केंद्रीय द्विपद गुणांक: Difference between revisions
No edit summary |
No edit summary |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 35: | Line 35: | ||
==स्पर्शोन्मुख वृद्धि== | ==स्पर्शोन्मुख वृद्धि== | ||
सरल सीमाएँ जो तत्काल <math>4^n=(1+1)^{2n}= \sum_{k=0}^{2n} \binom{2n}{k}</math>अनुसरण करती | सरल सीमाएँ जो तत्काल <math>4^n=(1+1)^{2n}= \sum_{k=0}^{2n} \binom{2n}{k}</math>अनुसरण करती है, | ||
<math display="block">\frac{4^n}{2n+1} \leq {2n \choose n} \leq 4^n\text{ for all }n \geq 0 </math> है। | <math display="block">\frac{4^n}{2n+1} \leq {2n \choose n} \leq 4^n\text{ for all }n \geq 0 </math> है। | ||
Line 49: | Line 49: | ||
केंद्रीय द्विपद गुणांकों का एक छोटा सा सामान्यीकरण उन्हें <math> \frac{\Gamma(2n+1)}{\Gamma(n+1)^2}=\frac{1}{n \Beta(n+1,n)}</math> के रूप में लेना है, उपयुक्त वास्तविक संख्या n के साथ, जहाँ <math>\Gamma(x)</math> [[गामा फ़ंक्शन|गामा फलन]] है और <math>\Beta(x,y)</math> [[बीटा फ़ंक्शन|बीटा फलन]] है। | केंद्रीय द्विपद गुणांकों का एक छोटा सा सामान्यीकरण उन्हें <math> \frac{\Gamma(2n+1)}{\Gamma(n+1)^2}=\frac{1}{n \Beta(n+1,n)}</math> के रूप में लेना है, उपयुक्त वास्तविक संख्या n के साथ, जहाँ <math>\Gamma(x)</math> [[गामा फ़ंक्शन|गामा फलन]] है और <math>\Beta(x,y)</math> [[बीटा फ़ंक्शन|बीटा फलन]] है। | ||
केंद्रीय द्विपद गुणांक को विभाजित करने वाले [[दो की शक्ति]] गोल्ड के अनुक्रम द्वारा दी गई है, जिसका nवां तत्व पास्कल के त्रिकोण की पंक्ति n में विषम पूर्णांकों की संख्या है। | केंद्रीय द्विपद गुणांक को विभाजित करने वाले [[दो की शक्ति|दो की घात]] गोल्ड के अनुक्रम द्वारा दी गई है, जिसका nवां तत्व पास्कल के त्रिकोण की पंक्ति n में विषम पूर्णांकों की संख्या है। | ||
उत्पन्न फलन का वर्ग करने से प्राप्त होता है | उत्पन्न फलन का वर्ग करने से प्राप्त होता है | ||
Line 63: | Line 63: | ||
केंद्रीय द्विपद गुणांक का आधा <math>\textstyle\frac12{2n \choose n} = {2n-1 \choose n-1}</math> (के लिए <math>n>0</math>) {{OEIS|id=A001700}} वोल्स्टेनहोल्म के प्रमेय में देखा जाता है। | केंद्रीय द्विपद गुणांक का आधा <math>\textstyle\frac12{2n \choose n} = {2n-1 \choose n-1}</math> (के लिए <math>n>0</math>) {{OEIS|id=A001700}} वोल्स्टेनहोल्म के प्रमेय में देखा जाता है। | ||
एर्दो के वर्गमुक्त अनुमान के अनुसार, 1996 में | एर्दो के वर्गमुक्त अनुमान के अनुसार, 1996 में प्रमाणित हुआ, n > 4 वाला कोई भी केंद्रीय द्विपद गुणांक [[वर्गमुक्त पूर्णांक|वर्गमुक्त]] नहीं है। | ||
<math>\textstyle \binom{2n}{n}</math> पास्कल त्रिभुज की nवीं पंक्ति के वर्गों का योग<ref name=Sloanes/> | <math>\textstyle \binom{2n}{n}</math> पास्कल त्रिभुज की nवीं पंक्ति के वर्गों का योग<ref name=Sloanes/> | ||
Line 72: | Line 72: | ||
एर्दोज़ ने बर्ट्रेंड की अभिधारणा के प्रमाण में केंद्रीय द्विपद गुणांकों का बड़े स्तर पर पर उपयोग किया है। | एर्दोज़ ने बर्ट्रेंड की अभिधारणा के प्रमाण में केंद्रीय द्विपद गुणांकों का बड़े स्तर पर पर उपयोग किया है। | ||
एक और उल्लेखनीय तथ्य यह है कि 2 को विभाजित करने की | एक और उल्लेखनीय तथ्य यह है कि 2 को विभाजित करने की घात<math>(n+1)\dots(2n)</math> पूर्णतया {{mvar|n}} है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 91: | Line 91: | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
* {{planetmath|urlname=centralbinomialcoefficient|title=Central binomial coefficient}} | * {{planetmath|urlname=centralbinomialcoefficient|title=Central binomial coefficient}} | ||
[[Category:All Wikipedia articles written in American English]] | |||
[[Category:All articles with unsourced statements]] | |||
[[Category: | [[Category:Articles with unsourced statements from April 2023]] | ||
[[Category:Articles with unsourced statements from December 2021]] | |||
[[Category:Created On 09/07/2023]] | [[Category:Created On 09/07/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Use American English from March 2019]] | |||
[[Category:भाज्य और द्विपद विषय]] |
Latest revision as of 06:49, 1 August 2023
गणित में nवां 'केंद्रीय द्विपद गुणांक'
- विशेष द्विपद गुणांक है।
वे पास्कल के त्रिभुज में सम-संख्या वाली पंक्तियों के ठीक बीच में दिखाई देते हैं इसीलिए इन्हे केंद्रीय कहा जाता है। n = 0 से प्रारम्भ होने वाले पहले कुछ केंद्रीय द्विपद गुणांक
संयुक्त व्याख्याएँ और अन्य गुण
केंद्रीय द्विपद गुणांक व्यवस्थाओं की संख्या है जहां दो प्रकार की वस्तुएं समान संख्या में होती हैं। उदाहरण के लिए, जब , द्विपद गुणांक 6 के बराबर है, और A की दो प्रतियों और B की दो प्रतियों की छह व्यवस्थाएँ AABB, ABAB, ABBA, BAAB, BABA, BBAA हैं।
वही केंद्रीय द्विपद गुणांक A और B से बनी लंबाई 2n के शब्दों की संख्या भी है जहां किसी भी बिंदु पर बाएं से दाएं पढ़ने पर A से अधिक B कभी नहीं होते हैं। उदाहरण के लिए, जब , लंबाई 4 के छह शब्द हैं जिनमें प्रत्येक उपसर्ग में कम से कम A की B जितनी प्रतियां AAAA, AAAB, AABA, AABB, ABAA, ABAB हैं।
2 के गुणनखंडों की संख्या n के द्विआधारी प्रतिनिधित्व में 1s की संख्या के बराबर है।[1] परिणामस्वरूप, 1 एकमात्र विषम केंद्रीय द्विपद गुणांक है।
फलन उत्पन्न करना
केंद्रीय द्विपद गुणांक के लिए सामान्य उत्पाद फलन
जहाँ एक सामान्यीकृत द्विपद गुणांक है।
केंद्रीय द्विपद गुणांक में घातीय उत्पाद फलन होता है[2]
केंद्रीय द्विपद गुणांकों के वर्गों का उत्पाद फलन पहले प्रकार के पूर्ण दीर्घवृत्तीय समाकलन
के संदर्भ में लिखा जा सकता है।[citation needed]
स्पर्शोन्मुख वृद्धि
सरल सीमाएँ जो तत्काल अनुसरण करती है,
स्पर्शोन्मुख व्यवहार को और भी अधिक सटीक रूप से
संबंधित क्रम
निकट से संबंधित कैटलन संख्या Cn द्वारा
- दी गई है।
केंद्रीय द्विपद गुणांकों का एक छोटा सा सामान्यीकरण उन्हें के रूप में लेना है, उपयुक्त वास्तविक संख्या n के साथ, जहाँ गामा फलन है और बीटा फलन है।
केंद्रीय द्विपद गुणांक को विभाजित करने वाले दो की घात गोल्ड के अनुक्रम द्वारा दी गई है, जिसका nवां तत्व पास्कल के त्रिकोण की पंक्ति n में विषम पूर्णांकों की संख्या है।
उत्पन्न फलन का वर्ग करने से प्राप्त होता है
के गुणांकों की तुलना करने देता है
उदाहरण के लिए, . (sequence A000302 in the OEIS)
अन्य जानकारी
केंद्रीय द्विपद गुणांक का आधा (के लिए ) (sequence A001700 in the OEIS) वोल्स्टेनहोल्म के प्रमेय में देखा जाता है।
एर्दो के वर्गमुक्त अनुमान के अनुसार, 1996 में प्रमाणित हुआ, n > 4 वाला कोई भी केंद्रीय द्विपद गुणांक वर्गमुक्त नहीं है।
पास्कल त्रिभुज की nवीं पंक्ति के वर्गों का योग[3]
- है।
उदाहरण के लिए, .
एर्दोज़ ने बर्ट्रेंड की अभिधारणा के प्रमाण में केंद्रीय द्विपद गुणांकों का बड़े स्तर पर पर उपयोग किया है।
एक और उल्लेखनीय तथ्य यह है कि 2 को विभाजित करने की घात पूर्णतया n है।
यह भी देखें
संदर्भ
- ↑ Sloane, N. J. A. (ed.). "Sequence A000120". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ↑ Stanley, Richard P. (2012), Enumerative Combinatorics, vol. 1 (2 ed.), Cambridge University Press, Example 1.1.15, ISBN 978-1-107-60262-5
- ↑ 3.0 3.1 Sloane, N. J. A. (ed.). "Sequence A000984 (Central binomial coefficients)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- Koshy, Thomas (2008), Catalan Numbers with Applications, Oxford University Press, ISBN 978-0-19533-454-8.