक प्रतिसमुच्‍चीय वृत्त है, अर्थात आयाम 1 का एक प्रतिसमुच्‍चीय गोला है। यह निर्माण सभी प्रतिसमुच्‍चीय वृत्तों का निर्माण करता है।
  • R3 में त्रिकोणीय फलकों वाले उत्तल बहुफलक की सीमा, जैसे अष्टफलक या विंशतिफलक, एक प्रतिसमुच्‍चीय 2-गोला है।
  • सामान्य रूप से, यूक्लिडियन समष्टि में किसी भी (d+1)-आयामी सघन (या परिबद्ध) प्रतिसमुच्‍चीय उत्तल बहुतलीय की सीमा एक प्रतिसमुच्‍चीय d-गोला है।

गुण

यूलर के सूत्र से यह पता चलता है कि n शीर्षों वाले किसी भी प्रतिसमुच्‍चीय 2-गोले में 3n - 6 किनारे और 2n - 4 फलक होते हैं। n = 4 की स्थिति चतुष्फलक द्वारा संपादित होती है। बैरीसेंट्रिक उपखंड को बार-बार निष्पादित करके, किसी भी n ≥ 4 के लिए एक प्रतिसमुच्‍चीय गोले का निर्माण करना आसान है। इसके अलावा, अर्नेस्ट स्टीनिट्ज़ ने 'R3' में उत्तल बहुतलीय के 1-स्केलेटा (या किनारे ग्राफ) का एक लक्षण वर्णन दिया, इसका अर्थ यह है कि कोई भी प्रतिसमुच्‍चीय 2-गोला एक उत्तल बहुतलीय की सीमा है।

ब्रैंको ग्रुनबाम ने एक गैर-बहुपद प्रतिसमुच्‍चीय गोले का एक उदाहरण बनाया (अर्थात, एक प्रतिसमुच्‍चीय गोला जो एक पॉलीटोप की सीमा नहीं है)। गिल कलाई ने साबित किया कि, वास्तव में, अधिकांश प्रतिसमुच्‍चीय गोले गैर-बहुपद हैं। सबसे छोटा उदाहरण आयाम d = 4 का है और इसमें f0 = 8 शीर्ष हैं।

ऊपरी सीमा प्रमेय f0 = n शीर्षों के साथ किसी भी प्रतिसमुच्‍चीय d-गोले के i-फलक की फाई के लिए ऊपरी सीमाएं देता है। इस अनुमान को 1970 में पीटर मैकमुलेन द्वारा प्रतिसमुच्‍चीय उत्तल बहुतलीय के लिए[3] और 1975 में सामान्य प्रतिसमुच्‍चीय गोलाों के लिए रिचर्ड स्टेनली द्वारा सिद्ध किया गया था।

1970 में मैकमुलेन द्वारा तैयार किया गया g-अनुमान, प्रतिसमुच्‍चीय d-गोला के f-सदिशो के संपूर्ण लक्षण वर्णन के लिए कहता है। दूसरे शब्दों में, एक प्रतिसमुच्‍चीय d-गोले के लिए प्रत्येक आयाम के फलको की संख्या का संभावित क्रम क्या है? बहुपदीय गोलों की स्थिति में, उत्तर g-प्रमेय द्वारा दिया गया है, जिसे 1979 में बिलेरा और ली (अस्तित्व) और स्टेनली (आवश्यकता) द्वारा सिद्ध किया गया था। यह अनुमान लगाया गया है कि सामान्य प्रतिसमुच्‍चीय गोलाों के लिए समान स्थितियाँ आवश्यक हैं। यह अनुमान दिसंबर 2018 में करीम एडिप्रासिटो द्वारा सिद्ध किया गया था।[1][2]

यह भी देखें

संदर्भ

  1. 1.0 1.1 Adiprasito, Karim (2019). "सकारात्मकता से परे कॉम्बिनेटोरियल लेफ्शेट्ज़ प्रमेय". arXiv:1812.10454.
  2. 2.0 2.1 Kalai, Gil (2018-12-25). "Amazing: Karim Adiprasito proved the g-conjecture for spheres!". Combinatorics and more (in English). Retrieved 2018-12-25.
  3. McMullen, P. (1971). "उत्तल पॉलीटोप्स के लिए ऊपरी सीमा वाले अनुमान पर". Journal of Combinatorial Theory, Series B. 10: 187–200. doi:10.1016/0095-8956(71)90042-6.