दो घनों का योग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Mathematical polynomial formula}}
{{Short description|Mathematical polynomial formula}}
[[File:Sum_and_difference_of_2_cubes.svg|thumb|दो घनों के योग और अंतर के सूत्रों का दृश्य प्रमाण]]गणित में, दो [[घन]]ों का योग घन संख्या होती है जिसे अन्य घन संख्या में जोड़ा जाता है।
[[File:Sum_and_difference_of_2_cubes.svg|thumb|दो घनों के योग और अंतर के सूत्रों का दृश्य प्रमाण]]गणित में, '''दो [[घन|घनों]] का योग''' घन संख्या होती है जिसे अन्य घन संख्या में जोड़ा जाता है।  


== गुणनखंडन ==
== गुणनखंडन ==
घनों के प्रत्येक योग को [[पहचान (गणित)]] के अनुसार गुणनखंडित किया जा सकता है
इस प्रकार से घनों के प्रत्येक योग को [[पहचान (गणित)]] के अनुसार गुणनखंडित किया जा सकता है
:<math>a^3+b^3=(a+b)(a^2-ab+b^2)</math>
:<math>a^3+b^3=(a+b)(a^2-ab+b^2)</math>
[[प्रारंभिक बीजगणित]] में.
इस प्रकार से [[प्रारंभिक बीजगणित]] में.


[[द्विपद संख्या]]एँ इस द्विपद संख्या का सामान्य हैं#उच्च विषम घातों का गुणनखंडन।
[[द्विपद संख्या]]एँ इस द्विपद संख्या का सामान्य हैं या उच्च विषम घातों का गुणनखंडन का सामान्य रूप हैं।


स्मरणीय SOAP, जिसका अर्थ है समान, विपरीत, हमेशा सकारात्मक, का उपयोग कभी-कभी घनों का गुणनखंड करते समय जोड़ और घटाव प्रतीकों के सही स्थान को याद रखने के लिए किया जाता है।<ref>{{cite book |last1=Kropko |first1=Jonathan |title=सामाजिक वैज्ञानिकों के लिए गणित|date=2016 |publisher=Sage |location=Los Angeles, LA |isbn=9781506304212 |page=30}}</ref> गुणनखंडन के लिए इस पद्धति को लागू करते समय, समान पहले पद को मूल अभिव्यक्ति के समान चिह्न के साथ दर्शाता है, विपरीत दूसरे पद को मूल अभिव्यक्ति के विपरीत चिह्न के साथ दर्शाता है, और हमेशा सकारात्मक तीसरे पद को दर्शाता है और हमेशा सकारात्मक होता है।
स्मरणीय एसओएपी, जिसका अर्थ है "समान, विपरीत, सदैव धनात्मक ", का उपयोग कभी-कभी घनों का गुणनखंड करते समय जोड़ और घटाव प्रतीकों के सही स्थान को याद रखने के लिए किया जाता है।<ref>{{cite book |last1=Kropko |first1=Jonathan |title=सामाजिक वैज्ञानिकों के लिए गणित|date=2016 |publisher=Sage |location=Los Angeles, LA |isbn=9781506304212 |page=30}}</ref> गुणनखंडन के लिए इस पद्धति को प्रयुक्त करते समय, समान प्रथम पद को मूल अभिव्यक्ति के समान चिह्न के साथ दर्शाता है, इस प्रकार से विपरीत दूसरे पद को मूल अभिव्यक्ति के विपरीत चिह्न के साथ दर्शाता है, और सदैव धनात्मक तृतीय पद को दर्शाता है और सदैव धनात्मक होता है।


{| class="wikitable sortable"
{| class="wikitable sortable"
|+ SOAP method
|+ सोप विधि
! rowspan="2" |Input
! rowspan="2" |इनपुट
! rowspan="2" |Output
! rowspan="2" |आउटपुट
! col= |Same
! col= |अभिन्न
! col= |Opposite and Always Positive
! col= |विपरीत और सदैव धनात्मक
|-
|-
|<math>a^3+b^3</math>
|<math>a^3+b^3</math>
Line 30: Line 30:


=== प्रमाण ===
=== प्रमाण ===
अभिव्यक्ति से शुरू करते हुए, <math>a^2-ab+b^2</math> a और b से गुणा किया जाता है
अभिव्यक्ति से प्रारंभ करते हुए, <math>a^2-ab+b^2</math> a और b से गुणा किया जाता है
:<math>(a+b)(a^2-ab+b^2) = a(a^2-ab+b^2) + b(a^2-ab+b^2)</math>
:<math>(a+b)(a^2-ab+b^2) = a(a^2-ab+b^2) + b(a^2-ab+b^2)</math>
और बी को वितरित करके <math>a^2-ab+b^2</math>, हम पाते हैं
''a'' और b को वितरित करके <math>a^2-ab+b^2                                                                                                                                                                                                                                         </math>, हम पाते हैं
:<math>a^3-a^2b+ab^2+ba^2-ab^2+b^3</math>
:<math>a^3-a^2b+ab^2+ba^2-ab^2+b^3                                                                                                                                                               </math>
और समान शर्तों को रद्द करने से, हमें मिलता है
और समान नियम को निरस्त करने से, हमें प्राप्त होता है
:<math>a^3+b^3</math>
:<math>a^3+b^3</math>


== फ़र्मेट का अंतिम प्रमेय ==
== फ़र्मेट का अंतिम प्रमेय ==
घातांक 3 के मामले में फ़र्मेट का अंतिम प्रमेय बताता है कि दो गैर-शून्य पूर्णांक घनों के योग का परिणाम गैर-शून्य पूर्णांक घन नहीं होता है। प्रतिपादक 3 मामले का पहला रिकॉर्ड किया गया प्रमाण [[लियोनहार्ड यूलर]] द्वारा दिया गया था।<ref>{{Cite journal |last=Dickson |first=L. E. |date=1917 |title=फ़र्मेट का अंतिम प्रमेय और बीजगणितीय संख्याओं के सिद्धांत की उत्पत्ति और प्रकृति|url=https://www.jstor.org/stable/2007234 |journal=Annals of Mathematics |volume=18 |issue=4 |pages=161–187 |doi=10.2307/2007234 |issn=0003-486X}}</ref>
इस प्रकार से घातांक 3 के स्तिथियों में फ़र्मेट का अंतिम प्रमेय बताता है कि दो गैर-शून्य पूर्णांक घनों के योग का परिणाम गैर-शून्य पूर्णांक घन नहीं होता है। किन्तु प्रतिपादक 3 स्तिथि का प्रथम अभिलिखित के रूप में व्यक्त किया गया है अतः यह प्रमाण [[लियोनहार्ड यूलर]] द्वारा दिया गया था।<ref>{{Cite journal |last=Dickson |first=L. E. |date=1917 |title=फ़र्मेट का अंतिम प्रमेय और बीजगणितीय संख्याओं के सिद्धांत की उत्पत्ति और प्रकृति|url=https://www.jstor.org/stable/2007234 |journal=Annals of Mathematics |volume=18 |issue=4 |pages=161–187 |doi=10.2307/2007234 |issn=0003-486X}}</ref>
== [[टैक्सीकैब नंबर]] कैबटैक्सी संख्या ==
== [[टैक्सीकैब नंबर]] कैबटैक्सी संख्या ==
टैक्सीकैब संख्याएँ वे संख्याएँ हैं जिन्हें n अलग-अलग तरीकों से दो सकारात्मक पूर्णांक घनों के योग के रूप में व्यक्त किया जा सकता है। Ta(1) के बाद सबसे छोटी टैक्सीकैब संख्या 1729 है,<ref>{{Cite web |title=A001235 - OEIS |url=https://oeis.org/A001235 |access-date=2023-01-04 |website=oeis.org}}</ref> इसके रूप में बताया गया
चूंकि टैक्सीकैब संख्याएँ वे संख्याएँ हैं जिन्हें n अलग-अलग विधियों से दो धनात्मक पूर्णांक घनों के योग के रूप में व्यक्त किया जा सकता है। ''Ta(1)'' के पश्चात अधिक लघु टैक्सीकैब संख्या 1729 है,<ref>{{Cite web |title=A001235 - OEIS |url=https://oeis.org/A001235 |access-date=2023-01-04 |website=oeis.org}}</ref> इसके रूप में बताया गया है।
:<math>1^3 +12^3</math> या <math>9^3 + 10^3</math>
:<math>1^3 +12^3</math> या <math>9^3 + 10^3</math>
3 अलग-अलग तरीकों से व्यक्त की गई सबसे छोटी टैक्सीकैब संख्या 87,539,319 है, जिसे इस प्रकार व्यक्त किया गया है
इस प्रकार से 3 अलग-अलग विधियों से व्यक्त की गई अधिक छोटी टैक्सीकैब संख्या 87,539,319 है, जिसे इस प्रकार व्यक्त किया गया है
:<math>436^3 + 167^3</math>, <math>423^3 + 228^3</math> या <math>414^3 + 255^3</math>
:<math>436^3 + 167^3</math>, <math>423^3 + 228^3</math> या <math>414^3 + 255^3</math>
कैबटैक्सी संख्याएँ वे संख्याएँ हैं जिन्हें दो धनात्मक या ऋणात्मक पूर्णांकों या 0 घनों के योग के रूप में n तरीकों से व्यक्त किया जा सकता है। कैबटैक्सी(1) के बाद सबसे छोटी कैबटैक्सी संख्या 91 है,<ref name="tdw">{{Cite web |last=Schumer |first=Peter |date=2008 |title=दो घनों का योग दो अलग-अलग तरीकों से|url=https://www.jstor.org/stable/25678781 |access-date=2023-05-01 |website=Math Horizons |pages=8–9}}</ref> इसके रूप में बताया गया:
अतः कैबटैक्सी संख्याएँ वे संख्याएँ हैं जिन्हें दो धनात्मक या ऋणात्मक पूर्णांकों या 0 घनों के योग के रूप में n विधियों से व्यक्त किया जा सकता है। कैबटैक्सी(1) के पश्चात अधिक छोटी कैबटैक्सी संख्या 91 है,<ref name="tdw">{{Cite web |last=Schumer |first=Peter |date=2008 |title=दो घनों का योग दो अलग-अलग तरीकों से|url=https://www.jstor.org/stable/25678781 |access-date=2023-05-01 |website=Math Horizons |pages=8–9}}</ref> इसके रूप में दर्शाया गया:
:<math>3^4 + 4^3</math> या <math>6^3 - 5^3</math>
:<math>3^4 + 4^3</math> या <math>6^3 - 5^3</math>
3 अलग-अलग तरीकों से व्यक्त की गई सबसे छोटी कैबटैक्सी संख्या 4104 है,<ref name="tstc">{{Cite journal |last=Silverman |first=Joseph H. |date=1993 |title=टैक्सीकैब और दो घनों का योग|url=https://www.jstor.org/stable/2324954 |journal=The American Mathematical Monthly |volume=100 |issue=4 |pages=331–340 |doi=10.2307/2324954 |issn=0002-9890}}</ref> इसके रूप में बताया गया
चूंकि 3 अलग-अलग विधियों से व्यक्त की गई अधिक छोटी कैबटैक्सी संख्या 4104 है,<ref name="tstc">{{Cite journal |last=Silverman |first=Joseph H. |date=1993 |title=टैक्सीकैब और दो घनों का योग|url=https://www.jstor.org/stable/2324954 |journal=The American Mathematical Monthly |volume=100 |issue=4 |pages=331–340 |doi=10.2307/2324954 |issn=0002-9890}}</ref> के रूप में व्यक्त की गई है
:<math>16^3 + 2^3</math>, <math>15^3 + 9^3</math> या <math>-12^3+18^3</math>
:<math>16^3 + 2^3</math>, <math>15^3 + 9^3</math> या <math>-12^3+18^3</math>
== यह भी देखें ==
== यह भी देखें ==
Line 61: Line 61:
*{{cite journal |last1=Broughan |first1=Kevin A. |title=Characterizing the Sum of Two Cubes |journal=[[Journal of Integer Sequences]] |date=January 2003 |volume=6 |issue=4 |page=46 |bibcode=2003JIntS...6...46B |url=https://cs.uwaterloo.ca/journals/JIS/VOL6/Broughan/broughan25.pdf}}<br />
*{{cite journal |last1=Broughan |first1=Kevin A. |title=Characterizing the Sum of Two Cubes |journal=[[Journal of Integer Sequences]] |date=January 2003 |volume=6 |issue=4 |page=46 |bibcode=2003JIntS...6...46B |url=https://cs.uwaterloo.ca/journals/JIS/VOL6/Broughan/broughan25.pdf}}<br />
{{Algebra-stub}}
{{Algebra-stub}}
[[Category: बीजगणित]]


 
[[Category:Algebra stubs]]
 
[[Category:All stub articles]]
[[Category: Machine Translated Page]]
[[Category:Created On 18/07/2023]]
[[Category:Created On 18/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:बीजगणित]]

Latest revision as of 12:13, 31 July 2023

दो घनों के योग और अंतर के सूत्रों का दृश्य प्रमाण

गणित में, दो घनों का योग घन संख्या होती है जिसे अन्य घन संख्या में जोड़ा जाता है।

गुणनखंडन

इस प्रकार से घनों के प्रत्येक योग को पहचान (गणित) के अनुसार गुणनखंडित किया जा सकता है

इस प्रकार से प्रारंभिक बीजगणित में.

द्विपद संख्याएँ इस द्विपद संख्या का सामान्य हैं या उच्च विषम घातों का गुणनखंडन का सामान्य रूप हैं।

स्मरणीय एसओएपी, जिसका अर्थ है "समान, विपरीत, सदैव धनात्मक ", का उपयोग कभी-कभी घनों का गुणनखंड करते समय जोड़ और घटाव प्रतीकों के सही स्थान को याद रखने के लिए किया जाता है।[1] गुणनखंडन के लिए इस पद्धति को प्रयुक्त करते समय, समान प्रथम पद को मूल अभिव्यक्ति के समान चिह्न के साथ दर्शाता है, इस प्रकार से विपरीत दूसरे पद को मूल अभिव्यक्ति के विपरीत चिह्न के साथ दर्शाता है, और सदैव धनात्मक तृतीय पद को दर्शाता है और सदैव धनात्मक होता है।

सोप विधि
इनपुट आउटपुट अभिन्न विपरीत और सदैव धनात्मक

प्रमाण

अभिव्यक्ति से प्रारंभ करते हुए, a और b से गुणा किया जाता है

a और b को वितरित करके , हम पाते हैं

और समान नियम को निरस्त करने से, हमें प्राप्त होता है

फ़र्मेट का अंतिम प्रमेय

इस प्रकार से घातांक 3 के स्तिथियों में फ़र्मेट का अंतिम प्रमेय बताता है कि दो गैर-शून्य पूर्णांक घनों के योग का परिणाम गैर-शून्य पूर्णांक घन नहीं होता है। किन्तु प्रतिपादक 3 स्तिथि का प्रथम अभिलिखित के रूप में व्यक्त किया गया है अतः यह प्रमाण लियोनहार्ड यूलर द्वारा दिया गया था।[2]

टैक्सीकैब नंबर कैबटैक्सी संख्या

चूंकि टैक्सीकैब संख्याएँ वे संख्याएँ हैं जिन्हें n अलग-अलग विधियों से दो धनात्मक पूर्णांक घनों के योग के रूप में व्यक्त किया जा सकता है। Ta(1) के पश्चात अधिक लघु टैक्सीकैब संख्या 1729 है,[3] इसके रूप में बताया गया है।

या

इस प्रकार से 3 अलग-अलग विधियों से व्यक्त की गई अधिक छोटी टैक्सीकैब संख्या 87,539,319 है, जिसे इस प्रकार व्यक्त किया गया है

, या

अतः कैबटैक्सी संख्याएँ वे संख्याएँ हैं जिन्हें दो धनात्मक या ऋणात्मक पूर्णांकों या 0 घनों के योग के रूप में n विधियों से व्यक्त किया जा सकता है। कैबटैक्सी(1) के पश्चात अधिक छोटी कैबटैक्सी संख्या 91 है,[4] इसके रूप में दर्शाया गया:

या

चूंकि 3 अलग-अलग विधियों से व्यक्त की गई अधिक छोटी कैबटैक्सी संख्या 4104 है,[5] के रूप में व्यक्त की गई है

, या

यह भी देखें

संदर्भ

  1. Kropko, Jonathan (2016). सामाजिक वैज्ञानिकों के लिए गणित. Los Angeles, LA: Sage. p. 30. ISBN 9781506304212.
  2. Dickson, L. E. (1917). "फ़र्मेट का अंतिम प्रमेय और बीजगणितीय संख्याओं के सिद्धांत की उत्पत्ति और प्रकृति". Annals of Mathematics. 18 (4): 161–187. doi:10.2307/2007234. ISSN 0003-486X.
  3. "A001235 - OEIS". oeis.org. Retrieved 2023-01-04.
  4. Schumer, Peter (2008). "दो घनों का योग दो अलग-अलग तरीकों से". Math Horizons. pp. 8–9. Retrieved 2023-05-01.
  5. Silverman, Joseph H. (1993). "टैक्सीकैब और दो घनों का योग". The American Mathematical Monthly. 100 (4): 331–340. doi:10.2307/2324954. ISSN 0002-9890.

अग्रिम पठन