गुणक आदर्श: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
[[क्रमविनिमेय बीजगणित]] में, [[जटिल संख्या]] [[बीजगणितीय विविधता]] और वास्तविक संख्या ''सी'' पर [[आदर्श (रिंग सिद्धांत)]] के शीफ (गणित) से जुड़े गुणक आदर्श में (स्थानीय रूप से) फ़ंक्शन ''एच'' शामिल होते हैं जैसे कि
[[क्रमविनिमेय बीजगणित]] में, [[जटिल संख्या|समष्टि संख्या]] [[बीजगणितीय विविधता]] और वास्तविक संख्या सी पर [[आदर्श (रिंग सिद्धांत)|आदर्शों]] के समूह से जुड़े '''गुणक आदर्श''' में (स्थानीय रूप से) फलन एच सम्मिलित होते हैं जैसे कि


: <math>\frac{|h|^2}{\sum|f_i^2|^c}</math>
: <math>\frac{|h|^2}{\sum|f_i^2|^c}</math>
स्थानीय रूप से एकीकृत फ़ंक्शन है, जहां f<sub>''i''</sub> आदर्श के स्थानीय जनरेटर का सीमित सेट हैं। गुणक आदर्शों को स्वतंत्र रूप से प्रस्तुत किया गया था {{harvtxt|Nadel|1989}} (जिन्होंने आदर्शों के बजाय जटिल विविधताओं पर काम किया) और {{harvtxt|Lipman|1993}}, जिन्होंने इन्हें संयुक्त आदर्श कहा।
स्थानीय रूप से एकीकृत फलन है, इस प्रकार जहां f<sub>''i''</sub> आदर्श के स्थानीय जनरेटर का सीमित समुच्चय होता हैं। इस प्रकार गुणक आदर्शों को स्वतंत्र रूप से {{harvtxt|नाडेल|1989}} प्रस्तुत किया गया था (जिन्होंने आदर्शों के अतिरिक्त समष्टि विविधताओं पर काम किया था) और {{harvtxt|लिपमैन|1993}} द्वारा प्रस्तुत किया गया था, जिन्होंने इन्हें संयुक्त आदर्श कहा था।


सर्वेक्षण लेखों में गुणक आदर्शों पर चर्चा की गई है {{harvtxt|Blickle|Lazarsfeld|2004}}, {{harvtxt|Siu|2005}}, और {{harvtxt|Lazarsfeld|2009}}.
इस प्रकार गुणक आदर्शों पर सर्वेक्षण लेखों {{harvtxt|ब्लिकल|लाज़र्सफ़ेल्ड|2004}}, {{harvtxt|एसआईयू|2005}}, और {{harvtxt|लाज़र्सफ़ेल्ड|2009}} में चर्चा की गई है।


== बीजगणितीय ज्यामिति ==
== '''बीजगणितीय ज्यामिति''' ==
बीजगणितीय ज्यामिति में, प्रभावी का गुणक आदर्श <math>\mathbb{Q}</math>-वि[[भाजक (बीजगणितीय ज्यामिति)]] डी के भिन्नात्मक भागों से आने वाली विलक्षणताओं को मापता है। गुणक आदर्शों को अक्सर [[कोडैरा लुप्त प्रमेय]] और कावामाता-विहवेग लुप्त प्रमेय जैसे लुप्त प्रमेयों के साथ मिलकर लागू किया जाता है।
बीजगणितीय ज्यामिति में, प्रभावी का '''गुणक आदर्श''' <math>\mathbb{Q}</math>-वि[[भाजक (बीजगणितीय ज्यामिति)]] डी के भिन्नात्मक भागों से आने वाली विलक्षणताओं को मापता है। इस प्रकार गुणक आदर्शों को अधिकांशतः [[कोडैरा लुप्त प्रमेय]] और कावामाता-विहवेग लुप्त प्रमेय जैसे लुप्त प्रमेयों के साथ मिलकर प्रयुक्त किया जाता है।


मान लीजिए कि X सहज जटिल किस्म है और D प्रभावी किस्म है <math>\mathbb{Q}</math>-इस पर विभाजक. होने देना <math>\mu: X' \to X</math> D का [[लॉग रिज़ॉल्यूशन]] हो (उदाहरण के लिए, हिरोनका का रिज़ॉल्यूशन)। D का गुणक आदर्श है
मान लीजिए कि X सहज समष्टिका विशेष प्रकार होता है और D प्रभावी प्रकार है, अतः <math>\mathbb{Q}</math> इस पर विभाजक होने देना है और <math>\mu: X' \to X</math> डी का [[लॉग रिज़ॉल्यूशन]] होता है (उदाहरण के लिए, हिरोनका का रिज़ॉल्यूशन) एवं डी का गुणक आदर्श होता है
:<math>J(D) = \mu_*\mathcal{O}(K_{X'/X} - [\mu^* D])</math>
:<math>J(D) = \mu_*\mathcal{O}(K_{X'/X} - [\mu^* D])</math>
कहाँ <math>K_{X'/X}</math> सापेक्ष विहित भाजक है: <math>K_{X'/X} = K_{X'} - \mu^* K_X</math>. यह का आदर्श पूल है <math>\mathcal{O}_X</math>. यदि D अभिन्न है, तो <math>J(D) = \mathcal{O}_X(-D)</math>.
जहाँ <math>K_{X'/X}</math> सापेक्ष विहित भाजक होता है। यह <math>K_{X'/X} = K_{X'} - \mu^* K_X</math> का आदर्श पूल <math>\mathcal{O}_X</math> होता है यदि D अभिन्न है, तब <math>J(D) = \mathcal{O}_X(-D)</math> होता है।


== यह भी देखें ==
== '''यह भी देखें''' ==
*[[विहित विलक्षणता]]
*[[विहित विलक्षणता]]
*परीक्षा आदर्श
*परीक्षा आदर्श


==संदर्भ==
=='''संदर्भ'''==
*{{Citation | last1=ब्लिकल | first1=मैनुएल | last2=लाज़र्सफ़ेल्ड | first2=रॉबर्ट | title=क्रमविनिमेय बीजगणित में रुझान | chapter-url=http://www.msri.org/communications/books/Book51/contents.html | publisher=[[कैम्ब्रिज यूनिवर्सिटी प्रेस]] | series=गणित। विज्ञान. रेस. उदाहरण. प्रकाशन. | mr=2132649 | year=2004 | volume=51 | chapter=गुणक आदर्शों का एक अनौपचारिक परिचय | pages=87–114 | doi=10.1017/CBO9780511756382.004| isbn=9780521831956 | citeseerx=10.1.1.241.4916 | s2cid=10215098 }}
*{{Citation | last1=ब्लिकल | first1=मैनुएल | last2=लाज़र्सफ़ेल्ड | first2=रॉबर्ट | title=क्रमविनिमेय बीजगणित में रुझान | chapter-url=http://www.msri.org/communications/books/Book51/contents.html | publisher=[[कैम्ब्रिज यूनिवर्सिटी प्रेस]] | series=गणित। विज्ञान. रेस. उदाहरण. प्रकाशन. | mr=2132649 | year=2004 | volume=51 | chapter=गुणक आदर्शों का एक अनौपचारिक परिचय | pages=87–114 | doi=10.1017/CBO9780511756382.004| isbn=9780521831956 | citeseerx=10.1.1.241.4916 | s2cid=10215098 }}
*{{Citation | last1=लाज़र्सफ़ेल्ड | first1=रॉबर्ट | title=गुणक आदर्शों पर एक संक्षिप्त पाठ्यक्रम  | arxiv=0901.0651 | year=2009 | journal=2008 पीसीएमआई व्याख्यान| bibcode=2009arXiv0901.0651L}}
*{{Citation | last1=लाज़र्सफ़ेल्ड | first1=रॉबर्ट | title=गुणक आदर्शों पर एक संक्षिप्त पाठ्यक्रम  | arxiv=0901.0651 | year=2009 | journal=2008 पीसीएमआई व्याख्यान| bibcode=2009arXiv0901.0651L}}
Line 24: Line 24:
*{{Citation | last1=Nadel | first1=Alan Michael | title=गुणक आदर्श समूह और सकारात्मक अदिश वक्रता के काहलर-आइंस्टीन मेट्रिक्स का अस्तित्व | jstor=34630 | mr=1015491 | year=1989 | journal=[[राष्ट्रीय विज्ञान अकादमी की कार्यवाही|संयुक्त राज्य अमेरिका की राष्ट्रीय विज्ञान अकादमी की कार्यवाही]]  | volume=86 | issue=19 | pages=7299–7300 | doi=10.1073/pnas.86.19.7299| pmc=298048 | bibcode=1989PNAS...86.7299N | pmid=16594070| doi-access=free }}
*{{Citation | last1=Nadel | first1=Alan Michael | title=गुणक आदर्श समूह और सकारात्मक अदिश वक्रता के काहलर-आइंस्टीन मेट्रिक्स का अस्तित्व | jstor=34630 | mr=1015491 | year=1989 | journal=[[राष्ट्रीय विज्ञान अकादमी की कार्यवाही|संयुक्त राज्य अमेरिका की राष्ट्रीय विज्ञान अकादमी की कार्यवाही]]  | volume=86 | issue=19 | pages=7299–7300 | doi=10.1073/pnas.86.19.7299| pmc=298048 | bibcode=1989PNAS...86.7299N | pmid=16594070| doi-access=free }}
*{{Citation | last1=Siu | first1=Yum-Tong | title=जटिल और बीजगणितीय ज्यामिति में गुणक आदर्श ढेर | doi=10.1007/BF02884693 | mr=2156488 | year=2005 | journal=विज्ञान चीन गणित  | volume=48 | issue=S1 | pages=1–31| arxiv=math/0504259 | bibcode=2005ScChA..48....1S | s2cid=119163294 }}
*{{Citation | last1=Siu | first1=Yum-Tong | title=जटिल और बीजगणितीय ज्यामिति में गुणक आदर्श ढेर | doi=10.1007/BF02884693 | mr=2156488 | year=2005 | journal=विज्ञान चीन गणित  | volume=48 | issue=S1 | pages=1–31| arxiv=math/0504259 | bibcode=2005ScChA..48....1S | s2cid=119163294 }}
[[Category: क्रमविनिमेय बीजगणित]] [[Category: बीजगणितीय ज्यामिति]]


[[Category: Machine Translated Page]]
[[Category:Created On 14/07/2023]]
[[Category:Created On 14/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Templates Vigyan Ready]]
[[Category:क्रमविनिमेय बीजगणित]]
[[Category:बीजगणितीय ज्यामिति]]

Latest revision as of 06:51, 1 August 2023

क्रमविनिमेय बीजगणित में, समष्टि संख्या बीजगणितीय विविधता और वास्तविक संख्या सी पर आदर्शों के समूह से जुड़े गुणक आदर्श में (स्थानीय रूप से) फलन एच सम्मिलित होते हैं जैसे कि

स्थानीय रूप से एकीकृत फलन है, इस प्रकार जहां fi आदर्श के स्थानीय जनरेटर का सीमित समुच्चय होता हैं। इस प्रकार गुणक आदर्शों को स्वतंत्र रूप से नाडेल (1989) प्रस्तुत किया गया था (जिन्होंने आदर्शों के अतिरिक्त समष्टि विविधताओं पर काम किया था) और लिपमैन (1993) द्वारा प्रस्तुत किया गया था, जिन्होंने इन्हें संयुक्त आदर्श कहा था।

इस प्रकार गुणक आदर्शों पर सर्वेक्षण लेखों ब्लिकल & लाज़र्सफ़ेल्ड (2004), एसआईयू (2005), और लाज़र्सफ़ेल्ड (2009) में चर्चा की गई है।

बीजगणितीय ज्यामिति

बीजगणितीय ज्यामिति में, प्रभावी का गुणक आदर्श -विभाजक (बीजगणितीय ज्यामिति) डी के भिन्नात्मक भागों से आने वाली विलक्षणताओं को मापता है। इस प्रकार गुणक आदर्शों को अधिकांशतः कोडैरा लुप्त प्रमेय और कावामाता-विहवेग लुप्त प्रमेय जैसे लुप्त प्रमेयों के साथ मिलकर प्रयुक्त किया जाता है।

मान लीजिए कि X सहज समष्टिका विशेष प्रकार होता है और D प्रभावी प्रकार है, अतः इस पर विभाजक होने देना है और डी का लॉग रिज़ॉल्यूशन होता है (उदाहरण के लिए, हिरोनका का रिज़ॉल्यूशन) एवं डी का गुणक आदर्श होता है

जहाँ सापेक्ष विहित भाजक होता है। यह का आदर्श पूल होता है यदि D अभिन्न है, तब होता है।

यह भी देखें

संदर्भ