विकिरण की लंबाई: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 76: Line 76:
==संदर्भ==
==संदर्भ==
{{Reflist|2}}
{{Reflist|2}}
[[Category: प्रायोगिक कण भौतिकी]]




{{particle-stub}}
{{particle-stub}}


 
[[Category:All stub articles]]
 
[[Category:Articles containing German-language text]]
[[Category: Machine Translated Page]]
[[Category:Created On 14/07/2023]]
[[Category:Created On 14/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Particle physics stubs]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:प्रायोगिक कण भौतिकी]]

Latest revision as of 07:00, 1 August 2023

कण भौतिकी में, विकिरण की लंबाई सामग्री की विशेषता है, जो इसके साथ विद्युत चुम्बकीय रूप से वर्णन करने वाले उच्च ऊर्जा प्राथमिक कण की ऊर्जा हानि से संबंधित है। इसे सामग्री की औसत लंबाई (सेमी में) के रूप में परिभाषित किया जाता है जिस पर इलेक्ट्रॉन की ऊर्जा कारक 1/e (गणितीय स्थिरांक) द्वारा कम हो जाती है।[1]


परिभाषा

उच्च परमाणु क्रमांक वाली सामग्रियों (जैसे टंगस्टन, यूरेनियम, प्लूटोनियम) में ~10 MeV से अधिक ऊर्जा वाले इलेक्ट्रॉन में मुख्य रूप से ब्रेम्सस्ट्रालंग द्वारा एवं उच्च-ऊर्जा फोटॉन में e+e जोड़ी उत्पादन द्वारा ऊर्जा लुप्त हो जाती हैं। इन संबंधित अंतःक्रियाओं के लिए पार किए गए पदार्थ की विशिष्ट मात्रा को विकिरण लंबाई X0 कहा जाता है, जिसे सामान्यतः g·cm−2 में मापा जाता है। यह वह औसत दूरी है जिस पर उच्च-ऊर्जा इलेक्ट्रॉन ब्रेम्सस्ट्रालंग द्वारा अपनी ऊर्जा का अर्ध भाग 1e लुप्त हो जाता है एवं उच्च-ऊर्जा फोटॉन द्वारा युग्म उत्पादन के लिए माध्य मुक्त पथ का 79 भाग है। यह उच्च-ऊर्जा विद्युत चुम्बकीय कैस्केड वर्णन करने के लिए उपयुक्त लंबाई का मानदंड भी है।

समान नाभिक से युक्त किसी दिए गए पदार्थ के लिए विकिरण की लंबाई निम्नलिखित अभिव्यक्ति द्वारा अनुमानित की जा सकती है:[2]

जहाँ Z परमाणु संख्या है एवं A नाभिक की द्रव्यमान संख्या है।

Z > 4 के लिए, उचित सन्निकटन है,[3]

जहाँ

कम ऊर्जा (कुछ दसियों MeV से कम) पर इलेक्ट्रॉनों के लिए, आयनीकरण द्वारा ऊर्जा हानि प्रमुख है।

चूंकि इस परिभाषा का उपयोग लेप्टान एवं फोटॉन से परे अन्य विद्युत चुम्बकीय अंतःक्रियात्मक कणों के लिए भी किया जा सकता है, शक्तिशाली हैड्रोनिक एवं परमाणु बल की उपस्थिति इसे सामग्री का बहुत कम आकर्षक लक्षण वर्णन बनाती है; परमाणु टकराव की लंबाई एवं परमाणु संपर्क की लंबाई अधिक प्रासंगिक है।

विकिरण की लंबाई एवं सामग्री के अन्य गुणों के लिए व्यापक तालिकाएँ कण डेटा समूह से उपलब्ध हैं।[2][4]


यह भी देखें

संदर्भ

  1. M. Gupta; et al. (2010). "Calculation of radiation length in materials". PH-EP-Tech-Note. 592 (1–4): 1. arXiv:astro-ph/0406663. Bibcode:2004PhLB..592....1P. doi:10.1016/j.physletb.2004.06.001.
  2. 2.0 2.1 S. Eidelman; et al. (2004). "Review of particle physics". Phys. Lett. B. 592 (1–4): 1–5. arXiv:astro-ph/0406663. Bibcode:2004PhLB..592....1P. doi:10.1016/j.physletb.2004.06.001. (http://pdg.lbl.gov/)
  3. De Angelis, Alessandro; Pimenta, Mário (2018). Introduction to Particle and Astroparticle Physics (2 ed.). Springer. Bibcode:2018ipap.book.....D. doi:10.1007/978-3-319-78181-5. ISBN 978-3-319-78180-8.
  4. "कण डेटा समूह पर AtomicNuclearProperties".