अंकगणितीय गतिशीलता: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 89: Line 89:
{{Number theory-footer}}
{{Number theory-footer}}


{{DEFAULTSORT:Arithmetic Dynamics}}[[Category: अंकगणितीय गतिशीलता| अंकगणितीय गतिशीलता]] [[Category: गतिशील प्रणालियाँ]] [[Category: बीजगणितीय संख्या सिद्धांत]]
{{DEFAULTSORT:Arithmetic Dynamics}}


 
[[Category:Articles with hatnote templates targeting a nonexistent page|Arithmetic Dynamics]]
 
[[Category:Collapse templates|Arithmetic Dynamics]]
[[Category: Machine Translated Page]]
[[Category:Created On 21/07/2023|Arithmetic Dynamics]]
[[Category:Created On 21/07/2023]]
[[Category:Machine Translated Page|Arithmetic Dynamics]]
[[Category:Vigyan Ready]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Arithmetic Dynamics]]
[[Category:Pages with script errors|Arithmetic Dynamics]]
[[Category:Sidebars with styles needing conversion|Arithmetic Dynamics]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi|Arithmetic Dynamics]]
[[Category:Templates Vigyan Ready|Arithmetic Dynamics]]
[[Category:Templates generating microformats|Arithmetic Dynamics]]
[[Category:Templates that are not mobile friendly|Arithmetic Dynamics]]
[[Category:Templates using TemplateData|Arithmetic Dynamics]]
[[Category:Wikipedia metatemplates|Arithmetic Dynamics]]
[[Category:अंकगणितीय गतिशीलता| अंकगणितीय गतिशीलता]]
[[Category:गतिशील प्रणालियाँ|Arithmetic Dynamics]]
[[Category:बीजगणितीय संख्या सिद्धांत|Arithmetic Dynamics]]

Latest revision as of 12:18, 31 July 2023

अंकगणितीय गतिशीलता[1] ऐसा क्षेत्र है जो गणित के दो क्षेत्रों, गतिशील प्रणालियों और संख्या सिद्धांत को जोड़ता है। प्रेरणा का समिष्ट गतिशीलता से आता है, समिष्ट तल या अन्य समिष्ट बीजगणितीय विविधता के स्व-मानचित्रों की पुनरावृत्ति का अध्ययन है। अंकगणितीय गतिशीलता बहुपद या परिमेय फलन के बार-बार प्रयोग के अंतर्गत पूर्णांक, तर्कसंगत, p-एडिक, या बीजगणितीय बिंदुओं की संख्या-सैद्धांतिक गुणों का अध्ययन है। मौलिक लक्ष्य अंतर्निहित ज्यामितीय संरचनाओं के संदर्भ में अंकगणितीय गुणों का वर्णन करना है।

वैश्विक अंकगणितीय गतिशीलता असतत गतिशील प्रणालियों की सेटिंग में शास्त्रीय डायोफैंटाइन ज्यामिति के एनालॉग्स का अध्ययन है, जबकि स्थानीय अंकगणितीय गतिशीलता, जिसे p-एडिक या गैर-आर्किमिडीयन गतिशीलता भी कहा जाता है, समिष्ट गतिशीलता का एनालॉग है जिसमें कोई समिष्ट संख्या C को Qp या Cp जैसे p-एडिक क्षेत्र द्वारा प्रतिस्थापित करता है और अराजक व्यवहार और फ़तौ और जूलिया सेट का अध्ययन करता है।

निम्नलिखित तालिका डायोफैंटाइन समीकरणों, विशेष रूप से एबेलियन विविधता और गतिशील प्रणालियों के मध्य रफ पत्राचार का वर्णन करती है:

डायोफैंटाइन समीकरण गतिशील प्रणालियाँ
विविधता पर तर्कसंगत और पूर्णांक बिंदु कक्षा में तर्कसंगत और पूर्णांक बिंदु
एबेलियन विविधता पर सीमित क्रम के बिंदु तर्कसंगत फलन के पूर्व-आवधिक बिंदु

असतत गतिशीलता से परिभाषाएँ और संकेतन

मान लीजिए S समुच्चय है और मान लीजिए F : SS, S से स्वयं का मानचित्र है। F की स्वयं के साथ n बार पुनरावृत्ति को दर्शाया गया है:

बिंदु PS आवर्त है यदि F(n)(P) = P कुछ n ≥ 1 के लिए है।

यदि F(k)(P) किसी k ≥ 1के लिए आवर्त है तो बिंदु पूर्वआवधिक है।

P की (आगे की) कक्षा निर्धारित है:

इस प्रकार P पूर्वआवधिक है यदि और केवल इसकी कक्षा OF(P) परिमित है।

पूर्वआवधिक बिंदुओं की संख्या सैद्धांतिक गुण

मान लीजिए कि F(x) Q में गुणांक के साथ कम से कम दो डिग्री का तर्कसंगत फलन है। डगलस नॉर्थकॉट का प्रमेय[2] कहता है कि F में केवल सीमित रूप से कई Q-तर्कसंगत पूर्वआवधिक बिंदु हैं, अर्थात, F में केवल सीमित रूप से कई पूर्व-आवधिक बिंदु P1(Q) हैं। पैट्रिक मॉर्टन और जोसेफ सिल्वरमैन के पूर्वआवधिक बिंदुओं के लिए समान सीमा अनुमान[3] का कहना है कि P1(Q) में F के पूर्वआवधिक बिंदुओं की संख्या स्थिरांक से बंधी है जो केवल F की डिग्री पर निर्भर करती है।

सामान्यतः, मान लीजिए कि F : PNPN संख्या क्षेत्र K पर परिभाषित कम से कम दो डिग्री का रूपवाद है। नॉर्थकॉट प्रमेय का कहना है कि F के निकट PN(K) में केवल सीमित रूप से कई पूर्व-आवधिक बिंदु हैं, और सामान्य समान सीमा अनुमान कहता है कि PN(K) में पूर्व-आवधिक बिंदुओं की संख्या पूर्ण रूप से N, F की डिग्री और Q पर K की डिग्री के संदर्भ में सीमित हो सकती है।

समरूप सीमा अनुमान परिमेय संख्या Q पर द्विघात बहुपद Fc(x) = x2 + c के लिए भी ज्ञात नहीं है। इस स्थिति में यह ज्ञात है कि Fc(x) में अवधि चार,[4] पाँच,[5] या छह के आवधिक बिंदु नहीं हो सकते हैं,[6] चूँकि अवधि छह का परिणाम बिर्च स्विनर्टन-डायर अनुमान की वैधता पर निर्भर है। ब्योर्न पूनेन ने अनुमान लगाया है कि Fc(x) किसी भी अवधि के तर्कसंगत आवधिक बिंदु तीन से अधिक बड़े नहीं हो सकते हैं।[7]

कक्षाओं में पूर्णांक बिंदु

तर्कसंगत मानचित्र की कक्षा में अनंत संख्या में पूर्णांक हो सकते हैं। उदाहरण के लिए, यदि F(x) पूर्णांक गुणांकों वाला बहुपद है और यदि a पूर्णांक है, तो यह स्पष्ट है कि संपूर्ण कक्षा OF(a) में पूर्णांक होते हैं। इसी प्रकार, यदि F(x) तर्कसंगत मानचित्र है और कुछ पुनरावृत्त F(n)(x) पूर्णांक गुणांक वाला बहुपद है, तो कक्षा में प्रत्येक n-वीं प्रविष्टि पूर्णांक है। इस घटना का उदाहरण मानचित्र F(x) = x−d है, जिसका दूसरा पुनरावृत्त बहुपद है। यह ज्ञात है कि यह एकमात्र विधि है जिससे कक्षा में अनंत संख्या में पूर्णांक हो सकते हैं।

प्रमेय:[8] मान लीजिए F(x) ∈ Q(x) कम से कम दो डिग्री वाला परिमेय फलन है, और मान लें कि F का कोई पुनरावृत्त बहुपद नहीं है।[9] मान लीजिए aQ है। तब कक्षा OF(a) में केवल सीमित संख्या में पूर्णांक होते हैं।

उपवर्गों पर स्थित गतिशील रूप से परिभाषित बिंदु

शॉवू झांग और अन्य के कारण ऐसी उप-विविधता के संबंध में सामान्य अनुमान हैं[10] जिनमें अनंत रूप से कई आवधिक बिंदु होते हैं या जो अनंत रूप से कई बिंदुओं में कक्षा को काटते हैं। ये क्रमशः, मिशेल रेनॉड द्वारा सिद्ध मैनिन-ममफोर्ड अनुमान, और गर्ड फाल्टिंग्स द्वारा सिद्ध मोर्डेल-लैंग अनुमान के गतिशील एनालॉग हैं। निम्नलिखित अनुमान इस स्थिति में सामान्य सिद्धांत को दर्शाते हैं कि उपविविधता वक्र है।

अनुमान: मान लीजिए F : PNPN रूपवाद हो और मान लीजिए CPN अपरिवर्तनीय बीजगणितीय वक्र है। मान लीजिए कि बिंदु PPN है जैसे कि C में OF(P) की कक्षा में अनंत रूप से कई बिंदु हैं। तब C, F के लिए इस अर्थ में आवधिक है कि F का कुछ पुनरावृत्त F(k) है जो C को स्वयं मैप करता है।

p-एडिक गतिशीलता

p-एडिक (या नॉनआर्किमिडीयन) गतिकी क्षेत्र K पर शास्त्रीय गतिशील प्रश्नों का अध्ययन है जो गैर-आर्किमिडीयन निरपेक्ष मान के संबंध में पूर्ण है। ऐसे क्षेत्रों के उदाहरण हैं p-एडिक परिमेय Qp का क्षेत्र और इसके बीजगणितीय समापन Cp का पूर्ण होना है। K पर मीट्रिक और समसामयिकता की मानक परिभाषा तर्कसंगत मानचित्र F(x) ∈ K(x) के फतौ और जूलिया समुच्चय की सामान्य परिभाषा की ओर ले जाती है। समिष्ट और गैर-आर्किमिडीयन सिद्धांतों के मध्य कई समानताएं हैं, किन्तु कई अंतर भी हैं। उल्लेखनीय अंतर यह है कि गैर-आर्किमिडीयन सेटिंग में, फ़तौ समुच्चय सदैव रिक्त नहीं होता है, किन्तु जूलिया समुच्चय रिक्त हो सकता है। यह सम्मिश्र संख्याओं पर सत्य के विपरीत है। गैरआर्किमिडीयन गतिकी को बर्कोविच अंतरिक्ष तक विस्तारित किया गया है,[11] जो सघन सम्बंधित समिष्ट है जिसमें पूर्ण रूप से डिस्कनेक्ट किया गया गैर-स्थानीय रूप से सघन क्षेत्र Cp सम्मिलित है।

सामान्यीकरण

अंकगणितीय गतिशीलता के प्राकृतिक सामान्यीकरण हैं जिनमें Q और Qp को संख्या क्षेत्रों और उनके p-एडिक पूर्णताओं द्वारा प्रतिस्थापित किया जाता है। अन्य प्राकृतिक सामान्यीकरण P1 या PN के स्व-मानचित्रों को अन्य एफ़िन या प्रोजेक्टिव विविधता के स्व-मानचित्रों (रूपवाद) VV से प्रतिस्थापित करना है।

अन्य क्षेत्र जिनमें संख्या सिद्धांत और गतिकी परस्पर क्रिया करते हैं

संख्या सैद्धांतिक प्रकृति की कई अन्य समस्याएं हैं जो गतिशील प्रणालियों की सेटिंग में दिखाई देती हैं, जिनमें सम्मिलित हैं:

  • परिमित क्षेत्रों पर गतिशीलता।
  • C(x) जैसे फलन क्षेत्र पर गतिशीलता।
  • औपचारिक और p-एडिक पावर श्रृंखला की पुनरावृत्ति।
  • लाई समूहों पर गतिशीलता।
  • गतिशील रूप से परिभाषित मॉड्यूलि रिक्त स्थान के अंकगणितीय गुण।
  • समान वितरण[12] और अपरिवर्तनीय माप, विशेष रूप से पर p-एडिक स्थानों पर है।
  • ड्रिनफेल्ड मॉड्यूल पर गतिशीलता।
  • संख्या-सैद्धांतिक पुनरावृत्ति समस्याएं जिनका वर्णन विविधता पर तर्कसंगत मानचित्रों द्वारा नहीं किया जाता है, उदाहरण के लिए, कोलाट्ज़ समस्या
  • वास्तविक संख्याओं के स्पष्ट अंकगणितीय विस्तार पर आधारित गतिशील प्रणालियों की प्रतीकात्मक कोडिंग।[13]

अंकगणितीय गतिशीलता संदर्भ सूची अंकगणितीय गतिशील विषयों की विस्तृत श्रृंखला को कवर करने वाले लेखों और पुस्तकों की विस्तृत सूची देती है।

यह भी देखें

नोट्स और संदर्भ

  1. Silverman, Joseph H. (2007). गतिशील प्रणालियों का अंकगणित. Graduate Texts in Mathematics. Vol. 241. New York: Springer. doi:10.1007/978-0-387-69904-2. ISBN 978-0-387-69903-5. MR 2316407.
  2. Northcott, Douglas Geoffrey (1950). "बीजगणितीय विविधता पर आवधिक बिंदु". Annals of Mathematics. 51 (1): 167–177. doi:10.2307/1969504. JSTOR 1969504. MR 0034607.
  3. Morton, Patrick; Silverman, Joseph H. (1994). "तर्कसंगत कार्यों के तर्कसंगत आवधिक बिंदु". International Mathematics Research Notices. 1994 (2): 97–110. doi:10.1155/S1073792894000127. MR 1264933.
  4. Morton, Patrick (1992). "द्विघात मानचित्रों के आवर्त बिंदुओं के अंकगणितीय गुण". Acta Arithmetica. 62 (4): 343–372. doi:10.4064/aa-62-4-343-372. MR 1199627.
  5. Flynn, Eugene V.; Poonen, Bjorn; Schaefer, Edward F. (1997). "Cycles of quadratic polynomials and rational points on a genus-2 curve". Duke Mathematical Journal. 90 (3): 435–463. arXiv:math/9508211. doi:10.1215/S0012-7094-97-09011-6. MR 1480542. S2CID 15169450.
  6. Stoll, Michael (2008). "Rational 6-cycles under iteration of quadratic polynomials". LMS Journal of Computation and Mathematics. 11: 367–380. arXiv:0803.2836. Bibcode:2008arXiv0803.2836S. doi:10.1112/S1461157000000644. MR 2465796. S2CID 14082110.
  7. Poonen, Bjorn (1998). "The classification of rational preperiodic points of quadratic polynomials over Q: a refined conjecture". Mathematische Zeitschrift. 228 (1): 11–29. doi:10.1007/PL00004405. MR 1617987. S2CID 118160396.
  8. Silverman, Joseph H. (1993). "पूर्णांक बिंदु, डायोफैंटाइन सन्निकटन, और तर्कसंगत मानचित्रों की पुनरावृत्ति". Duke Mathematical Journal. 71 (3): 793–829. doi:10.1215/S0012-7094-93-07129-3. MR 1240603.
  9. An elementary theorem says that if F(x) ∈ C(x) and if some iterate of F is a polynomial, then already the second iterate is a polynomial.
  10. Zhang, Shou-Wu (2006). "Distributions in algebraic dynamics". In Yau, Shing Tung (ed.). Differential Geometry: A Tribute to Professor S.-S. Chern. Surveys in Differential Geometry. Vol. 10. Somerville, MA: International Press. pp. 381–430. doi:10.4310/SDG.2005.v10.n1.a9. ISBN 978-1-57146-116-2. MR 2408228.
  11. Rumely, Robert; Baker, Matthew (2010). बर्कोविच प्रक्षेप्य रेखा पर संभावित सिद्धांत और गतिशीलता. Mathematical Surveys and Monographs. Vol. 159. Providence, RI: American Mathematical Society. arXiv:math/0407433. doi:10.1090/surv/159. ISBN 978-0-8218-4924-8. MR 2599526.
  12. Granville, Andrew; Rudnick, Zeév, eds. (2007). संख्या सिद्धांत में समान वितरण, एक परिचय. NATO Science Series II: Mathematics, Physics and Chemistry. Vol. 237. Dordrecht: Springer Netherlands. doi:10.1007/978-1-4020-5404-4. ISBN 978-1-4020-5403-7. MR 2290490.
  13. Sidorov, Nikita (2003). "Arithmetic dynamics". In Bezuglyi, Sergey; Kolyada, Sergiy (eds.). Topics in dynamics and ergodic theory. Survey papers and mini-courses presented at the international conference and US-Ukrainian workshop on dynamical systems and ergodic theory, Katsiveli, Ukraine, August 21–30, 2000. Lond. Math. Soc. Lect. Note Ser. Vol. 310. Cambridge: Cambridge University Press. pp. 145–189. doi:10.1017/CBO9780511546716.010. ISBN 0-521-53365-1. MR 2052279. S2CID 15482676. Zbl 1051.37007.

अग्रिम पठन


बाहरी संबंध