सुसंगत शीफ कोहोमोलोजी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
गणित में, विशेष रूप से [[बीजगणितीय ज्यामिति]] और जटिल मैनिफोल्ड्स के सिद्धांत में, [[सुसंगत शीफ]] कोहोलॉजी निर्दिष्ट गुणों के साथ [[फ़ंक्शन (गणित)]] उत्पन्न करने की तकनीक है। कई ज्यामितीय प्रश्नों को उल्टे शीफ या अधिक सामान्य सुसंगत शीफ के वर्गों के अस्तित्व के बारे में प्रश्नों के रूप में तैयार किया जा सकता है; ऐसे अनुभागों को सामान्यीकृत कार्यों के रूप में देखा जा सकता है। कोहोमोलॉजी अनुभागों के निर्माण के लिए, या यह समझाने के लिए कि वे मौजूद क्यों नहीं हैं, गणना योग्य उपकरण प्रदान करता है। यह बीजगणितीय किस्म को दूसरे से अलग करने के लिए अपरिवर्तनीयता भी प्रदान करता है।
गणित में, विशेष रूप से [[बीजगणितीय ज्यामिति]] और समष्टि मैनिफोल्ड्स के सिद्धांत में, '''[[सुसंगत शीफ]] कोहोलॉजी''' निर्दिष्ट गुणों के साथ कार्यों के उत्पादन करने की विधि होती है। इस प्रकार अनेक ज्यामितीय प्रश्नों को लाइन बंडलों या अधिक सामान्य सुसंगत शीव्स के अनुभागों के अस्तित्व के बारे में प्रश्नों के रूप में तैयार किया जा सकता है। सामान्यतः ऐसे अनुभागों को सामान्यीकृत कार्यों के रूप में देखा जा सकता है। चूँकि कोहोमोलॉजी अनुभागों के निर्माण के लिए, या यह समझाने के लिए कि वह उपस्तिथ क्यों नहीं हैं, गणना योग्य उपकरण प्रदान करता है। इस प्रकार यह बीजगणितीय प्रकार को दूसरे से भिन्न करने के लिए अपरिवर्तनीयता भी प्रदान करता है।


बीजगणितीय ज्यामिति और [[जटिल विश्लेषणात्मक ज्यामिति]] का अधिकांश भाग सुसंगत ढेरों और उनके सह-समरूपता के संदर्भ में तैयार किया गया है।
बीजगणितीय ज्यामिति और [[जटिल विश्लेषणात्मक ज्यामिति|समष्टि विश्लेषणात्मक ज्यामिति]] का अधिकांश भाग सुसंगत ढेरों और उनके सह-समरूपता के संदर्भ में तैयार किया गया है।


==सुसंगत ढेर==
=='''सुसंगत ढेर'''==
{{main|Coherent sheaf}}
{{main|सुसंगत शीफ}}


सुसंगत ढेरों को [[वेक्टर बंडल]]ों के सामान्यीकरण के रूप में देखा जा सकता है। [[जटिल विश्लेषणात्मक स्थान]] पर सुसंगत विश्लेषणात्मक शीफ की धारणा है, और [[योजना (गणित)]] पर सुसंगत बीजगणितीय शीफ की समान धारणा है। दोनों ही मामलों में, दी गई जगह <math>X</math> [[चक्राकार स्थान]] के साथ आता है <math>\mathcal O_X</math>, [[होलोमोर्फिक फ़ंक्शन]] या नियमित फ़ंक्शंस का शीफ़, और सुसंगत शीव्स को श्रेणी की [[पूर्ण उपश्रेणी]] के रूप में परिभाषित किया गया है <math>\mathcal O_X</math>-मॉड्यूल रिंग के ऊपर (अर्थात्, के ढेर)। <math>\mathcal O_X</math>-मॉड्यूल)
सुसंगत ढेरों को [[वेक्टर बंडल|सदिश बंडलों]] के सामान्यीकरण के रूप में देखा जा सकता है। [[जटिल विश्लेषणात्मक स्थान|समष्टि विश्लेषणात्मक स्थान]] पर '''सुसंगत विश्लेषणात्मक शीफ''' की धारणा है, और [[योजना (गणित)]] पर '''सुसंगत बीजगणितीय शीफ''' की समान धारणा है। इस प्रकार दोनों ही स्थितियों में, दी गई स्थान <math>X</math> [[चक्राकार स्थान]] के साथ आता है <math>\mathcal O_X</math>, [[होलोमोर्फिक फ़ंक्शन|होलोमोर्फिक फलन]] या नियमित फ़ंक्शंस का शीफ़ और सुसंगत शीव्स को श्रेणी की [[पूर्ण उपश्रेणी]] <math>\mathcal O_X</math>-मॉड्यूल (अर्थात्, <math>\mathcal O_X</math> मॉड्यूल के ढेर) के रूप में परिभाषित किया गया है।


[[स्पर्शरेखा बंडल]] जैसे वेक्टर बंडल ज्यामिति में मौलिक भूमिका निभाते हैं। अधिक सामान्यतः, बंद उप-विविधता के लिए <math>Y</math> का <math>X</math> समावेश के साथ <math>i: Y \to X</math>, वेक्टर बंडल <math>E</math> पर <math>Y</math> पर सुसंगत शीफ़ निर्धारित करता है <math>X</math>, प्रत्यक्ष छवि शीफ <math>i_* E</math>, जो बाहर शून्य है <math>Y</math>. इस प्रकार, की उप-किस्मों के बारे में कई प्रश्न <math>X</math> सुसंगत ढेरों के रूप में व्यक्त किया जा सकता है <math>X</math>.
[[स्पर्शरेखा बंडल]] जैसे सदिश बंडल ज्यामिति में मौलिक भूमिका निभाते हैं। इस प्रकार अधिक सामान्यतः, बंद उप-विविधता के लिए <math>Y</math> का <math>X</math> समावेश के साथ <math>i: Y \to X</math>, सदिश बंडल <math>E</math> पर <math>Y</math> पर सुसंगत शीफ़ निर्धारित करता है <math>X</math>, प्रत्यक्ष छवि शीफ <math>i_* E</math>, जो बाहर शून्य है <math>Y</math>. इस प्रकार, की उप-किस्मों के बारे में अनेक प्रश्न <math>X</math> सुसंगत ढेरों के रूप में <math>X</math> व्यक्त किया जा सकता है।


वेक्टर बंडलों के विपरीत, सुसंगत शीव्स (विश्लेषणात्मक या बीजगणितीय मामले में) [[एबेलियन श्रेणी]] बनाते हैं, और इसलिए वे [[कर्नेल (श्रेणी सिद्धांत)]], [[छवि (गणित)]], और [[कोकर्नेल]] लेने जैसे संचालन के तहत बंद हो जाते हैं। योजना पर, अर्ध-सुसंगत शीव्स सुसंगत शीव्स का सामान्यीकरण है, जिसमें अनंत रैंक के स्थानीय रूप से मुक्त शीव्स भी शामिल हैं।
सदिश बंडलों के विपरीत, सुसंगत शीव्स (विश्लेषणात्मक या बीजगणितीय स्थितियों में) [[एबेलियन श्रेणी]] बनाते हैं, और इसलिए वह [[कर्नेल (श्रेणी सिद्धांत)]], [[छवि (गणित)]], और [[कोकर्नेल]] लेने जैसे संचालन के अनुसार बंद हो जाते हैं। इस प्रकार योजना पर, '''अर्ध-सुसंगत शीव्स''' का सामान्यीकरण है, जिसमें अनंत रैंक के स्थानीय रूप से मुक्त शीव्स भी सम्मिलित हैं।


==शीफ कोहोमोलॉजी==
=='''शीफ कोहोमोलॉजी'''==
एक पूले के लिए <math>\mathcal F</math> [[टोपोलॉजिकल स्पेस]] पर एबेलियन समूहों का <math>X</math>, [[शीफ़ कोहोमोलोजी]] समूह <math>H^i(X, \mathcal F)</math> पूर्णांकों के लिए <math>i</math> वैश्विक वर्गों के फ़ैनक्टर के सही व्युत्पन्न फ़ैनक्टर के रूप में परिभाषित किया गया है, <math>\mathcal F \mapsto \mathcal F(X)</math>. नतीजतन, <math>H^i(X, \mathcal F)</math> के लिए शून्य है <math>i < 0</math>, और <math>H^0(X, \mathcal F)</math> से पहचाना जा सकता है <math>\mathcal F(X)</math>. ढेरों के किसी भी संक्षिप्त सटीक अनुक्रम के लिए <math>0\to \mathcal A \to \mathcal B \to \mathcal C\to 0</math>, कोहोमोलोजी समूहों का [[लंबा सटीक क्रम]] है:<ref>{{harv|Hartshorne|1977|loc=(III.1.1A) and section III.2.}}</ref>
पूले के लिए <math>\mathcal F</math> [[टोपोलॉजिकल स्पेस]] पर एबेलियन समूहों का <math>X</math>, [[शीफ़ कोहोमोलोजी]] समूह <math>H^i(X, \mathcal F)</math> पूर्णांकों के लिए <math>i</math> वैश्विक अनुभागों के फ़ैनक्टर के सही व्युत्पन्न फ़ैनक्टर के रूप में परिभाषित किया गया है, <math>\mathcal F \mapsto \mathcal F(X)</math>. परिणाम स्वरुप , <math>H^i(X, \mathcal F)</math> के लिए शून्य है <math>i < 0</math>, और <math>H^0(X, \mathcal F)</math> से पहचाना जा सकता है <math>\mathcal F(X)</math>. ढेरों के किसी भी संक्षिप्त त्रुटिहीन अनुक्रम के लिए <math>0\to \mathcal A \to \mathcal B \to \mathcal C\to 0</math>, कोहोमोलोजी समूहों का [[लंबा सटीक क्रम|लंबा त्रुटिहीन क्रम]] है:<ref>{{harv|Hartshorne|1977|loc=(III.1.1A) and section III.2.}}</ref>
:<math> 0\to H^0(X,\mathcal A) \to H^0(X,\mathcal B) \to H^0(X,\mathcal C) \to H^1(X,\mathcal A) \to \cdots.</math>
:<math> 0\to H^0(X,\mathcal A) \to H^0(X,\mathcal B) \to H^0(X,\mathcal C) \to H^1(X,\mathcal A) \to \cdots.</math>
अगर <math>\mathcal F</math> का पूल है <math>\mathcal O_X</math>-एक योजना पर मॉड्यूल <math>X</math>, फिर कोहोमोलॉजी समूह <math>H^i(X, \mathcal F)</math> (अंतर्निहित टोपोलॉजिकल स्पेस का उपयोग करके परिभाषित किया गया है <math>X</math>) रिंग के ऊपर मॉड्यूल हैं <math>\mathcal O(X)</math> नियमित कार्यों का. उदाहरण के लिए, यदि <math>X</math> क्षेत्र पर योजना है <math>k</math>, फिर कोहोमोलॉजी समूह <math>H^i(X, \mathcal F)</math> हैं <math>k</math>-वेक्टर रिक्त स्थान. सिद्धांत तब शक्तिशाली हो जाता है जब <math>\mathcal F</math> परिणामों के निम्नलिखित अनुक्रम के कारण, सुसंगत या अर्ध-सुसंगत शीफ है।
यदि <math>\mathcal F</math> का पूल है <math>\mathcal O_X</math>-योजना पर मॉड्यूल <math>X</math>, फिर कोहोमोलॉजी समूह <math>H^i(X, \mathcal F)</math> (अंतर्निहित टोपोलॉजिकल स्पेस का उपयोग करके परिभाषित किया गया है <math>X</math>) रिंग के ऊपर मॉड्यूल हैं <math>\mathcal O(X)</math> नियमित कार्यों का. उदाहरण के लिए, यदि <math>X</math> क्षेत्र पर योजना है <math>k</math>, फिर कोहोमोलॉजी समूह <math>H^i(X, \mathcal F)</math> हैं <math>k</math>-सदिश रिक्त स्थान. सिद्धांत तब शक्तिशाली हो जाता है जब <math>\mathcal F</math> परिणामों के निम्नलिखित अनुक्रम के कारण, सुसंगत या अर्ध-सुसंगत शीफ है।


==एफ़िन केस में लुप्त प्रमेय==
=='''एफ़िन स्थितियों में लुप्त प्रमेय'''==
1953 में कार्टन के प्रमेय और बी द्वारा जटिल विश्लेषण में क्रांति ला दी गई। ये परिणाम कहते हैं कि यदि <math>\mathcal F</math> [[स्टीन स्पेस]] पर सुसंगत विश्लेषणात्मक शीफ है <math>X</math>, तब <math>\mathcal F</math> उनके वैश्विक अनुभागों द्वारा उत्पन्न पर्याप्त लाइन बंडल#शीव्स है, और <math>H^i(X, \mathcal F) = 0</math> सभी के लिए <math>i > 0</math>. (एक जटिल स्थान <math>X</math> स्टीन है यदि और केवल यदि यह बंद विश्लेषणात्मक उप-स्थान के लिए समरूपी है <math>\Complex^n</math> कुछ के लिए <math>n</math>.) ये परिणाम दिए गए विलक्षणताओं या अन्य गुणों के साथ जटिल विश्लेषणात्मक कार्यों के निर्माण के बारे में पुराने काम के बड़े हिस्से को सामान्यीकृत करते हैं।
सत्र 1953 में कार्टन के प्रमेय A और B द्वारा समष्टि विश्लेषण में क्रांति ला दी गई। यह परिणाम कहते हैं कि यदि <math>\mathcal F</math> [[स्टीन स्पेस]] पर सुसंगत विश्लेषणात्मक शीफ है <math>X</math>, तब <math>\mathcal F</math> उनके वैश्विक अनुभागों द्वारा उत्पन्न पर्याप्त लाइन बंडल#शीव्स है, और <math>H^i(X, \mathcal F) = 0</math> सभी के लिए <math>i > 0</math>. (समष्टि स्थान <math>X</math> स्टीन है यदि और केवल यदि यह बंद विश्लेषणात्मक उप-स्थान के लिए समरूपी है <math>\Complex^n</math> कुछ के लिए <math>n</math>.) यह परिणाम दिए गए विलक्षणताओं या अन्य गुणों के साथ समष्टि विश्लेषणात्मक कार्यों के निर्माण के बारे में पुराने काम के बड़े हिस्से को सामान्यीकृत करते हैं।


1955 में, [[ जीन पियरे सेरे |जीन पियरे सेरे]] ने बीजगणितीय ज्यामिति में सुसंगत शीव्स की शुरुआत की (पहले बीजगणितीय रूप से बंद क्षेत्र पर, लेकिन उस प्रतिबंध को [[अलेक्जेंडर ग्रोथेंडिक]] द्वारा हटा दिया गया था)। कार्टन के प्रमेयों के अनुरूप व्यापकता रखते हैं: यदि <math>\mathcal F</math> [[एफ़िन योजना]] पर अर्ध-सुसंगत शीफ़ है <math>X</math>, तब <math>\mathcal F</math> इसके वैश्विक खंडों द्वारा फैलाया गया है, और <math>H^i(X, \mathcal F) = 0</math> के लिए <math>i>0</math>.<ref name=St01X8>{{Citation | title=Stacks Project, Tag 01X8 | url=http://stacks.math.columbia.edu/tag/01X8}}.</ref> यह इस तथ्य से संबंधित है कि एफ़िन योजना पर अर्ध-सुसंगत शीव्स की श्रेणी <math>X</math> की श्रेणी के लिए श्रेणियों की तुल्यता है <math>\mathcal O(X)</math>-मॉड्यूल, समतुल्यता के साथ शीफ लेना <math>\mathcal F</math> तक <math>\mathcal O(X)</math>-मापांक <math>H^0(X, \mathcal F)</math>. वास्तव में, सभी [[अर्ध-कॉम्पैक्ट]] योजनाओं में अर्ध-सुसंगत शीव्स के लिए उच्च कोहोमोलॉजी के लुप्त होने की विशेषता है।<ref name=St01XE>{{Citation | title=Stacks Project, Tag 01XE | url=http://stacks.math.columbia.edu/tag/01XE}}.</ref>
1955 में, [[ जीन पियरे सेरे |जीन पियरे सेरे]] ने बीजगणितीय ज्यामिति में सुसंगत शीव्स की शुरुआत की (पहले बीजगणितीय रूप से बंद क्षेत्र पर, किन्तु उस प्रतिबंध को [[अलेक्जेंडर ग्रोथेंडिक]] द्वारा हटा दिया गया था)। कार्टन के प्रमेयों के अनुरूप व्यापकता रखते हैं: यदि <math>\mathcal F</math> [[एफ़िन योजना]] पर अर्ध-सुसंगत शीफ़ है <math>X</math>, तब <math>\mathcal F</math> इसके वैश्विक खंडों द्वारा फैलाया गया है, और <math>H^i(X, \mathcal F) = 0</math> के लिए <math>i>0</math>.<ref name=St01X8>{{Citation | title=Stacks Project, Tag 01X8 | url=http://stacks.math.columbia.edu/tag/01X8}}.</ref> यह इस तथ्य से संबंधित है कि एफ़िन योजना पर अर्ध-सुसंगत शीव्स की श्रेणी <math>X</math> की श्रेणी के लिए श्रेणियों की तुल्यता है <math>\mathcal O(X)</math>-मॉड्यूल, समतुल्यता के साथ शीफ लेना <math>\mathcal F</math> तक <math>\mathcal O(X)</math>-मापांक <math>H^0(X, \mathcal F)</math>. वास्तव में, सभी [[अर्ध-कॉम्पैक्ट]] योजनाओं में अर्ध-सुसंगत शीव्स के लिए उच्च कोहोमोलॉजी के लुप्त होने की विशेषता है।<ref name=St01XE>{{Citation | title=Stacks Project, Tag 01XE | url=http://stacks.math.columbia.edu/tag/01XE}}.</ref>
==सेच कोहोमोलॉजी और प्रक्षेप्य स्थान की कोहोमोलॉजी==
=='''सेच कोहोमोलॉजी और प्रक्षेप्य स्थान की कोहोमोलॉजी'''==
एफ़िन योजनाओं के लिए कोहोलॉजी के लुप्त होने के परिणामस्वरूप: [[अलग योजना]] के लिए <math>X</math>, एफ़िन खुला आवरण <math>\{U_i\}</math> का <math>X</math>, और अर्ध-सुसंगत शीफ़ <math>\mathcal F</math> पर <math>X</math>, कोहोमोलॉजी समूह <math>H^*(X,\mathcal F)</math> खुले आवरण के संबंध में सेच कोहोलॉजी समूहों के समरूपी हैं <math>\{U_i\}</math>.<ref name=St01X8/>दूसरे शब्दों में, के अनुभागों को जानना <math>\mathcal F</math> एफ़िन ओपन उपयोजनाओं के सभी परिमित प्रतिच्छेदनों पर <math>U_i</math> की सहसंरचना निर्धारित करता है <math>X</math> में गुणांक के साथ <math>\mathcal F</math>.
एफ़िन योजनाओं के लिए कोहोलॉजी के लुप्त होने के परिणामस्वरूप: [[अलग योजना|भिन्न योजना]] के लिए <math>X</math>, एफ़िन खुला आवरण <math>\{U_i\}</math> का <math>X</math>, और अर्ध-सुसंगत शीफ़ <math>\mathcal F</math> पर <math>X</math>, कोहोमोलॉजी समूह <math>H^*(X,\mathcal F)</math> खुले आवरण के संबंध में सेच कोहोलॉजी समूहों के समरूपी हैं <math>\{U_i\}</math>.<ref name=St01X8/>दूसरे शब्दों में, के अनुभागों को जानना <math>\mathcal F</math> एफ़िन ओपन उपयोजनाओं के सभी परिमित प्रतिच्छेदनों पर <math>U_i</math> की सहसंरचना निर्धारित करता है <math>X</math> में गुणांक के साथ <math>\mathcal F</math>.


सेच कोहोमोलॉजी का उपयोग करके, कोई किसी भी लाइन बंडल में गुणांक के साथ [[प्रक्षेप्य स्थान]] की कोहोमोलॉजी की गणना कर सकता है। अर्थात्, क्षेत्र के लिए <math>k</math>, धनात्मक पूर्णांक <math>n</math>, और कोई भी पूर्णांक <math>j</math>, प्रक्षेप्य स्थान की सहसंरचना <math>\mathbb{P}^n</math> ऊपर <math>k</math> सुसंगत शीफ में गुणांकों के साथ#वेक्टर बंडलों के उदाहरण|लाइन बंडल <math>\mathcal O(j)</math>द्वारा दिया गया है:<ref>{{harv|Hartshorne|1977|loc=Theorem III.5.1.}}</ref>
सेच कोहोमोलॉजी का उपयोग करके, कोई किसी भी लाइन बंडल में गुणांक के साथ [[प्रक्षेप्य स्थान]] की कोहोमोलॉजी की गणना कर सकता है। अर्थात्, क्षेत्र के लिए <math>k</math>, धनात्मक पूर्णांक <math>n</math>, और कोई भी पूर्णांक <math>j</math>, प्रक्षेप्य स्थान की सहसंरचना <math>\mathbb{P}^n</math> ऊपर <math>k</math> सुसंगत शीफ में गुणांकों के साथ#सदिश बंडलों के उदाहरण|लाइन बंडल <math>\mathcal O(j)</math>द्वारा दिया गया है:<ref>{{harv|Hartshorne|1977|loc=Theorem III.5.1.}}</ref>
:<math> H^i(\mathbb{P}^n,\mathcal O(j)) \cong \begin{cases}  
:<math> H^i(\mathbb{P}^n,\mathcal O(j)) \cong \begin{cases}  
\bigoplus_{a_0,\ldots,a_n\geq 0,\; a_0+\cdots+a_n=j}\; k\cdot x_0^{a_0}\cdots x_n^{a_n} & i=0\\[6pt]
\bigoplus_{a_0,\ldots,a_n\geq 0,\; a_0+\cdots+a_n=j}\; k\cdot x_0^{a_0}\cdots x_n^{a_n} & i=0\\[6pt]
Line 32: Line 32:
विशेष रूप से, इस गणना से पता चलता है कि प्रक्षेप्य स्थान की सह-समरूपता खत्म हो गई है <math>k</math> किसी भी लाइन बंडल में गुणांक के साथ परिमित आयाम होता है <math>k</math>-सदिश स्थल।
विशेष रूप से, इस गणना से पता चलता है कि प्रक्षेप्य स्थान की सह-समरूपता खत्म हो गई है <math>k</math> किसी भी लाइन बंडल में गुणांक के साथ परिमित आयाम होता है <math>k</math>-सदिश स्थल।


आयाम से ऊपर के इन कोहोमोलोजी समूहों का लुप्त होना <math>n</math> ग्रोथेंडिक के लुप्त हो रहे प्रमेय का बहुत ही विशेष मामला है: एबेलियन समूहों के किसी भी समूह के लिए <math>\mathcal F</math> [[नोथेरियन टोपोलॉजिकल स्पेस]] पर <math>X</math> आयाम का <math>n<\infty</math>, <math>H^i(X,\mathcal F) = 0</math> सभी के लिए <math>i>n</math>.<ref>{{harv|Hartshorne|1977|loc=Theorem III.2.7.}}</ref> यह विशेष रूप से उपयोगी है <math>X</math> [[नोथेरियन योजना]] (उदाहरण के लिए, क्षेत्र में विविधता) और <math>\mathcal F</math> अर्ध-सुसंगत शीफ़।
आयाम से ऊपर के इन कोहोमोलोजी समूहों का लुप्त होना <math>n</math> '''ग्रोथेंडिक के लुप्त हो रहे प्रमेय''' का बहुत ही विशेष मामला है: एबेलियन समूहों के किसी भी समूह के लिए <math>\mathcal F</math> [[नोथेरियन टोपोलॉजिकल स्पेस]] पर <math>X</math> आयाम का <math>n<\infty</math>, <math>H^i(X,\mathcal F) = 0</math> सभी के लिए <math>i>n</math>.<ref>{{harv|Hartshorne|1977|loc=Theorem III.2.7.}}</ref> यह विशेष रूप से उपयोगी है <math>X</math> [[नोथेरियन योजना]] (उदाहरण के लिए, क्षेत्र में विविधता) और <math>\mathcal F</math> अर्ध-सुसंगत शीफ़।


==समतल-वक्रों की शीफ़ सहसंगति==
=='''समतल-वक्रों की शीफ़ सहसंगति'''==
एक सहज प्रक्षेप्य समतल वक्र दिया गया है <math>C</math> डिग्री का <math>d</math>, शीफ़ कोहोमोलॉजी <math>H^*(C,\mathcal{O}_C)</math> कोहोमोलॉजी में लंबे सटीक अनुक्रम का उपयोग करके आसानी से गणना की जा सकती है। एम्बेडिंग के लिए सबसे पहले ध्यान दें <math>i:C \to \mathbb{P}^2</math> सह-समरूपता समूहों की समरूपता है
सहज प्रक्षेप्य समतल वक्र दिया गया है <math>C</math> डिग्री का <math>d</math>, शीफ़ कोहोमोलॉजी <math>H^*(C,\mathcal{O}_C)</math> कोहोमोलॉजी में लंबे त्रुटिहीन अनुक्रम का उपयोग करके आसानी से गणना की जा सकती है। एम्बेडिंग के लिए सबसे पहले ध्यान दें <math>i:C \to \mathbb{P}^2</math> सह-समरूपता समूहों की समरूपता है


:<math>H^*(\mathbb{P}^2, i_*\mathcal{O}_C) \cong H^*(C, \mathcal{O}_C)</math>
:<math>H^*(\mathbb{P}^2, i_*\mathcal{O}_C) \cong H^*(C, \mathcal{O}_C)</math>
तब से <math>i_*</math> सटीक है. इसका मतलब है कि सुसंगत ढेरों का संक्षिप्त सटीक क्रम
तब से <math>i_*</math> त्रुटिहीन है. इसका कारण है कि सुसंगत ढेरों का संक्षिप्त त्रुटिहीन क्रम


:<math>0 \to \mathcal{O}(-d) \to \mathcal{O} \to i_*\mathcal{O}_C \to 0</math>
:<math>0 \to \mathcal{O}(-d) \to \mathcal{O} \to i_*\mathcal{O}_C \to 0</math>
पर <math>\mathbb{P}^2</math>, जिसे आदर्श अनुक्रम कहा जाता है<ref>{{cite book|last=Hochenegger|first=Andreas|title=हाइपरसर्फेस की बीरेशनल ज्यामिति|date=2019|chapter=Introduction to derived categories of coherent sheaves|volume=26|pages=267–295|doi=10.1007/978-3-030-18638-8_7|arxiv=1901.07305|bibcode=2019arXiv190107305H|isbn=978-3-030-18637-1|series=Lecture Notes of the Unione Matematica Italiana|s2cid=119721183|editor=Andreas Hochenegger |editor2=Manfred Lehn |editor3=Paolo Stellari}}</ref>, का उपयोग कोहोमोलॉजी में लंबे सटीक अनुक्रम के माध्यम से कोहोमोलॉजी की गणना करने के लिए किया जा सकता है। अनुक्रम इस प्रकार पढ़ता है
पर <math>\mathbb{P}^2</math>, जिसे '''आदर्श अनुक्रम''' कहा जाता है<ref>{{cite book|last=Hochenegger|first=Andreas|title=हाइपरसर्फेस की बीरेशनल ज्यामिति|date=2019|chapter=Introduction to derived categories of coherent sheaves|volume=26|pages=267–295|doi=10.1007/978-3-030-18638-8_7|arxiv=1901.07305|bibcode=2019arXiv190107305H|isbn=978-3-030-18637-1|series=Lecture Notes of the Unione Matematica Italiana|s2cid=119721183|editor=Andreas Hochenegger |editor2=Manfred Lehn |editor3=Paolo Stellari}}</ref>, का उपयोग कोहोमोलॉजी में लंबे त्रुटिहीन अनुक्रम के माध्यम से कोहोमोलॉजी की गणना करने के लिए किया जा सकता है। अनुक्रम इस प्रकार पढ़ता है


:<math>\begin{align}
:<math>\begin{align}
Line 54: Line 54:
H^1(C,\mathcal{O}_C) &\cong H^2(\mathbb{P}^2,\mathcal{O}(-d))
H^1(C,\mathcal{O}_C) &\cong H^2(\mathbb{P}^2,\mathcal{O}(-d))
\end{align}</math>
\end{align}</math>
जो यह दर्शाता है <math>H^1</math> वक्र का रैंक का सीमित आयामी वेक्टर स्थान है
जो यह दर्शाता है <math>H^1</math> वक्र का रैंक का सीमित आयामी सदिश स्थान है


:<math>{d-1 \choose d-3 } = \frac{(d-1)(d-2)}{2}</math>.
:<math>{d-1 \choose d-3 } = \frac{(d-1)(d-2)}{2}</math>.


==कुनेथ प्रमेय==
=='''कुनेथ प्रमेय'''==
किस्मों के उत्पादों के लिए सुसंगत शीफ कोहोलॉजी में [[कुनेथ सूत्र]] का एनालॉग है।<ref>{{Cite web|url=https://stacks.math.columbia.edu/tag/0BEC|title=Section 33.29 (0BEC): Künneth formula—The Stacks project|website=stacks.math.columbia.edu|access-date=2020-02-23}}</ref> अर्ध-कॉम्पैक्ट योजनाएँ दी गईं <math>X,Y</math> क्षेत्र पर एफ़िन-विकर्णों के साथ <math>k</math>, (उदाहरण के लिए अलग-अलग योजनाएं), और चलो <math>\mathcal{F} \in \text{Coh}(X)</math> और <math>\mathcal{G} \in \text{Coh}(Y)</math>, तो  समरूपता <ब्लॉककोट> है<math>H^k(X\times_{\text{Spec}(k)}Y, \pi_1^*\mathcal{F}\otimes_{\mathcal{O}_{X\times_{\text{Spec}(k)} Y}}\pi_2^*\mathcal{G}) \cong \bigoplus_{i+j = k} H^i(X,\mathcal{F})\otimes_k H^j(Y,\mathcal{G})</math> </ब्लॉकक्वॉट>कहां <math>\pi_1,\pi_2</math> के विहित अनुमान हैं <math>X\times_{\text{Spec}(k)} Y</math> को <math>X,Y</math>.
किस्मों के उत्पादों के लिए सुसंगत शीफ कोहोलॉजी में [[कुनेथ सूत्र]] का एनालॉग है।<ref>{{Cite web|url=https://stacks.math.columbia.edu/tag/0BEC|title=Section 33.29 (0BEC): Künneth formula—The Stacks project|website=stacks.math.columbia.edu|access-date=2020-02-23}}</ref> अर्ध-कॉम्पैक्ट योजनाएँ दी गईं <math>X,Y</math> क्षेत्र पर एफ़िन-विकर्णों के साथ <math>k</math>, (उदाहरण के लिए भिन्न-भिन्न योजनाएं), और चलो <math>\mathcal{F} \in \text{Coh}(X)</math> और <math>\mathcal{G} \in \text{Coh}(Y)</math>, तब समरूपता <ब्लॉककोट> है<math>H^k(X\times_{\text{Spec}(k)}Y, \pi_1^*\mathcal{F}\otimes_{\mathcal{O}_{X\times_{\text{Spec}(k)} Y}}\pi_2^*\mathcal{G}) \cong \bigoplus_{i+j = k} H^i(X,\mathcal{F})\otimes_k H^j(Y,\mathcal{G})</math> </ब्लॉकक्वॉट>कहां <math>\pi_1,\pi_2</math> के विहित अनुमान हैं <math>X\times_{\text{Spec}(k)} Y</math> को <math>X,Y</math>.


=== वक्रों की शीफ कोहोलॉजी की गणना ===
=== वक्रों की शीफ कोहोलॉजी की गणना ===
में <math>X = \mathbb{P}^1 \times \mathbb{P}^1</math>, का सामान्य अनुभाग <math>\mathcal{O}_X(a,b) = \pi_1^*\mathcal{O}_{\mathbb{P}^1}(a) \otimes_{\mathcal{O}_X} \pi_2^*\mathcal{O}_{\mathbb{P}^1}(b)</math> वक्र को परिभाषित करता है <math>C</math>, आदर्श अनुक्रम<ब्लॉककोट> दे रहा है<math>0 \to \mathcal{O}_X(-a,-b) \to \mathcal{O}_X \to \mathcal{O}_C \to 0</math>फिर, लंबा सटीक अनुक्रम <blockquote> के रूप में पढ़ा जाता है<math>\begin{align}
में <math>X = \mathbb{P}^1 \times \mathbb{P}^1</math>, का सामान्य अनुभाग <math>\mathcal{O}_X(a,b) = \pi_1^*\mathcal{O}_{\mathbb{P}^1}(a) \otimes_{\mathcal{O}_X} \pi_2^*\mathcal{O}_{\mathbb{P}^1}(b)</math> वक्र को परिभाषित करता है <math>C</math>, आदर्श अनुक्रम<ब्लॉककोट> दे रहा है<math>0 \to \mathcal{O}_X(-a,-b) \to \mathcal{O}_X \to \mathcal{O}_C \to 0</math>फिर, लंबा त्रुटिहीन अनुक्रम <blockquote> के रूप में पढ़ा जाता है<math>\begin{align}
0&\to  H^0(X, \mathcal{O}(-a,-b)) \to H^0(X, \mathcal{O}) \to H^0(X, \mathcal{O}_C)\\
0&\to  H^0(X, \mathcal{O}(-a,-b)) \to H^0(X, \mathcal{O}) \to H^0(X, \mathcal{O}_C)\\
  &\to  H^1(X, \mathcal{O}(-a,-b)) \to H^1(X, \mathcal{O}) \to H^1(X, \mathcal{O}_C)\\
  &\to  H^1(X, \mathcal{O}(-a,-b)) \to H^1(X, \mathcal{O}) \to H^1(X, \mathcal{O}_C)\\
Line 69: Line 69:
H^0(C,\mathcal{O}_C) &\cong H^0(X,\mathcal{O}) \\
H^0(C,\mathcal{O}_C) &\cong H^0(X,\mathcal{O}) \\
H^1(C,\mathcal{O}_C) &\cong H^2(X,\mathcal{O}(-a,-b))
H^1(C,\mathcal{O}_C) &\cong H^2(X,\mathcal{O}(-a,-b))
\end{align}</math></blockquote>से <math>H^1</math>वक्र का जीनस है, हम इसकी बेट्टी संख्या की गणना करने के लिए कुनेथ सूत्र का उपयोग कर सकते हैं। यह <ब्लॉककोट> है<math>H^2(X, \mathcal{O}_X(-a,-b)) \cong H^1(\mathbb{P}^1,\mathcal{O}(-a))\otimes_kH^1(\mathbb{P}^1,\mathcal{O}(-b))</math></blockquote>जो रैंक का है<blockquote><math>\binom{a-1}{a-2}\binom{b-1}{b-2} = (a-1)(b-1) = ab - a - b +1</math><ref>{{Cite web|url=https://math.stanford.edu/~vakil/0708-216/216class3536.pdf|title=FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASSES 35 AND 36|last=Vakil}}</ref></ब्लॉककोट>के लिए <math>-a,-b \leq -2</math>. विशेषकर, यदि <math>C</math> के सामान्य अनुभाग के लुप्त हो रहे स्थान द्वारा परिभाषित किया गया है <math>\mathcal{O}(2,k)</math>, यह जीनस<ब्लॉककोट> का है<math>2k-2-k+1 = k-1</math></blockquote>इसलिए इसके अंदर किसी भी जीनस का वक्र पाया जा सकता है <math>\mathbb{P}^1\times\mathbb{P}^1</math>.
\end{align}</math></blockquote>से <math>H^1</math>वक्र का जीनस है, हम इसकी बेट्टी संख्या की गणना करने के लिए कुनेथ सूत्र का उपयोग कर सकते हैं। यह <ब्लॉककोट> है<math>H^2(X, \mathcal{O}_X(-a,-b)) \cong H^1(\mathbb{P}^1,\mathcal{O}(-a))\otimes_kH^1(\mathbb{P}^1,\mathcal{O}(-b))</math></blockquote>जो रैंक का है<blockquote><math>\binom{a-1}{a-2}\binom{b-1}{b-2} = (a-1)(b-1) = ab - a - b +1</math><ref>{{Cite web|url=https://math.stanford.edu/~vakil/0708-216/216class3536.pdf|title=FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASSES 35 AND 36|last=Vakil}}</ref></ब्लॉककोट>के लिए <math>-a,-b \leq -2</math>. विशेषकर, यदि <math>C</math> के सामान्य अनुभाग के लुप्त हो रहे स्थान द्वारा परिभाषित किया गया है <math>\mathcal{O}(2,k)</math>, यह जीनस<ब्लॉककोट> का है<math>2k-2-k+1 = k-1</math></blockquote>इसलिए इसके अंदर किसी भी जीनस का वक्र पाया जा सकता है <math>\mathbb{P}^1\times\mathbb{P}^1</math>.


==परिमित-आयामीता==
=='''परिमित-आयामीता'''==
एक [[उचित योजना]] के लिए <math>X</math> मैदान के ऊपर <math>k</math> और कोई सुसंगत शीफ़ <math>\mathcal F</math> पर <math>X</math>, कोहोमोलॉजी समूह <math>H^i(X,\mathcal F)</math> के रूप में सीमित आयाम है <math>k</math>-वेक्टर रिक्त स्थान.<ref name=St02O3>{{Citation | title=Stacks Project, Tag 02O3 | url=http://stacks.math.columbia.edu/tag/02O3}}.</ref> विशेष मामले में जहां <math>X</math> प्रक्षेप्य विविधता खत्म हो गई है <math>k</math>, यह ऊपर चर्चा की गई प्रक्षेप्य स्थान पर लाइन बंडलों के मामले को कम करके साबित होता है। क्षेत्र पर उचित योजना के सामान्य मामले में, ग्रोथेंडिक ने चाउ के लेम्मा का उपयोग करके प्रोजेक्टिव मामले को कम करके कोहोलॉजी की परिमितता को साबित किया।
[[उचित योजना]] के लिए <math>X</math> मैदान के ऊपर <math>k</math> और कोई सुसंगत शीफ़ <math>\mathcal F</math> पर <math>X</math>, कोहोमोलॉजी समूह <math>H^i(X,\mathcal F)</math> के रूप में सीमित आयाम है <math>k</math>-सदिश रिक्त स्थान.<ref name=St02O3>{{Citation | title=Stacks Project, Tag 02O3 | url=http://stacks.math.columbia.edu/tag/02O3}}.</ref> विशेष स्थितियों में जहां <math>X</math> प्रक्षेप्य विविधता खत्म हो गई है <math>k</math>, यह ऊपर चर्चा की गई प्रक्षेप्य स्थान पर लाइन बंडलों के स्थितियों को कम करके सिद्ध करना होता है। क्षेत्र पर उचित योजना के सामान्य स्थितियों में, ग्रोथेंडिक ने चाउ के लेम्मा का उपयोग करके प्रोजेक्टिव स्थितियों को कम करके कोहोलॉजी की परिमितता को सिद्ध करना किया।


कोहोलॉजी की परिमित-आयामीता बहुत ही अलग तर्क के अनुसार, किसी भी [[ सघन स्थान |सघन स्थान]] जटिल स्थान पर सुसंगत विश्लेषणात्मक ढेरों की अनुरूप स्थिति में भी होती है। [[ हेनरी कर्तन |हेनरी कर्तन]] और सेरे ने फ्रैचेट स्पेस में [[कॉम्पैक्ट ऑपरेटर]]ों पर [[लॉरेंट श्वार्ट्ज]] के प्रमेय का उपयोग करके इस विश्लेषणात्मक स्थिति में परिमित-आयामीता साबित की। [[उचित रूपवाद]] के लिए इस परिणाम के सापेक्ष संस्करण ग्रोथेंडिक (स्थानीय रूप से नोथेरियन योजनाओं के लिए) और [[हंस ग्राउर्ट]] (जटिल विश्लेषणात्मक स्थानों के लिए) द्वारा सिद्ध किए गए थे। अर्थात्, उचित रूपवाद के लिए <math>f: X\to Y</math> (बीजगणितीय या विश्लेषणात्मक सेटिंग में) और सुसंगत शीफ <math>\mathcal F</math> पर <math>X</math>, उच्च प्रत्यक्ष छवि ढेर <math>R^i f_*\mathcal F</math> सुसंगत हैं.<ref>{{harv|Grothendieck|Dieudonné|1961|loc= (EGA 3) 3.2.1}}, {{harv|Grauert|Remmert|1984|loc = Theorem 10.4.6.}}</ref> कब <math>Y</math> बिंदु है, यह प्रमेय कोहोलॉजी की परिमित-आयामीता देता है।
कोहोलॉजी की परिमित-आयामीता बहुत ही भिन्न तर्क के अनुसार, किसी भी [[ सघन स्थान |सघन स्थान]] समष्टि स्थान पर सुसंगत विश्लेषणात्मक ढेरों की अनुरूप स्थिति में भी होती है। [[ हेनरी कर्तन |हेनरी कर्तन]] और सेरे ने फ्रैचेट स्पेस में [[कॉम्पैक्ट ऑपरेटर]]ों पर [[लॉरेंट श्वार्ट्ज]] के प्रमेय का उपयोग करके इस विश्लेषणात्मक स्थिति में परिमित-आयामीता सिद्ध करना की। [[उचित रूपवाद]] के लिए इस परिणाम के सापेक्ष संस्करण ग्रोथेंडिक (स्थानीय रूप से नोथेरियन योजनाओं के लिए) और [[हंस ग्राउर्ट]] (समष्टि विश्लेषणात्मक स्थानों के लिए) द्वारा सिद्ध किए गए थे। अर्थात्, उचित रूपवाद के लिए <math>f: X\to Y</math> (बीजगणितीय या विश्लेषणात्मक सेटिंग में) और सुसंगत शीफ <math>\mathcal F</math> पर <math>X</math>, उच्च प्रत्यक्ष छवि ढेर <math>R^i f_*\mathcal F</math> सुसंगत हैं.<ref>{{harv|Grothendieck|Dieudonné|1961|loc= (EGA 3) 3.2.1}}, {{harv|Grauert|Remmert|1984|loc = Theorem 10.4.6.}}</ref> कब <math>Y</math> बिंदु है, यह प्रमेय कोहोलॉजी की परिमित-आयामीता देता है।


कोहोलॉजी की परिमित-आयामीता प्रक्षेप्य किस्मों के लिए कई संख्यात्मक अपरिवर्तनीयता की ओर ले जाती है। उदाहरण के लिए, यदि <math>X</math> बीजगणितीय रूप से बंद क्षेत्र पर चिकनी योजना प्रक्षेप्य [[बीजगणितीय वक्र]] है <math>k</math>, की प्रजाति <math>X</math> के आयाम के रूप में परिभाषित किया गया है <math>k</math>-सदिश स्थल <math>H^1(X,\mathcal O_X)</math>. कब <math>k</math> जटिल संख्याओं का क्षेत्र है, यह अंतरिक्ष के [[जीनस (गणित)]] से सहमत है <math>X(\Complex)</math> इसकी शास्त्रीय (यूक्लिडियन) टोपोलॉजी में जटिल बिंदुओं की। (उस मामले में, <math>X(\Complex) = X^{an}</math> बंद उन्मुख [[सतह (टोपोलॉजी)]] है।) कई संभावित उच्च-आयामी सामान्यीकरणों में से, चिकनी प्रक्षेप्य विविधता का [[ज्यामितीय जीनस]] <math>X</math> आयाम का <math>n</math> का आयाम है <math>H^n(X, \mathcal O_X)</math>, और [[अंकगणित जीनस]] (एक परंपरा के अनुसार<ref>{{harv|Serre|1955|loc=section 80.}}</ref>) प्रत्यावर्ती योग है
कोहोलॉजी की परिमित-आयामीता प्रक्षेप्य किस्मों के लिए अनेक संख्यात्मक अपरिवर्तनीयता की ओर ले जाती है। उदाहरण के लिए, यदि <math>X</math> बीजगणितीय रूप से बंद क्षेत्र पर चिकनी योजना प्रक्षेप्य [[बीजगणितीय वक्र]] है <math>k</math>, की '''प्रजाति''' <math>X</math> के आयाम के रूप में परिभाषित किया गया है <math>k</math>-सदिश स्थल <math>H^1(X,\mathcal O_X)</math>. कब <math>k</math> समष्टि संख्याओं का क्षेत्र है, यह अंतरिक्ष के [[जीनस (गणित)]] से सहमत है <math>X(\Complex)</math> इसकी मौलिक (यूक्लिडियन) टोपोलॉजी में समष्टि बिंदुओं की। (उस स्थितियों में, <math>X(\Complex) = X^{an}</math> बंद उन्मुख [[सतह (टोपोलॉजी)]] है।) अनेक संभावित उच्च-आयामी सामान्यीकरणों में से, चिकनी प्रक्षेप्य विविधता का [[ज्यामितीय जीनस]] <math>X</math> आयाम का <math>n</math> का आयाम है <math>H^n(X, \mathcal O_X)</math>, और [[अंकगणित जीनस]] (परंपरा के अनुसार<ref>{{harv|Serre|1955|loc=section 80.}}</ref>) प्रत्यावर्ती योग है
::<math>\chi(X, \mathcal{O}_X)=\sum_j (-1)^j\dim_k(H^j(X, \mathcal O_X)).</math>
::<math>\chi(X, \mathcal{O}_X)=\sum_j (-1)^j\dim_k(H^j(X, \mathcal O_X)).</math>
==सर्रे द्वैत==
=='''सर्रे द्वैत'''==
{{Main|Serre duality}}
{{Main|सेरे द्वैत}}
सेरे द्वैत सुसंगत शीफ कोहोलॉजी के लिए पोंकारे द्वैत का एनालॉग है। इस सादृश्य में, [[विहित बंडल]] <math>K_X</math> [[ओरिएंटेशन शीफ]] की भूमिका निभाता है। अर्थात्, सुचारू उचित योजना के लिए <math>X</math> आयाम का <math>n</math> मैदान के ऊपर <math>k</math>, प्राकृतिक ट्रेस मानचित्र है <math>H^n(X, K_X)\to k</math>, जो समरूपता है यदि <math>X</math> ज्यामितीय रूप से जुड़ा हुआ है, जिसका अर्थ है कि [[फाइबर उत्पाद]] <math>X</math> के बीजगणितीय समापन के लिए <math>k</math> [[जुड़ा हुआ स्थान]] है. वेक्टर बंडल के लिए क्रमिक द्वंद्व <math>E</math> पर <math>X</math> कहते हैं कि उत्पाद
सेरे द्वैत सुसंगत शीफ कोहोलॉजी के लिए पोंकारे द्वैत का एनालॉग है। इस सादृश्य में, [[विहित बंडल]] <math>K_X</math> [[ओरिएंटेशन शीफ]] की भूमिका निभाता है। अर्थात्, सुचारू उचित योजना के लिए <math>X</math> आयाम का <math>n</math> मैदान के ऊपर <math>k</math>, प्राकृतिक '''ट्रेस मानचित्र''' है <math>H^n(X, K_X)\to k</math>, जो समरूपता है यदि <math>X</math> '''ज्यामितीय रूप से जुड़ा हुआ''' है, जिसका अर्थ है कि [[फाइबर उत्पाद]] <math>X</math> के बीजगणितीय समापन के लिए <math>k</math> [[जुड़ा हुआ स्थान]] है. सदिश बंडल के लिए क्रमिक द्वंद्व <math>E</math> पर <math>X</math> कहते हैं कि उत्पाद
::<math>H^i(X,E)\times H^{n-i}(X,K_X\otimes E^*)\to H^n(X,K_X)\to k</math>
::<math>H^i(X,E)\times H^{n-i}(X,K_X\otimes E^*)\to H^n(X,K_X)\to k</math>
प्रत्येक पूर्णांक के लिए आदर्श युग्म है <math>i</math>.<ref>{{harv|Hartshorne|1977|loc=Theorem III.7.6.}}</ref> विशेष रूप से, <math>k</math>-वेक्टर रिक्त स्थान <math>H^i(X, E)</math> और <math>H^{n-i}(X, K_X\otimes E^*)</math> समान (परिमित) आयाम है। (सेरे ने किसी भी कॉम्पैक्ट कॉम्प्लेक्स मैनिफोल्ड पर होलोमोर्फिक वेक्टर बंडलों के लिए सेरे द्वैत को भी साबित किया।) सुसंगत द्वंद्व सिद्धांत में किसी भी सुसंगत शीफ और योजनाओं के किसी भी उचित रूपवाद के सामान्यीकरण शामिल हैं, हालांकि बयान कम प्राथमिक हो जाते हैं।
प्रत्येक पूर्णांक के लिए आदर्श युग्म है <math>i</math>.<ref>{{harv|Hartshorne|1977|loc=Theorem III.7.6.}}</ref> विशेष रूप से, <math>k</math>-सदिश रिक्त स्थान <math>H^i(X, E)</math> और <math>H^{n-i}(X, K_X\otimes E^*)</math> समान (परिमित) आयाम है। (सेरे ने किसी भी कॉम्पैक्ट कॉम्प्लेक्स मैनिफोल्ड पर होलोमोर्फिक सदिश बंडलों के लिए सेरे द्वैत को भी सिद्ध करना किया।) सुसंगत द्वंद्व सिद्धांत में किसी भी सुसंगत शीफ और योजनाओं के किसी भी उचित रूपवाद के सामान्यीकरण सम्मिलित हैं, चूंकि कथन कम प्राथमिक हो जाते हैं।


उदाहरण के लिए, चिकने प्रक्षेप्य वक्र के लिए <math>X</math> बीजगणितीय रूप से बंद क्षेत्र पर <math>k</math>, सेरे द्वैत का तात्पर्य है कि अंतरिक्ष का आयाम <math>H^0(X, \Omega^1) = H^0(X, K_X)</math> 1-फॉर्म पर <math>X</math> के वंश के बराबर है <math>X</math> (का आयाम <math>H^1(X,\mathcal O_X)</math>).
उदाहरण के लिए, चिकने प्रक्षेप्य वक्र के लिए <math>X</math> बीजगणितीय रूप से बंद क्षेत्र पर <math>k</math>, सेरे द्वैत का तात्पर्य है कि अंतरिक्ष का आयाम <math>H^0(X, \Omega^1) = H^0(X, K_X)</math> 1-फॉर्म पर <math>X</math> के वंश के सामान्तर है <math>X</math> (का आयाम <math>H^1(X,\mathcal O_X)</math>).


==GAGA प्रमेय==
==GAGA प्रमेय==
{{Main|GAGA}}
{{Main|GAGA}}
GAGA प्रमेय जटिल संख्याओं पर बीजगणितीय किस्मों को संबंधित विश्लेषणात्मक स्थानों से जोड़ते हैं। परिमित रूपवाद की योजना<sup>एक</sup>. प्रमुख GAGA प्रमेय (ग्रोथेंडिएक द्वारा, प्रोजेक्टिव केस पर सेरे के प्रमेय को सामान्यीकृत करते हुए) यह है कि यदि X 'C' के ऊपर उचित है, तो यह फ़नकार श्रेणियों का समतुल्य है। इसके अलावा, प्रत्येक सुसंगत बीजगणितीय शीफ ई के लिए 'सी' पर उचित योजना एक्स पर, प्राकृतिक मानचित्र
GAGA प्रमेय समष्टि संख्याओं पर बीजगणितीय किस्मों को संबंधित विश्लेषणात्मक स्थानों से जोड़ते हैं। परिमित रूपवाद की योजना<sup>एक</sup>. प्रमुख GAGA प्रमेय (ग्रोथेंडिद्वारा, प्रोजेक्टिव केस पर सेरे के प्रमेय को सामान्यीकृत करते हुए) यह है कि यदि X 'C' के ऊपर उचित है, तब यह फ़नकार श्रेणियों का समतुल्य है। इसके अतिरिक्त, प्रत्येक सुसंगत बीजगणितीय शीफ ई के लिए 'सी' पर उचित योजना एक्स पर, प्राकृतिक मानचित्र
::<math>H^i(X,E)\to H^i(X^{\text{an}},E^{\text{an}})</math>
::<math>H^i(X,E)\to H^i(X^{\text{an}},E^{\text{an}})</math>
(परिमित-आयामी) जटिल वेक्टर रिक्त स्थान सभी i के लिए समरूपता है।<ref>{{harv|Grothendieck|Raynaud|2003|loc= (SGA 1) Exposé XII.}}</ref> (यहां पहला समूह ज़ारिस्की टोपोलॉजी का उपयोग करके परिभाषित किया गया है, और दूसरा शास्त्रीय (यूक्लिडियन) टोपोलॉजी का उपयोग करके परिभाषित किया गया है।) उदाहरण के लिए, प्रक्षेप्य स्थान पर बीजगणितीय और विश्लेषणात्मक सुसंगत ढेरों के बीच समानता बीजगणितीय ज्यामिति और विश्लेषणात्मक ज्यामिति का तात्पर्य है#चाउ का प्रमेय|चाउ का प्रमेय सीपी का प्रत्येक बंद विश्लेषणात्मक उपस्थान<sup>n</sup>बीजीय है.
(परिमित-आयामी) समष्टि सदिश रिक्त स्थान सभी i के लिए समरूपता है।<ref>{{harv|Grothendieck|Raynaud|2003|loc= (SGA 1) Exposé XII.}}</ref> (यहां पहला समूह ज़ारिस्की टोपोलॉजी का उपयोग करके परिभाषित किया गया है, और दूसरा मौलिक (यूक्लिडियन) टोपोलॉजी का उपयोग करके परिभाषित किया गया है।) उदाहरण के लिए, प्रक्षेप्य स्थान पर बीजगणितीय और विश्लेषणात्मक सुसंगत ढेरों के मध्य समानता बीजगणितीय ज्यामिति और विश्लेषणात्मक ज्यामिति का तात्पर्य है#चाउ का प्रमेय|चाउ का प्रमेय सीपी का प्रत्येक बंद विश्लेषणात्मक उपस्थान<sup>n</sup>बीजीय है.


==लुप्त प्रमेय==
=='''लुप्त प्रमेय'''==
सेरे का लुप्त प्रमेय कहता है कि किसी भी [[पर्याप्त लाइन बंडल]] के लिए <math>L</math> उचित योजना पर <math>X</math> [[ नोथेरियन अंगूठी |नोथेरियन अंगूठी]] और किसी भी सुसंगत शीफ के ऊपर <math>\mathcal F</math> पर <math>X</math>, पूर्णांक है <math>m_0</math> ऐसा कि सभी के लिए <math>m\geq m_0</math>, पूला <math>\mathcal F\otimes L^{\otimes m}</math> यह अपने वैश्विक खंडों द्वारा फैला हुआ है और इसमें सकारात्मक डिग्री में कोई सह-समरूपता नहीं है।<ref>{{harv|Hartshorne|1977|loc=Theorem II.5.17 and Proposition III.5.3.}}</ref><ref>{{harv|Grothendieck|Dieudonné|1961|loc= (EGA 3) Theorem 2.2.1}}</ref> यद्यपि सेरे का लुप्त प्रमेय उपयोगी है, संख्या की अस्पष्टता <math>m_0</math> समस्या हो सकती है. [[कोडैरा लुप्त प्रमेय]] महत्वपूर्ण स्पष्ट परिणाम है। अर्थात्, यदि <math>X</math> विशेषता शून्य के क्षेत्र पर सहज प्रक्षेप्य किस्म है, <math>L</math> पर्याप्त लाइन बंडल है <math>X</math>, और <math>K_X</math> फिर विहित बंडल
'''सेरे का लुप्त प्रमेय''' कहता है कि किसी भी [[पर्याप्त लाइन बंडल]] के लिए <math>L</math> उचित योजना पर <math>X</math> [[ नोथेरियन अंगूठी |नोथेरियन अंगूठी]] और किसी भी सुसंगत शीफ के ऊपर <math>\mathcal F</math> पर <math>X</math>, पूर्णांक है <math>m_0</math> ऐसा कि सभी के लिए <math>m\geq m_0</math>, पूला <math>\mathcal F\otimes L^{\otimes m}</math> यह अपने वैश्विक खंडों द्वारा फैला हुआ है और इसमें धनात्मक डिग्री में कोई सह-समरूपता नहीं है।<ref>{{harv|Hartshorne|1977|loc=Theorem II.5.17 and Proposition III.5.3.}}</ref><ref>{{harv|Grothendieck|Dieudonné|1961|loc= (EGA 3) Theorem 2.2.1}}</ref> यद्यपि सेरे का लुप्त प्रमेय उपयोगी है, संख्या की अस्पष्टता <math>m_0</math> समस्या हो सकती है. [[कोडैरा लुप्त प्रमेय]] महत्वपूर्ण स्पष्ट परिणाम है। अर्थात्, यदि <math>X</math> विशेषता शून्य के क्षेत्र पर सहज प्रक्षेप्य प्रकार है, <math>L</math> पर्याप्त लाइन बंडल है <math>X</math>, और <math>K_X</math> फिर विहित बंडल
::<math>H^j(X,K_X\otimes L)=0</math>
::<math>H^j(X,K_X\otimes L)=0</math>
सभी के लिए <math>j>0</math>. ध्यान दें कि सेरे का प्रमेय बड़ी शक्तियों के लिए समान लुप्त होने की गारंटी देता है <math>L</math>. कोडैरा का लुप्त होना और इसके सामान्यीकरण बीजगणितीय किस्मों के वर्गीकरण और [[न्यूनतम मॉडल कार्यक्रम]] के लिए मौलिक हैं। कोदैरा का लुप्त होना सकारात्मक विशेषता वाले क्षेत्रों में विफल रहता है।<ref>Michel Raynaud. ''Contre-exemple au vanishing theorem en caractéristique p > 0''. In ''C. P. Ramanujam - a tribute'',
सभी के लिए <math>j>0</math>. ध्यान दें कि सेरे का प्रमेय बड़ी शक्तियों के लिए समान लुप्त होने की गारंटी देता है <math>L</math>. कोडैरा का लुप्त होना और इसके सामान्यीकरण बीजगणितीय किस्मों के वर्गीकरण और [[न्यूनतम मॉडल कार्यक्रम]] के लिए मौलिक हैं। कोदैरा का लुप्त होना धनात्मक विशेषता वाले क्षेत्रों में विफल रहता है।<ref>Michel Raynaud. ''Contre-exemple au vanishing theorem en caractéristique p > 0''. In ''C. P. Ramanujam - a tribute'',
Tata Inst. Fund. Res. Studies in Math. 8, Berlin, New York: Springer-Verlag, (1978), pp. 273-278.</ref>
Tata Inst. Fund. Res. Studies in Math. 8, Berlin, New York: Springer-Verlag, (1978), pp. 273-278.</ref>
==हॉज सिद्धांत==
=='''हॉज सिद्धांत'''==
{{Main|Hodge theory}}
{{Main|हॉज सिद्धांत}}
हॉज प्रमेय सुसंगत शीफ कोहोमोलॉजी को एकवचन कोहोमोलॉजी (या [[डी गर्भ एक तीर्थयात्री के रूप में|डी गर्भ तीर्थयात्री के रूप में]]) से जोड़ता है। अर्थात्, यदि <math>X</math> सहज जटिल प्रक्षेप्य किस्म है, तो जटिल वेक्टर स्थानों का विहित प्रत्यक्ष-योग अपघटन होता है:
हॉज प्रमेय सुसंगत शीफ कोहोमोलॉजी को एकवचन कोहोमोलॉजी (या [[डी गर्भ एक तीर्थयात्री के रूप में|डी गर्भ तीर्थयात्री के रूप में]]) से जोड़ता है। अर्थात्, यदि <math>X</math> सहज समष्टि प्रक्षेप्य प्रकार है, तब समष्टि सदिश स्थानों का विहित प्रत्यक्ष-योग अपघटन होता है:
:: <math>H^a(X,\mathbf{C})\cong \bigoplus_{b=0}^a H^{a-b}(X,\Omega^b),</math>
:: <math>H^a(X,\mathbf{C})\cong \bigoplus_{b=0}^a H^{a-b}(X,\Omega^b),</math>
हरएक के लिए <math>a</math>. बायीं ओर के समूह का अर्थ है एकवचन सहसंरचना <math>X(\mathbf C)</math> इसकी शास्त्रीय (यूक्लिडियन) टोपोलॉजी में, जबकि दाईं ओर के समूह सुसंगत शीव्स के कोहोमोलॉजी समूह हैं, जिन्हें (जीएजीए द्वारा) ज़ारिस्की या शास्त्रीय टोपोलॉजी में लिया जा सकता है। यही निष्कर्ष किसी भी सुचारू उचित योजना के लिए लागू होता है <math>X</math> ऊपर <math>\mathbf C</math>, या किसी कॉम्पैक्ट काहलर मैनिफोल्ड के लिए।
हरके लिए <math>a</math>. बायीं ओर के समूह का अर्थ है एकवचन सहसंरचना <math>X(\mathbf C)</math> इसकी मौलिक (यूक्लिडियन) टोपोलॉजी में, जबकि दाईं ओर के समूह सुसंगत शीव्स के कोहोमोलॉजी समूह हैं, जिन्हें (जीएजीए द्वारा) ज़ारिस्की या मौलिक टोपोलॉजी में लिया जा सकता है। यही निष्कर्ष किसी भी सुचारू उचित योजना के लिए प्रयुक्त होता है <math>X</math> ऊपर <math>\mathbf C</math>, या किसी कॉम्पैक्ट काहलर मैनिफोल्ड के लिए।


उदाहरण के लिए, हॉज प्रमेय का तात्पर्य है कि चिकनी प्रक्षेप्य वक्र के जीनस की परिभाषा <math>X</math> के आयाम के रूप में <math>H^1(X, \mathcal O)</math>, जो किसी भी क्षेत्र पर समझ में आता है <math>k</math>, टोपोलॉजिकल परिभाषा से सहमत है (पहली बेट्टी संख्या के आधे के रूप में)। <math>k</math> जटिल संख्या है. हॉज सिद्धांत ने जटिल बीजगणितीय किस्मों के टोपोलॉजिकल गुणों पर बड़े पैमाने पर काम करने के लिए प्रेरित किया है।
उदाहरण के लिए, हॉज प्रमेय का तात्पर्य है कि चिकनी प्रक्षेप्य वक्र के जीनस की परिभाषा <math>X</math> के आयाम के रूप में <math>H^1(X, \mathcal O)</math>, जो किसी भी क्षेत्र पर समझ में आता है <math>k</math>, टोपोलॉजिकल परिभाषा से सहमत है (पहली बेट्टी संख्या के आधे के रूप में)। <math>k</math> समष्टि संख्या है. हॉज सिद्धांत ने समष्टि बीजगणितीय किस्मों के टोपोलॉजिकल गुणों पर बड़े पैमाने पर काम करने के लिए प्रेरित किया है।


==रीमैन-रोच प्रमेय==
=='''रीमैन-रोच प्रमेय'''==
{{Main|Grothendieck–Riemann–Roch theorem}}
{{Main|ग्रोथेंडिक-रीमैन-रोच प्रमेय}}
फ़ील्ड k पर उचित योजना X के लिए, X पर सुसंगत शीफ़ E की [[यूलर विशेषता]] पूर्णांक है
फ़ील्ड k पर उचित योजना X के लिए, X पर सुसंगत शीफ़ E की [[यूलर विशेषता]] पूर्णांक है
::<math>\chi(X,E)=\sum_j (-1)^j\dim_k(H^j(X,E)).</math>
::<math>\chi(X,E)=\sum_j (-1)^j\dim_k(H^j(X,E)).</math>
रीमैन-रोच प्रमेय और इसके सामान्यीकरण, हिरज़ेब्रुक-रीमैन-रोच प्रमेय और ग्रोथेंडिक-रीमैन-रोच प्रमेय के अनुसार, सुसंगत शीफ ई की यूलर विशेषता की गणना ई के चेर्न वर्गों से की जा सकती है। उदाहरण के लिए, यदि L फ़ील्ड k पर चिकने उचित ज्यामितीय रूप से जुड़े वक्र X पर रेखा बंडल है, तो
रीमैन-रोच प्रमेय और इसके सामान्यीकरण, हिरज़ेब्रुक-रीमैन-रोच प्रमेय और ग्रोथेंडिक-रीमैन-रोच प्रमेय के अनुसार, सुसंगत शीफ ई की यूलर विशेषता की गणना ई के चेर्न वर्गों से की जा सकती है। उदाहरण के लिए, यदि L फ़ील्ड k पर चिकने उचित ज्यामितीय रूप से जुड़े वक्र X पर रेखा बंडल है, तब
::<math>\chi(X,L)=\text{deg}(L)-\text{genus}(X)+1,</math> जहां deg(L) L के विभाजक (बीजगणितीय ज्यामिति)#विभाजक वर्ग समूह को दर्शाता है।
::<math>\chi(X,L)=\text{deg}(L)-\text{genus}(X)+1,</math> जहां deg(L) L के विभाजक (बीजगणितीय ज्यामिति)#विभाजक वर्ग समूह को दर्शाता है।


जब लुप्त प्रमेय के साथ जोड़ा जाता है, तो रीमैन-रोच प्रमेय का उपयोग अक्सर  लाइन बंडल के अनुभागों के वेक्टर स्थान के आयाम को निर्धारित करने के लिए किया जा सकता है। यह जानते हुए कि एक्स पर लाइन बंडल में पर्याप्त खंड हैं, बदले में, एक्स से प्रोजेक्टिव स्पेस तक मानचित्र को परिभाषित करने के लिए इस्तेमाल किया जा सकता है, शायद  बंद विसर्जन। बीजगणितीय किस्मों को वर्गीकृत करने के लिए यह दृष्टिकोण आवश्यक है।
जब लुप्त प्रमेय के साथ जोड़ा जाता है, तब रीमैन-रोच प्रमेय का उपयोग अधिकांशतः लाइन बंडल के अनुभागों के सदिश स्थान के आयाम को निर्धारित करने के लिए किया जा सकता है। यह जानते हुए कि एक्स पर लाइन बंडल में पर्याप्त खंड हैं, बदले में, एक्स से प्रोजेक्टिव स्पेस तक मानचित्र को परिभाषित करने के लिए उपयोग किया जा सकता है, संभवतः बंद विसर्जन। बीजगणितीय किस्मों को वर्गीकृत करने के लिए यह दृष्टिकोण आवश्यक है।


रीमैन-रोच प्रमेय अतियाह-सिंगर इंडेक्स प्रमेय द्वारा कॉम्पैक्ट कॉम्प्लेक्स मैनिफोल्ड पर होलोमोर्फिक वेक्टर बंडलों के लिए भी लागू होता है।
रीमैन-रोच प्रमेय अतियाह-सिंगर इंडेक्स प्रमेय द्वारा कॉम्पैक्ट कॉम्प्लेक्स मैनिफोल्ड पर होलोमोर्फिक सदिश बंडलों के लिए भी प्रयुक्त होता है।


==विकास==
=='''विकास'''==


आयाम n की योजना पर कोहोलॉजी समूहों के आयाम अधिकतम n डिग्री वाले बहुपद की तरह बढ़ सकते हैं।
आयाम n की योजना पर कोहोलॉजी समूहों के आयाम अधिकतम n डिग्री वाले बहुपद की तरह बढ़ सकते हैं।


मान लीजिए कि X आयाम n की प्रक्षेप्य योजना है और D, X पर विभाजक है। यदि <math>\mathcal F</math> क्या X पर कोई सुसंगत शीफ़ है?
मान लीजिए कि X आयाम n की प्रक्षेप्य योजना है और D, X पर विभाजक है। यदि <math>\mathcal F</math> क्या X पर कोई सुसंगत शीफ़ है?


<math>h^i(X,\mathcal F(mD))=O(m^n)</math> प्रत्येक i के लिए
<math>h^i(X,\mathcal F(mD))=O(m^n)</math> प्रत्येक i के लिए
Line 127: Line 127:


<math>h^i(X,\mathcal O_X(mD))=O(m^{n-1})</math>
<math>h^i(X,\mathcal O_X(mD))=O(m^{n-1})</math>
==अनुप्रयोग==
=='''अनुप्रयोग'''==


फ़ील्ड k पर स्कीम सबसे सरल मामला, रिंग के ऊपर विकृतियों से संबंधित है <math>R := k[\epsilon]/\epsilon^2</math> [[दोहरी संख्या]]ओं की जांच करता है कि क्या कोई स्कीम एक्स है<sub>''R''</sub> स्पेक आर के ऊपर ऐसा कि [[विशेष फाइबर]]
फ़ील्ड k पर स्कीम सबसे सरल मामला, रिंग के ऊपर विकृतियों से संबंधित है <math>R := k[\epsilon]/\epsilon^2</math> [[दोहरी संख्या]]ओं की जांच करता है कि क्या कोई स्कीम एक्स है<sub>''R''</sub> स्पेक आर के ऊपर ऐसा कि [[विशेष फाइबर]]


:<math>X_R \times_{\operatorname{Spec } R} \operatorname{Spec} k</math>
:<math>X_R \times_{\operatorname{Spec } R} \operatorname{Spec} k</math>
दिए गए X के समरूपी है। [[स्पर्शरेखा शीफ]] ​​में गुणांक के साथ सुसंगत शीफ सहसंरूपता <math>T_X</math> X की विकृति के इस वर्ग को नियंत्रित करता है, बशर्ते कि X चिकना हो। अर्थात्,
दिए गए X के समरूपी है। [[स्पर्शरेखा शीफ]] ​​में गुणांक के साथ सुसंगत शीफ सहसंरूपता <math>T_X</math> X की विकृति के इस वर्ग को नियंत्रित करता है, परंतु कि X चिकना हो। अर्थात्,


* उपरोक्त प्रकार की विकृतियों के समरूपता वर्गों को पहले सुसंगत कोहोलॉजी द्वारा पैरामीट्रिज्ड किया गया है <math>H^1(X, T_X)</math>,
* उपरोक्त प्रकार की विकृतियों के समरूपता वर्गों को पहले सुसंगत कोहोलॉजी द्वारा पैरामीट्रिज्ड किया गया है <math>H^1(X, T_X)</math>,
* इसमें तत्व है (जिसे अवरोध वर्ग कहा जाता है)। <math>H^2(X, T_X)</math> जो गायब हो जाता है यदि और केवल तभी जब उपरोक्त के अनुसार स्पेक आर पर एक्स का विरूपण मौजूद हो।
* इसमें तत्व है (जिसे अवरोध वर्ग कहा जाता है)। <math>H^2(X, T_X)</math> जो गायब हो जाता है यदि और केवल तभी जब उपरोक्त के अनुसार स्पेक आर पर एक्स का विरूपण उपस्तिथ हो।


==टिप्पणियाँ==
=='''टिप्पणियाँ'''==
{{reflist}}
{{reflist}}
==संदर्भ==
==संदर्भ==
*{{cite journal |url=https://gallica.bnf.fr/ark:/12148/bpt6k3189t/f128.item| zbl=0050.17701 | title=Un théorème de finitude concernant les variétés analytiques compactes | journal=Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences de Paris | year=1953 | volume=237 | pages=128–130 | last1=Cartan | first1=Henri | last2=Serre | first2=Jean-Pierre }}
*{{cite journal |url=https://gallica.bnf.fr/ark:/12148/bpt6k3189t/f128.item| zbl=0050.17701 | title=विभिन्नताओं के विश्लेषणात्मक संघों से संबंधित परिमितता का सिद्धांत | journal=कॉम्पटेस रेंडस हेबडोमैडेरेस डेस सेन्सेस डे ल'अकाडेमी डेस साइंसेज डे पेरिस | year=1953 | volume=237 | pages=128–130 | last1=कार्टन | first1=हेनरी | last2=सेर्रे | first2=जीन पियर }}
*{{Citation|author1-first=Hans|author1-last=Grauert|author1-link=Grauert|author2-first=Reinhold|author2-last=Remmert|author2-link=Reinhold Remmert|title=Coherent Analytic Sheaves|volume=265|publisher=[[Springer-Verlag]]|year=1984|isbn=3-540-13178-7|mr=0755331|doi=10.1007/978-3-642-69582-7|series=Grundlehren der mathematischen Wissenschaften}}
*{{Citation|author1-first=हंस|author1-last=ग्राउर्ट|author1-link=ग्राउर्ट|author2-first=रेनहोल्ड|author2-last=Remmert|author2-link=रीनहोल्ड रेमर्ट|title=सुसंगत विश्लेषणात्मक ढेर|volume=265|publisher=[[स्प्रिंगर-वेरलाग]]|year=1984|isbn=3-540-13178-7|mr=0755331|doi=10.1007/978-3-642-69582-7|series=ग्रुंडलह्रेन डेर मैथेमेटिसचेन विसेंसचाफ्टन}}
*{{Citation | author1-last=Grothendieck | author1-first=Alexandre | author1-link=Alexander Grothendieck | author2-last=Raynaud | author2-first=Michèle | title=Séminaire de Géométrie Algébrique du Bois Marie – 1960–61 – Revêtements étales et groupe fondamental (SGA 1) (Documents Mathématiques '''3''') | orig-year=1971 | arxiv=math.AG/0206203 | publisher=[[Société Mathématique de France]] | location=Paris | isbn=978-2-85629-141-2 | year=2003 | mr=2017446}}
*{{Citation | author1-last=ग्रोथेंडिक | author1-first=एलेक्जेंडर | author1-link=अलेक्जेंडर ग्रोथेंडिक | author2-last=रेनॉड | author2-first=मिशेल | title=सेमिनायर डी जियोमेट्री अल्जेब्रिक डु बोइस मैरी - 1960-61 - रेवेटेमेंट्स एटलस एट ग्रुप फोंडामेंटल (एसजीए 1) (दस्तावेज़ गणित '''3''') | orig-year=1971 | arxiv=math.AG/0206203 | publisher=[[सोसाइटी मैथेमैटिक डी फ़्रांस]] | location=पेरिस | isbn=978-2-85629-141-2 | year=2003 | mr=2017446}}
*{{EGA|book=3-1|pages - 5–167}}
*{{EGA|book=3-1|pages - 5–167}}
*{{Hartshorne AG|ref=none}}
*{{Hartshorne AG|ref=none}}
*{{Citation|author1-first=Jean-Pierre|author1-last=Serre|author1-link=Jean-Pierre Serre|title=Faisceaux algébriques cohérents|journal=Annals of Mathematics|volume=61|issue=2|pages=197–278|year=1955|doi=10.2307/1969915|mr=0068874|jstor=1969915|url=https://www.college-de-france.fr/media/jean-pierre-serre/UPL5435398796951750634_Serre_FAC.pdf}}
*{{Citation|author1-first=जीन पियर|author1-last=सेर्रे|author1-link=जीन-पियरे सेरे|title=फ़ाइस्क्यू अल्जेब्रिक्स सुसंगत|journal=गणित के इतिहास|volume=61|issue=2|pages=197–278|year=1955|doi=10.2307/1969915|mr=0068874|jstor=1969915|url=https://www.college-de-france.fr/media/jean-pierre-serre/UPL5435398796951750634_Serre_FAC.pdf}}
*{{Eom| title = Finiteness theorems | author-last1 = Parshin| author-first1 = A.N.| oldid = 44303}}
*{{Eom| title = परिमितता प्रमेय | author-last1 = पारशिन| author-first1 = A.N.| oldid = 44303}}
*{{cite book |doi=10.1007/978-3-642-18921-0_8|chapter=The Finiteness Theorem |title=Theory of Stein Spaces |series=Classics in Mathematics |year=2004 |last1=Grauert |first1=Hans |last2=Remmert |first2=Reinhold |pages=186–203 |isbn=978-3-540-00373-1 }}
*{{cite book |doi=10.1007/978-3-642-18921-0_8|chapter=परिमितता प्रमेय |title=स्टीन स्पेस का सिद्धांत |series=गणित में क्लासिक्स |year=2004 |last1=ग्राउर्ट |first1=हंस |last2=Remmert |first2=रेनहोल्ड |pages=186–203 |isbn=978-3-540-00373-1 }}
==बाहरी संबंध==
==बाहरी संबंध==
*{{Citation | author1=The Stacks Project Authors | title=The Stacks Project | url=http://stacks.math.columbia.edu/|ref=none}}
*{{Citation | author1=स्टैक प्रोजेक्ट लेखक | title=ढेर परियोजना | url=http://stacks.math.columbia.edu/|ref=कोई नहीं}}
[[Category: बीजगणितीय ज्यामिति]] [[Category: सहसंगति सिद्धांत]] [[Category: शीफ सिद्धांत]] [[Category: वेक्टर बंडल]] [[Category: बीजगणितीय ज्यामिति की टोपोलॉजिकल विधियाँ]] [[Category: जटिल अनेक गुना]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 14/07/2023]]
[[Category:Created On 14/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:जटिल अनेक गुना]]
[[Category:बीजगणितीय ज्यामिति]]
[[Category:बीजगणितीय ज्यामिति की टोपोलॉजिकल विधियाँ]]
[[Category:वेक्टर बंडल]]
[[Category:शीफ सिद्धांत]]
[[Category:सहसंगति सिद्धांत]]

Latest revision as of 10:32, 2 August 2023

गणित में, विशेष रूप से बीजगणितीय ज्यामिति और समष्टि मैनिफोल्ड्स के सिद्धांत में, सुसंगत शीफ कोहोलॉजी निर्दिष्ट गुणों के साथ कार्यों के उत्पादन करने की विधि होती है। इस प्रकार अनेक ज्यामितीय प्रश्नों को लाइन बंडलों या अधिक सामान्य सुसंगत शीव्स के अनुभागों के अस्तित्व के बारे में प्रश्नों के रूप में तैयार किया जा सकता है। सामान्यतः ऐसे अनुभागों को सामान्यीकृत कार्यों के रूप में देखा जा सकता है। चूँकि कोहोमोलॉजी अनुभागों के निर्माण के लिए, या यह समझाने के लिए कि वह उपस्तिथ क्यों नहीं हैं, गणना योग्य उपकरण प्रदान करता है। इस प्रकार यह बीजगणितीय प्रकार को दूसरे से भिन्न करने के लिए अपरिवर्तनीयता भी प्रदान करता है।

बीजगणितीय ज्यामिति और समष्टि विश्लेषणात्मक ज्यामिति का अधिकांश भाग सुसंगत ढेरों और उनके सह-समरूपता के संदर्भ में तैयार किया गया है।

सुसंगत ढेर

सुसंगत ढेरों को सदिश बंडलों के सामान्यीकरण के रूप में देखा जा सकता है। समष्टि विश्लेषणात्मक स्थान पर सुसंगत विश्लेषणात्मक शीफ की धारणा है, और योजना (गणित) पर सुसंगत बीजगणितीय शीफ की समान धारणा है। इस प्रकार दोनों ही स्थितियों में, दी गई स्थान चक्राकार स्थान के साथ आता है , होलोमोर्फिक फलन या नियमित फ़ंक्शंस का शीफ़ और सुसंगत शीव्स को श्रेणी की पूर्ण उपश्रेणी -मॉड्यूल (अर्थात्, मॉड्यूल के ढेर) के रूप में परिभाषित किया गया है।

स्पर्शरेखा बंडल जैसे सदिश बंडल ज्यामिति में मौलिक भूमिका निभाते हैं। इस प्रकार अधिक सामान्यतः, बंद उप-विविधता के लिए का समावेश के साथ , सदिश बंडल पर पर सुसंगत शीफ़ निर्धारित करता है , प्रत्यक्ष छवि शीफ , जो बाहर शून्य है . इस प्रकार, की उप-किस्मों के बारे में अनेक प्रश्न सुसंगत ढेरों के रूप में व्यक्त किया जा सकता है।

सदिश बंडलों के विपरीत, सुसंगत शीव्स (विश्लेषणात्मक या बीजगणितीय स्थितियों में) एबेलियन श्रेणी बनाते हैं, और इसलिए वह कर्नेल (श्रेणी सिद्धांत), छवि (गणित), और कोकर्नेल लेने जैसे संचालन के अनुसार बंद हो जाते हैं। इस प्रकार योजना पर, अर्ध-सुसंगत शीव्स का सामान्यीकरण है, जिसमें अनंत रैंक के स्थानीय रूप से मुक्त शीव्स भी सम्मिलित हैं।

शीफ कोहोमोलॉजी

पूले के लिए टोपोलॉजिकल स्पेस पर एबेलियन समूहों का , शीफ़ कोहोमोलोजी समूह पूर्णांकों के लिए वैश्विक अनुभागों के फ़ैनक्टर के सही व्युत्पन्न फ़ैनक्टर के रूप में परिभाषित किया गया है, . परिणाम स्वरुप , के लिए शून्य है , और से पहचाना जा सकता है . ढेरों के किसी भी संक्षिप्त त्रुटिहीन अनुक्रम के लिए , कोहोमोलोजी समूहों का लंबा त्रुटिहीन क्रम है:[1]

यदि का पूल है -योजना पर मॉड्यूल , फिर कोहोमोलॉजी समूह (अंतर्निहित टोपोलॉजिकल स्पेस का उपयोग करके परिभाषित किया गया है ) रिंग के ऊपर मॉड्यूल हैं नियमित कार्यों का. उदाहरण के लिए, यदि क्षेत्र पर योजना है , फिर कोहोमोलॉजी समूह हैं -सदिश रिक्त स्थान. सिद्धांत तब शक्तिशाली हो जाता है जब परिणामों के निम्नलिखित अनुक्रम के कारण, सुसंगत या अर्ध-सुसंगत शीफ है।

एफ़िन स्थितियों में लुप्त प्रमेय

सत्र 1953 में कार्टन के प्रमेय A और B द्वारा समष्टि विश्लेषण में क्रांति ला दी गई। यह परिणाम कहते हैं कि यदि स्टीन स्पेस पर सुसंगत विश्लेषणात्मक शीफ है , तब उनके वैश्विक अनुभागों द्वारा उत्पन्न पर्याप्त लाइन बंडल#शीव्स है, और सभी के लिए . (समष्टि स्थान स्टीन है यदि और केवल यदि यह बंद विश्लेषणात्मक उप-स्थान के लिए समरूपी है कुछ के लिए .) यह परिणाम दिए गए विलक्षणताओं या अन्य गुणों के साथ समष्टि विश्लेषणात्मक कार्यों के निर्माण के बारे में पुराने काम के बड़े हिस्से को सामान्यीकृत करते हैं।

1955 में, जीन पियरे सेरे ने बीजगणितीय ज्यामिति में सुसंगत शीव्स की शुरुआत की (पहले बीजगणितीय रूप से बंद क्षेत्र पर, किन्तु उस प्रतिबंध को अलेक्जेंडर ग्रोथेंडिक द्वारा हटा दिया गया था)। कार्टन के प्रमेयों के अनुरूप व्यापकता रखते हैं: यदि एफ़िन योजना पर अर्ध-सुसंगत शीफ़ है , तब इसके वैश्विक खंडों द्वारा फैलाया गया है, और के लिए .[2] यह इस तथ्य से संबंधित है कि एफ़िन योजना पर अर्ध-सुसंगत शीव्स की श्रेणी की श्रेणी के लिए श्रेणियों की तुल्यता है -मॉड्यूल, समतुल्यता के साथ शीफ लेना तक -मापांक . वास्तव में, सभी अर्ध-कॉम्पैक्ट योजनाओं में अर्ध-सुसंगत शीव्स के लिए उच्च कोहोमोलॉजी के लुप्त होने की विशेषता है।[3]

सेच कोहोमोलॉजी और प्रक्षेप्य स्थान की कोहोमोलॉजी

एफ़िन योजनाओं के लिए कोहोलॉजी के लुप्त होने के परिणामस्वरूप: भिन्न योजना के लिए , एफ़िन खुला आवरण का , और अर्ध-सुसंगत शीफ़ पर , कोहोमोलॉजी समूह खुले आवरण के संबंध में सेच कोहोलॉजी समूहों के समरूपी हैं .[2]दूसरे शब्दों में, के अनुभागों को जानना एफ़िन ओपन उपयोजनाओं के सभी परिमित प्रतिच्छेदनों पर की सहसंरचना निर्धारित करता है में गुणांक के साथ .

सेच कोहोमोलॉजी का उपयोग करके, कोई किसी भी लाइन बंडल में गुणांक के साथ प्रक्षेप्य स्थान की कोहोमोलॉजी की गणना कर सकता है। अर्थात्, क्षेत्र के लिए , धनात्मक पूर्णांक , और कोई भी पूर्णांक , प्रक्षेप्य स्थान की सहसंरचना ऊपर सुसंगत शीफ में गुणांकों के साथ#सदिश बंडलों के उदाहरण|लाइन बंडल द्वारा दिया गया है:[4]

विशेष रूप से, इस गणना से पता चलता है कि प्रक्षेप्य स्थान की सह-समरूपता खत्म हो गई है किसी भी लाइन बंडल में गुणांक के साथ परिमित आयाम होता है -सदिश स्थल।

आयाम से ऊपर के इन कोहोमोलोजी समूहों का लुप्त होना ग्रोथेंडिक के लुप्त हो रहे प्रमेय का बहुत ही विशेष मामला है: एबेलियन समूहों के किसी भी समूह के लिए नोथेरियन टोपोलॉजिकल स्पेस पर आयाम का , सभी के लिए .[5] यह विशेष रूप से उपयोगी है नोथेरियन योजना (उदाहरण के लिए, क्षेत्र में विविधता) और अर्ध-सुसंगत शीफ़।

समतल-वक्रों की शीफ़ सहसंगति

सहज प्रक्षेप्य समतल वक्र दिया गया है डिग्री का , शीफ़ कोहोमोलॉजी कोहोमोलॉजी में लंबे त्रुटिहीन अनुक्रम का उपयोग करके आसानी से गणना की जा सकती है। एम्बेडिंग के लिए सबसे पहले ध्यान दें सह-समरूपता समूहों की समरूपता है

तब से त्रुटिहीन है. इसका कारण है कि सुसंगत ढेरों का संक्षिप्त त्रुटिहीन क्रम

पर , जिसे आदर्श अनुक्रम कहा जाता है[6], का उपयोग कोहोमोलॉजी में लंबे त्रुटिहीन अनुक्रम के माध्यम से कोहोमोलॉजी की गणना करने के लिए किया जा सकता है। अनुक्रम इस प्रकार पढ़ता है

जिसे प्रक्षेप्य स्थान पर पिछली गणनाओं का उपयोग करके सरल बनाया जा सकता है। सरलता के लिए, मान लें कि आधार रिंग है (या कोई बीजगणितीय रूप से बंद फ़ील्ड)। फिर समरूपताएँ हैं

जो यह दर्शाता है वक्र का रैंक का सीमित आयामी सदिश स्थान है

.

कुनेथ प्रमेय

किस्मों के उत्पादों के लिए सुसंगत शीफ कोहोलॉजी में कुनेथ सूत्र का एनालॉग है।[7] अर्ध-कॉम्पैक्ट योजनाएँ दी गईं क्षेत्र पर एफ़िन-विकर्णों के साथ , (उदाहरण के लिए भिन्न-भिन्न योजनाएं), और चलो और , तब समरूपता <ब्लॉककोट> है </ब्लॉकक्वॉट>कहां के विहित अनुमान हैं को .

वक्रों की शीफ कोहोलॉजी की गणना

में , का सामान्य अनुभाग वक्र को परिभाषित करता है , आदर्श अनुक्रम<ब्लॉककोट> दे रहा हैफिर, लंबा त्रुटिहीन अनुक्रम

के रूप में पढ़ा जाता है

देना

से वक्र का जीनस है, हम इसकी बेट्टी संख्या की गणना करने के लिए कुनेथ सूत्र का उपयोग कर सकते हैं। यह <ब्लॉककोट> हैजो रैंक का है

[8]</ब्लॉककोट>के लिए . विशेषकर, यदि के सामान्य अनुभाग के लुप्त हो रहे स्थान द्वारा परिभाषित किया गया है , यह जीनस<ब्लॉककोट> का है

इसलिए इसके अंदर किसी भी जीनस का वक्र पाया जा सकता है .

परिमित-आयामीता

उचित योजना के लिए मैदान के ऊपर और कोई सुसंगत शीफ़ पर , कोहोमोलॉजी समूह के रूप में सीमित आयाम है -सदिश रिक्त स्थान.[9] विशेष स्थितियों में जहां प्रक्षेप्य विविधता खत्म हो गई है , यह ऊपर चर्चा की गई प्रक्षेप्य स्थान पर लाइन बंडलों के स्थितियों को कम करके सिद्ध करना होता है। क्षेत्र पर उचित योजना के सामान्य स्थितियों में, ग्रोथेंडिक ने चाउ के लेम्मा का उपयोग करके प्रोजेक्टिव स्थितियों को कम करके कोहोलॉजी की परिमितता को सिद्ध करना किया।

कोहोलॉजी की परिमित-आयामीता बहुत ही भिन्न तर्क के अनुसार, किसी भी सघन स्थान समष्टि स्थान पर सुसंगत विश्लेषणात्मक ढेरों की अनुरूप स्थिति में भी होती है। हेनरी कर्तन और सेरे ने फ्रैचेट स्पेस में कॉम्पैक्ट ऑपरेटरों पर लॉरेंट श्वार्ट्ज के प्रमेय का उपयोग करके इस विश्लेषणात्मक स्थिति में परिमित-आयामीता सिद्ध करना की। उचित रूपवाद के लिए इस परिणाम के सापेक्ष संस्करण ग्रोथेंडिक (स्थानीय रूप से नोथेरियन योजनाओं के लिए) और हंस ग्राउर्ट (समष्टि विश्लेषणात्मक स्थानों के लिए) द्वारा सिद्ध किए गए थे। अर्थात्, उचित रूपवाद के लिए (बीजगणितीय या विश्लेषणात्मक सेटिंग में) और सुसंगत शीफ पर , उच्च प्रत्यक्ष छवि ढेर सुसंगत हैं.[10] कब बिंदु है, यह प्रमेय कोहोलॉजी की परिमित-आयामीता देता है।

कोहोलॉजी की परिमित-आयामीता प्रक्षेप्य किस्मों के लिए अनेक संख्यात्मक अपरिवर्तनीयता की ओर ले जाती है। उदाहरण के लिए, यदि बीजगणितीय रूप से बंद क्षेत्र पर चिकनी योजना प्रक्षेप्य बीजगणितीय वक्र है , की प्रजाति के आयाम के रूप में परिभाषित किया गया है -सदिश स्थल . कब समष्टि संख्याओं का क्षेत्र है, यह अंतरिक्ष के जीनस (गणित) से सहमत है इसकी मौलिक (यूक्लिडियन) टोपोलॉजी में समष्टि बिंदुओं की। (उस स्थितियों में, बंद उन्मुख सतह (टोपोलॉजी) है।) अनेक संभावित उच्च-आयामी सामान्यीकरणों में से, चिकनी प्रक्षेप्य विविधता का ज्यामितीय जीनस आयाम का का आयाम है , और अंकगणित जीनस (परंपरा के अनुसार[11]) प्रत्यावर्ती योग है

सर्रे द्वैत

सेरे द्वैत सुसंगत शीफ कोहोलॉजी के लिए पोंकारे द्वैत का एनालॉग है। इस सादृश्य में, विहित बंडल ओरिएंटेशन शीफ की भूमिका निभाता है। अर्थात्, सुचारू उचित योजना के लिए आयाम का मैदान के ऊपर , प्राकृतिक ट्रेस मानचित्र है , जो समरूपता है यदि ज्यामितीय रूप से जुड़ा हुआ है, जिसका अर्थ है कि फाइबर उत्पाद के बीजगणितीय समापन के लिए जुड़ा हुआ स्थान है. सदिश बंडल के लिए क्रमिक द्वंद्व पर कहते हैं कि उत्पाद

प्रत्येक पूर्णांक के लिए आदर्श युग्म है .[12] विशेष रूप से, -सदिश रिक्त स्थान और समान (परिमित) आयाम है। (सेरे ने किसी भी कॉम्पैक्ट कॉम्प्लेक्स मैनिफोल्ड पर होलोमोर्फिक सदिश बंडलों के लिए सेरे द्वैत को भी सिद्ध करना किया।) सुसंगत द्वंद्व सिद्धांत में किसी भी सुसंगत शीफ और योजनाओं के किसी भी उचित रूपवाद के सामान्यीकरण सम्मिलित हैं, चूंकि कथन कम प्राथमिक हो जाते हैं।

उदाहरण के लिए, चिकने प्रक्षेप्य वक्र के लिए बीजगणितीय रूप से बंद क्षेत्र पर , सेरे द्वैत का तात्पर्य है कि अंतरिक्ष का आयाम 1-फॉर्म पर के वंश के सामान्तर है (का आयाम ).

GAGA प्रमेय

GAGA प्रमेय समष्टि संख्याओं पर बीजगणितीय किस्मों को संबंधित विश्लेषणात्मक स्थानों से जोड़ते हैं। परिमित रूपवाद की योजनाएक. प्रमुख GAGA प्रमेय (ग्रोथेंडिद्वारा, प्रोजेक्टिव केस पर सेरे के प्रमेय को सामान्यीकृत करते हुए) यह है कि यदि X 'C' के ऊपर उचित है, तब यह फ़नकार श्रेणियों का समतुल्य है। इसके अतिरिक्त, प्रत्येक सुसंगत बीजगणितीय शीफ ई के लिए 'सी' पर उचित योजना एक्स पर, प्राकृतिक मानचित्र

(परिमित-आयामी) समष्टि सदिश रिक्त स्थान सभी i के लिए समरूपता है।[13] (यहां पहला समूह ज़ारिस्की टोपोलॉजी का उपयोग करके परिभाषित किया गया है, और दूसरा मौलिक (यूक्लिडियन) टोपोलॉजी का उपयोग करके परिभाषित किया गया है।) उदाहरण के लिए, प्रक्षेप्य स्थान पर बीजगणितीय और विश्लेषणात्मक सुसंगत ढेरों के मध्य समानता बीजगणितीय ज्यामिति और विश्लेषणात्मक ज्यामिति का तात्पर्य है#चाउ का प्रमेय|चाउ का प्रमेय सीपी का प्रत्येक बंद विश्लेषणात्मक उपस्थानnबीजीय है.

लुप्त प्रमेय

सेरे का लुप्त प्रमेय कहता है कि किसी भी पर्याप्त लाइन बंडल के लिए उचित योजना पर नोथेरियन अंगूठी और किसी भी सुसंगत शीफ के ऊपर पर , पूर्णांक है ऐसा कि सभी के लिए , पूला यह अपने वैश्विक खंडों द्वारा फैला हुआ है और इसमें धनात्मक डिग्री में कोई सह-समरूपता नहीं है।[14][15] यद्यपि सेरे का लुप्त प्रमेय उपयोगी है, संख्या की अस्पष्टता समस्या हो सकती है. कोडैरा लुप्त प्रमेय महत्वपूर्ण स्पष्ट परिणाम है। अर्थात्, यदि विशेषता शून्य के क्षेत्र पर सहज प्रक्षेप्य प्रकार है, पर्याप्त लाइन बंडल है , और फिर विहित बंडल

सभी के लिए . ध्यान दें कि सेरे का प्रमेय बड़ी शक्तियों के लिए समान लुप्त होने की गारंटी देता है . कोडैरा का लुप्त होना और इसके सामान्यीकरण बीजगणितीय किस्मों के वर्गीकरण और न्यूनतम मॉडल कार्यक्रम के लिए मौलिक हैं। कोदैरा का लुप्त होना धनात्मक विशेषता वाले क्षेत्रों में विफल रहता है।[16]

हॉज सिद्धांत

हॉज प्रमेय सुसंगत शीफ कोहोमोलॉजी को एकवचन कोहोमोलॉजी (या डी गर्भ तीर्थयात्री के रूप में) से जोड़ता है। अर्थात्, यदि सहज समष्टि प्रक्षेप्य प्रकार है, तब समष्टि सदिश स्थानों का विहित प्रत्यक्ष-योग अपघटन होता है:

हरके लिए . बायीं ओर के समूह का अर्थ है एकवचन सहसंरचना इसकी मौलिक (यूक्लिडियन) टोपोलॉजी में, जबकि दाईं ओर के समूह सुसंगत शीव्स के कोहोमोलॉजी समूह हैं, जिन्हें (जीएजीए द्वारा) ज़ारिस्की या मौलिक टोपोलॉजी में लिया जा सकता है। यही निष्कर्ष किसी भी सुचारू उचित योजना के लिए प्रयुक्त होता है ऊपर , या किसी कॉम्पैक्ट काहलर मैनिफोल्ड के लिए।

उदाहरण के लिए, हॉज प्रमेय का तात्पर्य है कि चिकनी प्रक्षेप्य वक्र के जीनस की परिभाषा के आयाम के रूप में , जो किसी भी क्षेत्र पर समझ में आता है , टोपोलॉजिकल परिभाषा से सहमत है (पहली बेट्टी संख्या के आधे के रूप में)। समष्टि संख्या है. हॉज सिद्धांत ने समष्टि बीजगणितीय किस्मों के टोपोलॉजिकल गुणों पर बड़े पैमाने पर काम करने के लिए प्रेरित किया है।

रीमैन-रोच प्रमेय

फ़ील्ड k पर उचित योजना X के लिए, X पर सुसंगत शीफ़ E की यूलर विशेषता पूर्णांक है

रीमैन-रोच प्रमेय और इसके सामान्यीकरण, हिरज़ेब्रुक-रीमैन-रोच प्रमेय और ग्रोथेंडिक-रीमैन-रोच प्रमेय के अनुसार, सुसंगत शीफ ई की यूलर विशेषता की गणना ई के चेर्न वर्गों से की जा सकती है। उदाहरण के लिए, यदि L फ़ील्ड k पर चिकने उचित ज्यामितीय रूप से जुड़े वक्र X पर रेखा बंडल है, तब

जहां deg(L) L के विभाजक (बीजगणितीय ज्यामिति)#विभाजक वर्ग समूह को दर्शाता है।

जब लुप्त प्रमेय के साथ जोड़ा जाता है, तब रीमैन-रोच प्रमेय का उपयोग अधिकांशतः लाइन बंडल के अनुभागों के सदिश स्थान के आयाम को निर्धारित करने के लिए किया जा सकता है। यह जानते हुए कि एक्स पर लाइन बंडल में पर्याप्त खंड हैं, बदले में, एक्स से प्रोजेक्टिव स्पेस तक मानचित्र को परिभाषित करने के लिए उपयोग किया जा सकता है, संभवतः बंद विसर्जन। बीजगणितीय किस्मों को वर्गीकृत करने के लिए यह दृष्टिकोण आवश्यक है।

रीमैन-रोच प्रमेय अतियाह-सिंगर इंडेक्स प्रमेय द्वारा कॉम्पैक्ट कॉम्प्लेक्स मैनिफोल्ड पर होलोमोर्फिक सदिश बंडलों के लिए भी प्रयुक्त होता है।

विकास

आयाम n की योजना पर कोहोलॉजी समूहों के आयाम अधिकतम n डिग्री वाले बहुपद की तरह बढ़ सकते हैं।

मान लीजिए कि X आयाम n की प्रक्षेप्य योजना है और D, X पर विभाजक है। यदि क्या X पर कोई सुसंगत शीफ़ है?

प्रत्येक i के लिए

एक्स पर नेफ विभाजक डी की उच्च सहसंरचना के लिए;

अनुप्रयोग

फ़ील्ड k पर स्कीम सबसे सरल मामला, रिंग के ऊपर विकृतियों से संबंधित है दोहरी संख्याओं की जांच करता है कि क्या कोई स्कीम एक्स हैR स्पेक आर के ऊपर ऐसा कि विशेष फाइबर

दिए गए X के समरूपी है। स्पर्शरेखा शीफ ​​में गुणांक के साथ सुसंगत शीफ सहसंरूपता X की विकृति के इस वर्ग को नियंत्रित करता है, परंतु कि X चिकना हो। अर्थात्,

  • उपरोक्त प्रकार की विकृतियों के समरूपता वर्गों को पहले सुसंगत कोहोलॉजी द्वारा पैरामीट्रिज्ड किया गया है ,
  • इसमें तत्व है (जिसे अवरोध वर्ग कहा जाता है)। जो गायब हो जाता है यदि और केवल तभी जब उपरोक्त के अनुसार स्पेक आर पर एक्स का विरूपण उपस्तिथ हो।

टिप्पणियाँ

  1. (Hartshorne 1977, (III.1.1A) and section III.2.)
  2. 2.0 2.1 Stacks Project, Tag 01X8.
  3. Stacks Project, Tag 01XE.
  4. (Hartshorne 1977, Theorem III.5.1.)
  5. (Hartshorne 1977, Theorem III.2.7.)
  6. Hochenegger, Andreas (2019). "Introduction to derived categories of coherent sheaves". In Andreas Hochenegger; Manfred Lehn; Paolo Stellari (eds.). हाइपरसर्फेस की बीरेशनल ज्यामिति. Lecture Notes of the Unione Matematica Italiana. Vol. 26. pp. 267–295. arXiv:1901.07305. Bibcode:2019arXiv190107305H. doi:10.1007/978-3-030-18638-8_7. ISBN 978-3-030-18637-1. S2CID 119721183.
  7. "Section 33.29 (0BEC): Künneth formula—The Stacks project". stacks.math.columbia.edu. Retrieved 2020-02-23.
  8. Vakil. "FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASSES 35 AND 36" (PDF).
  9. Stacks Project, Tag 02O3.
  10. (Grothendieck & Dieudonné 1961, (EGA 3) 3.2.1), (Grauert & Remmert 1984, Theorem 10.4.6.)
  11. (Serre 1955, section 80.)
  12. (Hartshorne 1977, Theorem III.7.6.)
  13. (Grothendieck & Raynaud 2003, (SGA 1) Exposé XII.)
  14. (Hartshorne 1977, Theorem II.5.17 and Proposition III.5.3.)
  15. (Grothendieck & Dieudonné 1961, (EGA 3) Theorem 2.2.1)
  16. Michel Raynaud. Contre-exemple au vanishing theorem en caractéristique p > 0. In C. P. Ramanujam - a tribute, Tata Inst. Fund. Res. Studies in Math. 8, Berlin, New York: Springer-Verlag, (1978), pp. 273-278.

संदर्भ

बाहरी संबंध