अल्ट्राबैटरी: Difference between revisions

From Vigyanwiki
 
 
(13 intermediate revisions by 4 users not shown)
Line 1: Line 1:
[[File:Schematic illustration of UltraBattery.png|thumb|अल्ट्राबैटरी का योजनाबद्ध आरेख]]अल्ट्राबैटरी फुरुकावा बैटरी कंपनी लिमिटेड द्वारा व्यावसायीकरण की गई [[लेड एसिड बैटरी]] तकनीक का ट्रेडमार्क है। अल्ट्राबैटरी में नकारात्मक प्लेटों के लिए स्पंजी लेड सक्रिय सामग्री पर पतली कार्बन परतें होती हैं। मूल विचार जो [[अल्ट्राकैपेसिटर]] को लेड-एसिड बैटरी | लेड-एसिड बैटरी तकनीक के साथ एक एकल सेल में एक सामान्य [[इलेक्ट्रोलाइट]] के साथ जोड़ता है, राष्ट्रमंडल वैज्ञानिक और औद्योगिक अनुसंधान संगठन (सीएसआईआरओ) से आया था।
[[File:Schematic illustration of UltraBattery.png|thumb|अल्ट्राबैटरी का स्कीमैटिक आरेख]]'''अल्ट्राबैटरी''' फुरुकावा बैटरी कंपनी लिमिटेड द्वारा व्यावसायीकरण की गई [[लेड एसिड बैटरी]] बैटरी विधि का ट्रेडमार्क है। अल्ट्राबैटरी में ऋणात्मक प्लेटों के लिए स्पंजी लेड सक्रिय सामग्री पर पतली कार्बन परतें होती हैं। मूल विचार जो सामान्य [[इलेक्ट्रोलाइट]] के साथ एकल सेल में लेड-एसिड बैटरी विधि के साथ [[अल्ट्राकैपेसिटर]] विधिको जोड़ता है, वह राष्ट्रमंडल वैज्ञानिक और औद्योगिक अनुसंधान संगठन (सीएसआईआरओ) से आया था।                                                                        


==परिचय==
==परिचय                                                                                                         ==


संयुक्त राज्य अमेरिका की सैंडिया राष्ट्रीय प्रयोगशालाओं जैसी स्वतंत्र प्रयोगशालाओं द्वारा किए गए अनुसंधान,<ref name=Hund_2008>{{Cite conference| last1=Hund| first1=T| last2=Clark| first2=N.| last3=Baca| first3=W.| title=यूटिलिटी साइक्लिंग अनुप्रयोगों के लिए अल्ट्राबैटरी परीक्षण परिणाम| conference=International Seminar on Double Layer Capacitors And Hybrid Energy Storage Devices| year=2008| pages=195–207| publisher=Redox Engineering, LLC| editor-last=Marincic| editor-first=Nikola| url=https://www.tib.eu/en/search/id/BLCP%3ACN074277870/| access-date=20 December 2013}}</ref> एडवांस्ड लीड-एसिड बैटरी कंसोर्टियम (ALABC),<ref name=ALABC_2013>{{cite web| date=4 June 2013| title=ALABC अल्ट्राबैटरी हाइब्रिड फ्लीट ड्यूटी के 100,000 मील को पार करता है| publisher=The Advanced Lead Acid Battery Consortium| url=http://www.alabc.org/press-releases/PR_ALABC_UB_Civic_100K_060513.pdf| access-date=20 December 2013}}</ref> राष्ट्रमंडल वैज्ञानिक एवं औद्योगिक अनुसंधान संगठन (सीएसआईआरओ) रेफरी>{{cite web| title=अल्ट्राबैटरी| publisher=[[CSIRO]]| url=http://www.csiro.au/en/Research/EF/Areas/Energy-storage/अल्ट्राबैटरी| access-date=19 March 2016}}</ref> और ईस्ट पेन मैन्युफैक्चरिंग, फुरुकावा बैटरी और इकोल्ट के वाणिज्यिक परीक्षणों से संकेत मिलता है कि पारंपरिक वाल्व विनियमित लेड एसिड (वीआरएलए) बैटरियों की तुलना में, अल्ट्राबैटरी तकनीक में उच्च ऊर्जा दक्षता, लंबा जीवनकाल और आंशिक स्थिति के तहत बेहतर चार्ज स्वीकृति है। चार्ज (एसओसी) शर्तें।
संयुक्त स्तर अमेरिका की सैंडिया राष्ट्रीय प्रयोगशालाओं, <ref name="Hund_2008">{{Cite conference| last1=Hund| first1=T| last2=Clark| first2=N.| last3=Baca| first3=W.| title=यूटिलिटी साइक्लिंग अनुप्रयोगों के लिए अल्ट्राबैटरी परीक्षण परिणाम| conference=International Seminar on Double Layer Capacitors And Hybrid Energy Storage Devices| year=2008| pages=195–207| publisher=Redox Engineering, LLC| editor-last=Marincic| editor-first=Nikola| url=https://www.tib.eu/en/search/id/BLCP%3ACN074277870/| access-date=20 December 2013}}</ref> एडवांस्ड लीड-एसिड बैटरी कंसोर्टियम (एएलएबीसी) हैं| <ref name="ALABC_2013">{{cite web| date=4 June 2013| title=ALABC अल्ट्राबैटरी हाइब्रिड फ्लीट ड्यूटी के 100,000 मील को पार करता है| publisher=The Advanced Lead Acid Battery Consortium| url=http://www.alabc.org/press-releases/PR_ALABC_UB_Civic_100K_060513.pdf| access-date=20 December 2013}}</ref> कॉमनवेल्थ साइंटिफिक एंड इंडस्ट्रियल रिसर्च ऑर्गनाइजेशन (सीएसआईआरओ) हैं | <ref>रेफरी>{{cite web| title=अल्ट्राबैटरी| publisher=[[CSIRO]]| url=http://www.csiro.au/en/Research/EF/Areas/Energy-storage/अल्ट्राबैटरी| access-date=19 March 2016}}&lt;nowiki&gt;</ref> <ref>&lt;/nowiki&gt;&lt;nowiki&gt;</ref> <ref>&lt;/nowiki&gt;&lt;nowiki&gt;</ref> और ईस्ट द्वारा वाणिज्यिक परीक्षण जैसे स्वतंत्र प्रयोगशालाओं द्वारा किए गए अनुसंधान पेन मैन्युफैक्चरिंग, फुरुकावा बैटरी और इकोल्ट ने संकेत दिया है कि पारंपरिक वाल्व रेगुलेटेड लेड एसिड (वीआरएलए) बैटरियों की तुलना में, अल्ट्राबैटरी विधिमें उच्च ऊर्जा दक्षता, लंबा जीवनकाल और आंशिक चार्ज स्थिति (एसओसी) स्थितियों के तहत उत्तम चार्ज स्वीकृति होती है।


दो प्रौद्योगिकियों को एक बैटरी सेल में संयोजित करने का मतलब है कि अल्ट्राबैटरी पारंपरिक लेड एसिड प्रौद्योगिकियों की तुलना में बहुत कुशलता से काम करती है<ref name=Furukawa_DevUB_2013>{{cite journal| title=अल्ट्राबैटरी का विकास| date=March 2013| first1=Hidehito| last1=Nakajima| first2=Tokunori| last2=Honma| first3=Kiyoshi| last3=Midorikawa| first4=Yuichi| last4=Akasaka| first5=Satoshi| last5=Shibata| first6=Hideaki| last6=Yoshida| first7=Kensuke| last7=Hashimoto| first8=Yusuke| last8=Ogino| first9=Wataru| last9=Tezuka| first10=Masaru| last10=Miura| first11=Jun| last11=Furukawa| first12=L. T.| last12=Lam| first13=Sumio| last13=Sugata
दो प्रौद्योगिकियों को बैटरी सेल में संयोजित करने का अर्थ है कि अल्ट्राबैटरी पारंपरिक लेड एसिड प्रौद्योगिकियों की तुलना में बहुत कुशलता से कार्य करती है<ref name="Furukawa_DevUB_2013">{{cite journal| title=अल्ट्राबैटरी का विकास| date=March 2013| first1=Hidehito| last1=Nakajima| first2=Tokunori| last2=Honma| first3=Kiyoshi| last3=Midorikawa| first4=Yuichi| last4=Akasaka| first5=Satoshi| last5=Shibata| first6=Hideaki| last6=Yoshida| first7=Kensuke| last7=Hashimoto| first8=Yusuke| last8=Ogino| first9=Wataru| last9=Tezuka| first10=Masaru| last10=Miura| first11=Jun| last11=Furukawa| first12=L. T.| last12=Lam| first13=Sumio| last13=Sugata
| periodical=Furukawa Review| issue=43, ''Smart Grid''| issn=1348-1797| publisher=The Furukawa Battery Co., Ltd| url=http://www.furukawa.co.jp/review/fr043/fr43_02.pdf| access-date=12 November 2014}}</ref> मोटे तौर पर इस तथ्य के कारण कि इसे आंशिक चार्ज अवस्था (पीएसओसी) में लंबे समय तक संचालित किया जा सकता है, जबकि पारंपरिक लेड एसिड बैटरियां आमतौर पर उच्च एसओसी उपयोग के लिए डिज़ाइन की जाती हैं (यानी जब बैटरी पूरी तरह से बंद हो जाती है) चार्ज किया गया)।<ref name=DOE_Summer_2012>{{Cite conference| last1=Ferreira| first1=Summer| last2=Baca| first2=Wes| last3=Hund| first3=Tom| last4=Rose| first4=David| title=ऊर्जा भंडारण उपकरणों का जीवन चक्र परीक्षण और मूल्यांकन| date=28 September 2012| conference=2012 DOE Energy Storage Program Peer Review and Update Meeting| conference-url=http://energy.gov/oe/downloads/energy-storage-systems-2012-peer-review-and-update-meeting| publisher=U.S. Department of Energy, Office of Electricity Delivery & Energy Reliability, Energy Storage Systems (ESS) Program| url=http://energy.gov/sites/prod/files/ESS%202012%20Peer%20Review%20-%20Life%20Cycle%20Testing%20and%20Evaluation%20of%20Energy%20Storage%20Devices%20-%20Summer%20Ferreira%2C%20SNL.pdf| access-date=20 December 2013}}</ref> आंशिक SoC रेंज में संचालन करने से मुख्य रूप से [[सल्फेशन]] को कम करके और चार्ज की बहुत उच्च और बहुत कम स्थिति में संचालन में लगने वाले समय को कम करके बैटरी का जीवन बढ़ाया जाता है, जहां विभिन्न साइड प्रतिक्रियाएं खराब होने का कारण बनती हैं। इस आंशिक SoC रेंज में संचालित होने पर एक पारंपरिक VRLA बैटरी जल्दी खराब हो जाती है।<ref name=DOE_Summer_2012/>
| periodical=Furukawa Review| issue=43, ''Smart Grid''| issn=1348-1797| publisher=The Furukawa Battery Co., Ltd| url=http://www.furukawa.co.jp/review/fr043/fr43_02.pdf| access-date=12 November 2014}}</ref> मुख्य रूप से इस तथ्य के कारण कि इसे आंशिक चार्ज अवस्था (पीएसओसी) में लंबे समय तक संचालित किया जा सकता है, जबकि पारंपरिक लेड एसिड बैटरियां सामान्यतः उच्च एसओसी उपयोग के लिए डिज़ाइन की जाती हैं (अर्थात जब बैटरी पूर्ण तरह से बंद हो जाती है) चार्ज किया गया)। <ref name="DOE_Summer_2012">{{Cite conference| last1=Ferreira| first1=Summer| last2=Baca| first2=Wes| last3=Hund| first3=Tom| last4=Rose| first4=David| title=ऊर्जा भंडारण उपकरणों का जीवन चक्र परीक्षण और मूल्यांकन| date=28 September 2012| conference=2012 DOE Energy Storage Program Peer Review and Update Meeting| conference-url=http://energy.gov/oe/downloads/energy-storage-systems-2012-peer-review-and-update-meeting| publisher=U.S. Department of Energy, Office of Electricity Delivery & Energy Reliability, Energy Storage Systems (ESS) Program| url=http://energy.gov/sites/prod/files/ESS%202012%20Peer%20Review%20-%20Life%20Cycle%20Testing%20and%20Evaluation%20of%20Energy%20Storage%20Devices%20-%20Summer%20Ferreira%2C%20SNL.pdf| access-date=20 December 2013}}</ref> आंशिक एसओसी रेंज में संचालन करने से मुख्य रूप से [[सल्फेशन]] को कम करके और चार्ज की बहुत उच्च और बहुत कम स्थिति में संचालन में लगने वाले समय को कम करके बैटरी का जीवन बढ़ाया जाता है, जहां विभिन्न साइड प्रतिक्रियाएं खराब होने का कारण बनती हैं। इस आंशिक एसओसी रेंज में संचालित होने पर पारंपरिक वीआरएलए बैटरी शीघ्र खराब हो जाती है।<ref name=DOE_Summer_2012/>


==इतिहास==
अल्ट्राबैटरी का मूल विचार सीएसआईआरओ से आया था।<ref name="CSIRO_UltraBattery">{{cite web|title=अल्ट्राबैटरी: कोई साधारण बैटरी नहीं| date=22 March 2013| url=http://www.csiro.au/en/Outcomes/Energy/Storing-renewable-energy/Ultra-Battery.aspx| access-date=22 December 2013| archive-url=https://web.archive.org/web/20131015145059/http://www.csiro.au/Outcomes/Energy/Storing-renewable-energy/Ultra-Battery.aspx| archive-date=2013-10-15| url-status=dead| publisher=CSIRO}}</ref>
अल्ट्राबैटरी के विकास को ऑस्ट्रेलियाई सरकार द्वारा वित्त पोषित किया गया था। जापानी कंपनी फुरुकावा बैटरी कंपनी लिमिटेड ने भी अल्ट्राबैटरी प्रौद्योगिकी के विकास में योगदान दिया, और जापानी सरकार ने नई ऊर्जा और औद्योगिक प्रौद्योगिकी विकास संगठन (एनईडीओ) के माध्यम से इसके विकास का कुछ भाग वित्त पोषित किया।


==इतिहास==
2007 में, ईस्ट पेन मैन्युफैक्चरिंग ने उद्देश्य और ऑटोमोटिव अनुप्रयोगों (विभिन्न क्षेत्रों में) और स्थिर ऊर्जा संग्रहण अनुप्रयोगों (वैश्विक स्तर पर, जापान और थाईलैंड के बाहर, जहां फुरुकावा बैटरी प्रमुख लाइसेंस धारक है) के लिए अल्ट्राबैटरी विधि के निर्माण और व्यावसायीकरण के लिए वैश्विक प्रमुख लाइसेंस प्राप्त किया गया था। <ref name="CSIROpedia_UltraBattery">{{cite web| title=अल्ट्राबैटरी| website=CSIROpedia| date=22 March 2011| publisher=CSIRO| url=https://csiropedia.csiro.au/ultrabattery/| access-date=19 March 2016}}</ref>
अल्ट्राबैटरी का मूल विचार सीएसआईआरओ से आया था।<ref name=CSIRO_UltraBattery>{{cite web|title=अल्ट्राबैटरी: कोई साधारण बैटरी नहीं| date=22 March 2013| url=http://www.csiro.au/en/Outcomes/Energy/Storing-renewable-energy/Ultra-Battery.aspx| access-date=22 December 2013| archive-url=https://web.archive.org/web/20131015145059/http://www.csiro.au/Outcomes/Energy/Storing-renewable-energy/Ultra-Battery.aspx| archive-date=2013-10-15| url-status=dead| publisher=CSIRO}}</ref>


अल्ट्राबैटरी के विकास को ऑस्ट्रेलियाई सरकार द्वारा वित्त पोषित किया गया था। जापानी कंपनी फुरुकावा बैटरी कंपनी लिमिटेड ने भी अल्ट्राबैटरी प्रौद्योगिकी के विकास में योगदान दिया, और जापानी सरकार ने नई ऊर्जा और औद्योगिक प्रौद्योगिकी विकास संगठन (एनईडीओ) के माध्यम से इसके विकास का कुछ हिस्सा वित्त पोषित किया।
संयुक्त स्तर अमेरिका के ऊर्जा विभाग ने ग्रिड-स्केल स्थिर ऊर्जा संग्रहण अनुप्रयोगों में अनुसंधान के लिए अल्ट्राबैटरी को भी वित्त पोषित किया है। तथा 2007 में, सीएसआईआरओ ने इस मार्केट को संबोधित करने के लिए सहायक कंपनी, इकोल्ट का गठन किया था। अल्ट्राबैटरी के विकास को आगे बढ़ाने के लिए इकोल्ट को ऑस्ट्रेलियाई सरकार से भी समर्थन मिला। इसको मई 2010 में, अमेरिकी बैटरी निर्माता ईस्ट पेन मैन्युफैक्चरिंग ने सीएसआईआरओ से इकोल्ट में अधिग्रहण किया गया था। <ref>रेफरी>{{Cite conference| last1=Coppin| first1=Peter| last2=Wood| first2=John| title=मेगावॉट स्केल पर अल्ट्राबैटरी स्टोरेज टेक्नोलॉजी और उन्नत एल्गोरिदम| date=19 October 2011| conference=Electrical Energy Storage Applications and Technologies (EESAT) 2011| conference-url=http://www.sandia.gov/ess/publication/conference-archives/essat-2011-conference/| publisher=Energy Storage Association (ESA)| url=http://www.ecoult.com/wp-content/uploads/downloads/2012/04/EESAT_2011_-_UltraBattery_-_Coppin_and_Wood_-Conference_Paper_Final.pdf| access-date=19 March 2015| archive-url=https://web.archive.org/web/20160319095757/http://www.ecoult.com/wp-content/uploads/downloads/2012/04/EESAT_2011_-_UltraBattery_-_Coppin_and_Wood_-Conference_Paper_Final.pdf| archive-date=2016-03-19}}&lt;nowiki&gt;</ref> <ref>&lt;/nowiki&gt;                  &lt;nowiki&gt;</ref> <ref>&lt;/nowiki&gt;&lt;nowiki&gt;</ref>


2007 में, ईस्ट पेन मैन्युफैक्चरिंग ने मकसद और ऑटोमोटिव अनुप्रयोगों (विभिन्न क्षेत्रों में) और स्थिर ऊर्जा भंडारण अनुप्रयोगों (वैश्विक स्तर पर, जापान और थाईलैंड के बाहर, जहां फुरुकावा बैटरी प्रमुख लाइसेंस धारक है) के लिए अल्ट्राबैटरी तकनीक के निर्माण और व्यावसायीकरण के लिए एक वैश्विक प्रमुख लाइसेंस प्राप्त किया। .<ref name=CSIROpedia_UltraBattery>{{cite web| title=अल्ट्राबैटरी| website=CSIROpedia| date=22 March 2011| publisher=CSIRO| url=https://csiropedia.csiro.au/ultrabattery/| access-date=19 March 2016}}</ref>
मार्च 2013 में, ऑस्ट्रेलियाई सरकार ने आवासीय और वाणिज्यिक नवीकरणीय ऊर्जा प्रणालियों के लिए निवेश प्रभावी ऊर्जा संग्रहण के रूप में अल्ट्राबैटरी विधि को और विकसित करने के लिए ऑस्ट्रेलियाई नवीकरणीय ऊर्जा एजेंसी के उभरते नवीकरणीय कार्यक्रम के माध्यम से अतिरिक्त धनराशि की घोषणा की थी। <ref>रेफरी>{{cite web|title=नवीकरणीय ऊर्जा भंडारण समाधान के लिए वित्तपोषण शुल्क|url=http://www.ret.gov.au/media-archive/Pages/funding-charges.aspx|access-date=24 December 2013}}&lt;nowiki&gt;</ref><ref>&lt;/nowiki&gt;&lt;nowiki&gt;</ref><ref>&lt;/nowiki&gt;&lt;nowiki&gt;</ref>


संयुक्त राज्य अमेरिका के ऊर्जा विभाग ने ग्रिड-स्केल स्थिर ऊर्जा भंडारण अनुप्रयोगों में अनुसंधान के लिए अल्ट्राबैटरी को भी वित्त पोषित किया है। 2007 में, CSIRO ने इस बाज़ार को संबोधित करने के लिए एक सहायक कंपनी, Ecoult का गठन किया। अल्ट्राबैटरी के विकास को आगे बढ़ाने के लिए इकोल्ट को ऑस्ट्रेलियाई सरकार से भी समर्थन मिला। मई 2010 में, अमेरिकी बैटरी निर्माता ईस्ट पेन मैन्युफैक्चरिंग ने सीएसआईआरओ से इकोल्ट का अधिग्रहण किया।
==संग्रहण सिद्धांत                                                                                                                                                                ==
रेफरी>{{Cite conference| last1=Coppin| first1=Peter| last2=Wood| first2=John| title=मेगावॉट स्केल पर अल्ट्राबैटरी स्टोरेज टेक्नोलॉजी और उन्नत एल्गोरिदम| date=19 October 2011| conference=Electrical Energy Storage Applications and Technologies (EESAT) 2011| conference-url=http://www.sandia.gov/ess/publication/conference-archives/essat-2011-conference/| publisher=Energy Storage Association (ESA)| url=http://www.ecoult.com/wp-content/uploads/downloads/2012/04/EESAT_2011_-_UltraBattery_-_Coppin_and_Wood_-Conference_Paper_Final.pdf| access-date=19 March 2015| archive-url=https://web.archive.org/web/20160319095757/http://www.ecoult.com/wp-content/uploads/downloads/2012/04/EESAT_2011_-_UltraBattery_-_Coppin_and_Wood_-Conference_Paper_Final.pdf| archive-date=2016-03-19}}</ref>
अल्ट्राबैटरी का ऊर्जा संग्रहण सिद्धांत पारंपरिक लेड-एसिड बैटरी के समान है। यह ऋणात्मक इलेक्ट्रोड पर कार्बन परतें Pb<sup>2+</sup> आयनों से Pb(0) में कम करने के लिए और Pb<sup>2+</sup> आयनों के संग्रहण स्थलों के लिए प्रतिक्रिया स्थल के रूप में कार्य करती हैं।


मार्च 2013 में, ऑस्ट्रेलियाई सरकार ने आवासीय और वाणिज्यिक नवीकरणीय ऊर्जा प्रणालियों के लिए लागत प्रभावी ऊर्जा भंडारण के रूप में अल्ट्राबैटरी तकनीक को और विकसित करने के लिए ऑस्ट्रेलियाई नवीकरणीय ऊर्जा एजेंसी के उभरते नवीकरणीय कार्यक्रम के माध्यम से अतिरिक्त धनराशि की घोषणा की।
===कठोर सल्फेशन                      ===
रेफरी>{{cite web|title=नवीकरणीय ऊर्जा भंडारण समाधान के लिए वित्तपोषण शुल्क|url=http://www.ret.gov.au/media-archive/Pages/funding-charges.aspx|access-date=24 December 2013}}</ref>


==भंडारण सिद्धांत==
सामान्य लेड-एसिड बैटरी संचालन के समय , डिस्चार्जिंग के समय ऋणात्मक इलेक्ट्रोड पर लेड सल्फेट क्रिस्टल बढ़ते हैं और चार्जिंग के समय फिर से घुल जाते हैं। इन क्रिस्टलों के निर्माण को सल्फेशन कहा जाता है। इसमें समय के साथ सल्फेशन स्थायी हो सकता है, क्योंकि कुछ क्रिस्टल बढ़ते हैं और घुलने का विरोध करते हैं। यह विशेष रूप से तब होता है जब बैटरी को डिस्चार्ज की बहुत उच्च दर पर कार्य करने के लिए मजबूर किया जाता है, जो इलेक्ट्रोड की सतह पर लेड सल्फेट क्रिस्टल के विकास को बढ़ावा देता है। डिस्चार्ज की मध्यम दर पर, लेड सल्फेट क्रिस्टल इलेक्ट्रोड प्लेट (जिसमें स्पंज जैसी स्थिरता होती है) के क्रॉस खंड में बढ़ते हैं क्योंकि प्रतिक्रिया की अनुमति देने के लिए इलेक्ट्रोलाइट (तनु सल्फ्यूरिक एसिड) को इलेक्ट्रोड के शरीर के माध्यम से फैलाया जाता है। और यह पूर्ण प्लेट में जगह बना लेते है | <ref>{{Cite book| title=वाल्व विनियमित लीड एसिड बैटरियां| chapter=Chapter 17: VRLA Batteries in New Generation Road Vehicles| isbn=978-0-444-50746-4| last1=Moseley| first1=Patrick T.| last2=Garche| first2=Jürgen| last3=Parker| first3=C.D.| last4=Rand| first4=D.A.J.| date=24 February 2004| publisher=[[Elsevier]]| pages=556–557}}</ref>
अल्ट्राबैटरी का ऊर्जा भंडारण सिद्धांत पारंपरिक लेड-एसिड बैटरी के समान है। नकारात्मक इलेक्ट्रोड पर कार्बन परतें पीबी की कमी के लिए प्रतिक्रिया स्थल के रूप में कार्य करती हैं<sup>2+</sup>आयनों से Pb(0) और Pb के भंडारण स्थल<sup>2+</sup>आयन.


===कठोर सल्फेशन===
लेकिन डिस्चार्ज की बहुत शीघ्र दर पर, प्लेट के शरीर के अंदर पहले से ही उपस्तिथ एसिड का शीघ्रता से उपयोग हो जाता है और प्रतिक्रिया क्रियान्वित रखने के लिए ताजा एसिड समय पर इलेक्ट्रोड के माध्यम से फैल नहीं पाता है। इसलिए प्रतिक्रिया को इलेक्ट्रोड की बाहरी दीवार की ओर पसंद किया जाता है, जहां क्रिस्टल पूर्ण प्लेट में बिखरे हुए गुच्छों के अतिरिक्त घनी चटाई में बन सकते हैं। क्रिस्टल की यह चटाई इलेक्ट्रोलाइट स्थानांतरण को और भी बाधित करती है। क्रिस्टल फिर बड़े हो जाते हैं, और क्योंकि बड़े क्रिस्टल में उनके सतह क्षेत्र की तुलना में बड़ी मात्रा होती है, इसलिए चार्जिंग के समय उन्हें रासायनिक रूप से निकालना मुश्किल हो जाता है, विशेष रूप से जब इलेक्ट्रोलाइट में सल्फ्यूरिक एसिड की एकाग्रता अधिक होने की संभावना होती है (क्योंकि यह केवल सीमित होती है) तब प्लेट की सतह पर लेड सल्फेट बनाया गया है) और लेड सल्फेट तनु सल्फ्यूरिक एसिड की तुलना में सांद्र सल्फ्यूरिक एसिड (वजन के अनुसार प्राय: 10% सांद्रता से ऊपर) में कम घुलनशील होते है।


सामान्य लेड-एसिड बैटरी संचालन के दौरान, डिस्चार्जिंग के दौरान नकारात्मक इलेक्ट्रोड पर लेड सल्फेट क्रिस्टल बढ़ते हैं और चार्जिंग के दौरान फिर से घुल जाते हैं। इन क्रिस्टलों के निर्माण को सल्फेशन कहा जाता है। समय के साथ सल्फेशन स्थायी हो सकता है, क्योंकि कुछ क्रिस्टल बढ़ते हैं और घुलने का विरोध करते हैं। यह विशेष रूप से तब होता है जब बैटरी को डिस्चार्ज की बहुत उच्च दर पर काम करने के लिए मजबूर किया जाता है, जो इलेक्ट्रोड की सतह पर लेड सल्फेट क्रिस्टल के विकास को बढ़ावा देता है। डिस्चार्ज की मध्यम दर पर, लेड सल्फेट क्रिस्टल इलेक्ट्रोड प्लेट (जिसमें स्पंज जैसी स्थिरता होती है) के क्रॉस सेक्शन में बढ़ते हैं क्योंकि प्रतिक्रिया की अनुमति देने के लिए इलेक्ट्रोलाइट (पतला सल्फ्यूरिक एसिड) को इलेक्ट्रोड के शरीर के माध्यम से फैलाया जाता है। पूरी थाली में जगह ले लो.<ref>{{Cite book| title=वाल्व विनियमित लीड एसिड बैटरियां| chapter=Chapter 17: VRLA Batteries in New Generation Road Vehicles| isbn=978-0-444-50746-4| last1=Moseley| first1=Patrick T.| last2=Garche| first2=Jürgen| last3=Parker| first3=C.D.| last4=Rand| first4=D.A.J.| date=24 February 2004| publisher=[[Elsevier]]| pages=556–557}}</ref>
इस स्थिति को कभी-कभी बैटरी इलेक्ट्रोड का "हार्ड" सल्फेशन कहा जाता है। हार्ड सल्फेशन से बैटरी की प्रतिबाधा बढ़ जाती है (चूंकि लेड सल्फेट क्रिस्टल इलेक्ट्रोलाइट से इलेक्ट्रोड को अलग कर देते हैं) और अवांछित साइड प्रतिक्रियाओं में वृद्धि के कारण इसकी शक्ति, क्षमता और दक्षता कम हो जाती है, जिनमें से यह कुछ ऋणात्मक प्लेट के अंदर चार्जिंग के कारण होती हैं। लेड सल्फेट की कम उपलब्धता (प्लेट बॉडी के अंदर)। अवांछनीय प्रभाव प्लेट के अंदर हाइड्रोजन का उत्पादन है, जो प्रतिक्रिया की दक्षता को और कम कर देता है। और "हार्ड" सल्फेशन सामान्यतः अपरिवर्तनीय होता है क्योंकि बैटरी में अधिक से अधिक ऊर्जा अंदर की ओर ले जाने के कारण पार्श्व प्रतिक्रियाएं प्रबल हो जाती हैं। <ref>{{cite journal|title=सैंडिया नेशनल लेबोरेटरीज, कार्बन-एन्हांस्ड वीआरएलए बैटरियां|date=10 October 2011|url=http://www.sandia.gov/ess/docs/pr_conferences/2011/Enos_Pb-C_CRADA%20.pdf|access-date=25 February 2015}}</ref>  
लेकिन डिस्चार्ज की बहुत तेज़ दर पर, प्लेट के शरीर के अंदर पहले से ही मौजूद एसिड का जल्दी से उपयोग हो जाता है और प्रतिक्रिया जारी रखने के लिए ताजा एसिड समय पर इलेक्ट्रोड के माध्यम से फैल नहीं पाता है। इसलिए प्रतिक्रिया को इलेक्ट्रोड की बाहरी दीवार की ओर पसंद किया जाता है, जहां क्रिस्टल पूरी प्लेट में बिखरे हुए गुच्छों के बजाय एक घनी चटाई में बन सकते हैं। क्रिस्टल की यह चटाई इलेक्ट्रोलाइट स्थानांतरण को और भी बाधित करती है। क्रिस्टल फिर बड़े हो जाते हैं, और क्योंकि बड़े क्रिस्टल में उनके सतह क्षेत्र की तुलना में बड़ी मात्रा होती है, इसलिए चार्जिंग के दौरान उन्हें रासायनिक रूप से निकालना मुश्किल हो जाता है, खासकर जब इलेक्ट्रोलाइट में सल्फ्यूरिक एसिड की एकाग्रता अधिक होने की संभावना होती है (क्योंकि केवल सीमित होती है) प्लेट की सतह पर लेड सल्फेट बनाया गया है) और लेड सल्फेट तनु सल्फ्यूरिक एसिड की तुलना में सांद्र सल्फ्यूरिक एसिड (वजन के अनुसार लगभग 10% सांद्रता से ऊपर) में कम घुलनशील है।


इस स्थिति को कभी-कभी बैटरी इलेक्ट्रोड का "हार्ड" सल्फेशन कहा जाता है। हार्ड सल्फेशन से बैटरी की प्रतिबाधा बढ़ जाती है (चूंकि लेड सल्फेट क्रिस्टल इलेक्ट्रोलाइट से इलेक्ट्रोड को अलग कर देते हैं) और अवांछित साइड प्रतिक्रियाओं में वृद्धि के कारण इसकी शक्ति, क्षमता और दक्षता कम हो जाती है, जिनमें से कुछ नकारात्मक प्लेट के अंदर चार्जिंग के कारण होती हैं। लेड सल्फेट की कम उपलब्धता (प्लेट बॉडी के अंदर)। एक अवांछनीय प्रभाव प्लेट के अंदर हाइड्रोजन का उत्पादन है, जो प्रतिक्रिया की दक्षता को और कम कर देता है। "हार्ड" सल्फेशन आम तौर पर अपरिवर्तनीय होता है क्योंकि बैटरी में अधिक से अधिक ऊर्जा धकेलने के कारण पार्श्व प्रतिक्रियाएं हावी हो जाती हैं।<ref>{{cite journal|title=सैंडिया नेशनल लेबोरेटरीज, कार्बन-एन्हांस्ड वीआरएलए बैटरियां|date=10 October 2011|url=http://www.sandia.gov/ess/docs/pr_conferences/2011/Enos_Pb-C_CRADA%20.pdf|access-date=25 February 2015}}</ref>
हार्ड सल्फेशन की संभावना को कम करने के लिए, पारंपरिक वीआरएलए बैटरियों को विभिन्न चार्जिंग एल्गोरिदम द्वारा निर्धारित विशिष्ट दरों पर डिस्चार्ज किया जाना चाहिए। इसके अतिरिक्त , उन्हें बार-बार रिफ्रेश किया जाना चाहिए और एसओसी के शीर्ष छोर (80% और 100% चार्ज के मध्य) की ओर संचालन के लिए सबसे उपयुक्त हैं। जबकि चार्ज की इस सीमित स्थिति में संचालन ऋणात्मक इलेक्ट्रोड पर स्थायी सल्फेशन को कम करता है, तथा पूर्ण एसओसी पर या उसके निकट विशेष रूप से बैटरी संचालन अत्यधिक अक्षम है। इसमें अक्षमता अधिक परिमाण में साइड प्रतिक्रियाओं (उदाहरण के लिए इलेक्ट्रोलिसिस) की घटनाओं में वृद्धि के कारण होता है जो कि ऊर्जा को नष्ट कर देती है।
हार्ड सल्फेशन की संभावना को कम करने के लिए, पारंपरिक वीआरएलए बैटरियों को विभिन्न चार्जिंग एल्गोरिदम द्वारा निर्धारित विशिष्ट दरों पर डिस्चार्ज किया जाना चाहिए। इसके अलावा, उन्हें बार-बार ताज़ा किया जाना चाहिए और एसओसी के शीर्ष छोर (80% और 100% चार्ज के बीच) की ओर संचालन के लिए सबसे उपयुक्त हैं। जबकि चार्ज की इस सीमित स्थिति में संचालन नकारात्मक इलेक्ट्रोड पर स्थायी सल्फेशन को कम करता है, पूर्ण SoC पर या उसके निकट विशेष रूप से बैटरी संचालन अत्यधिक अक्षम है। अक्षमता काफी हद तक साइड प्रतिक्रियाओं (उदाहरण के लिए इलेक्ट्रोलिसिस) की घटनाओं में वृद्धि के कारण है जो ऊर्जा को नष्ट कर देती है।


अल्ट्राबैटरी में एकीकृत अल्ट्राकैपेसिटर की उपस्थिति कोशिका के अंदर कठोर सल्फेशन के गठन को सीमित करने का कार्य करती है। यह आंशिक SoC में बैटरी की लंबी अवधि तक संचालित होने की क्षमता का समर्थन करता है जहां बैटरी अधिक कुशलता से संचालित होती है। पारंपरिक वीआरएलए को सल्फेशन से होने वाले नुकसान से बचाने के लिए उनकी चार्ज क्षमता के शीर्ष पर अकुशल क्षेत्र में काम करने के लिए कुछ हद तक बाध्य किया जाता है। उन कारणों पर शोध जारी है कि क्यों अल्ट्राकैपेसिटर की उपस्थिति सल्फेशन को इतनी सफलतापूर्वक कम कर देती है। प्रायोगिक परिणाम बताते हैं कि वीआरएलए कोशिकाओं के भीतर कार्बन की उपस्थिति में कुछ शमन प्रभाव होता है लेकिन अल्ट्राबैटरी के भीतर समानांतर-जुड़े अल्ट्राकैपेसिटर के सुरक्षात्मक प्रभाव कहीं अधिक महत्वपूर्ण हैं। उदाहरण के लिए, हंड एट अल ने पाया कि विशिष्ट वीआरएलए बैटरी विफलता मोड (पानी की हानि, नकारात्मक प्लेट सल्फेशन और ग्रिड संक्षारण) सभी अल्ट्राबैटरी में कम से कम हैं। हंड के नतीजों से यह भी पता चला है कि उच्च दर आंशिक चार्ज एप्लिकेशन में उपयोग की जाने वाली अल्ट्राबैटरी, पारंपरिक वीआरएलए कोशिकाओं की तुलना में कम गैसिंग, न्यूनतम नकारात्मक प्लेट हार्ड सल्फेशन, बेहतर पावर प्रदर्शन और न्यूनतम ऑपरेटिंग तापमान प्रदर्शित करती है।
अल्ट्राबैटरी में एकीकृत अल्ट्राकैपेसिटर की उपस्थिति सेल के अंदर कठोर सल्फेशन के गठन को सीमित करने का कार्य करती है। यह आंशिक एसओसी में बैटरी की लंबी अवधि तक संचालित होने की क्षमता का समर्थन करता है जहां बैटरी अधिक कुशलता से संचालित होती है। और पारंपरिक वीआरएलए को सल्फेशन से होने वाले हानि से बचाने के लिए उनकी चार्ज क्षमता के शीर्ष पर अकुशल क्षेत्र में कार्य करने के लिए कुछ विशेष रूप से बाध्य किया जाता है। उन कारणों पर शोध क्रियान्वित होता है कि क्यों अल्ट्राकैपेसिटर की उपस्थिति सल्फेशन को इतनी सफलतापूर्वक कम कर देती है। इसमें प्रायोगिक परिणाम बताते हैं कि वीआरएलए सेल के अंदर कार्बन की उपस्थिति में कुछ कुएंचिंग प्रभाव होता है लेकिन अल्ट्राबैटरी के अंदर समानांतर-जुड़े अल्ट्राकैपेसिटर के सुरक्षात्मक प्रभाव कहीं अधिक महत्वपूर्ण होते हैं। उदाहरण के लिए, हंड एट अल ने पाया कि विशिष्ट वीआरएलए बैटरी विफलता मोड (पानी की हानि, ऋणात्मक प्लेट सल्फेशन और ग्रिड संक्षारण) सभी अल्ट्राबैटरी में कम से कम हैं। हंड के नतीजों से यह भी पता चला है कि उच्च दर आंशिक चार्ज एप्लिकेशन में उपयोग की जाने वाली अल्ट्राबैटरी, पारंपरिक वीआरएलए सेल की तुलना में कम गैसिंग, न्यूनतम ऋणात्मक प्लेट हार्ड सल्फेशन, उत्तम पावर प्रदर्शन और न्यूनतम ऑपरेटिंग तापमान प्रदर्शित करती है।


==प्रयुक्त सामग्री==
==प्रयुक्त सामग्री==


स्पंज लेड और [[कार्बन]] परतें नकारात्मक इलेक्ट्रोड बनाती हैं।
स्पंज लेड और [[कार्बन]] परतें ऋणात्मक इलेक्ट्रोड बनाती हैं।


इलेक्ट्रोलाइट घोल [[सल्फ्यूरिक एसिड]] और पानी से बना होता है।
इलेक्ट्रोलाइट घोल [[सल्फ्यूरिक एसिड]] और पानी से बना होता है।


[[लेड सल्फेट]] एक सफेद क्रिस्टल या पाउडर है। सामान्य लेड एसिड बैटरी संचालन में डिस्चार्जिंग के दौरान नकारात्मक इलेक्ट्रोड पर छोटे लेड सल्फेट क्रिस्टल बढ़ते हैं और चार्जिंग के दौरान वापस इलेक्ट्रोलाइट में घुल जाते हैं।
[[लेड सल्फेट]] सफेद क्रिस्टल या पाउडर होता है। इसमें सामान्य लेड एसिड बैटरी संचालन में डिस्चार्जिंग के समय ऋणात्मक इलेक्ट्रोड पर लघु लेड सल्फेट क्रिस्टल बढ़ते हैं और चार्जिंग के समय वापस इलेक्ट्रोलाइट में घुल जाते हैं।


इलेक्ट्रोड एक लेड ग्रिड से निर्मित होते हैं, जिसमें लेड-आधारित सक्रिय सामग्री यौगिक - लेड (IV[[लेड(IV) ऑक्साइड]] - सकारात्मक प्लेट के शेष भाग का निर्माण करता है।
इलेक्ट्रोड लेड ग्रिड से निर्मित होते हैं, जिसमें लेड-आधारित सक्रिय सामग्री यौगिक - लेड(IV) [[लेड(IV) ऑक्साइड]] - धनात्मक प्लेट के शेष भाग का निर्माण करता है।


==अनुप्रयोग==
==अनुप्रयोग   ==


अल्ट्राबैटरी का उपयोग कई प्रकार के ऊर्जा भंडारण अनुप्रयोगों के लिए किया जा सकता है, जैसे:
अल्ट्राबैटरी का उपयोग अनेक प्रकार के ऊर्जा संग्रहण अनुप्रयोगों के लिए किया जा सकता है, जैसे  
* [[विद्युतीय वाहन]] (ईवी) बैटरियों में
* [[विद्युतीय वाहन]] (ईवी) बैटरियों में उपयोग किया जा सकता है
* [[नवीकरणीय ऊर्जा]] का भंडारण करना और रुक-रुक कर आने वाले [[ऊर्जा स्रोतों]] से विद्युत आपूर्ति सुचारू करना
* [[नवीकरणीय ऊर्जा]] का संग्रहण करना और रुक-रुक कर आने वाले [[ऊर्जा स्रोतों]] से विद्युत आपूर्ति सुचारू करने में किया जा सकता है |
* जीवाश्म-ईंधन [[विद्युत जनरेटर]] के साथ कुशल संकर विद्युत प्रणालियों के भाग के रूप में<ref name=Parkinson_2012>{{cite web| first=Giles| last=Parkinson| title=किंग आइलैंड हमारे भविष्य के ग्रिड का खाका कैसे हो सकता है| date=31 October 2012| url=http://reneweconomy.com.au/2012/how-king-island-may-be-a-blueprint-for-our-future-grid-79336| publisher=Renew Economy Magazine| access-date=22 August 2014}}</ref>
* जीवाश्म-ईंधन [[विद्युत जनरेटर]] के साथ कुशल संकर विद्युत प्रणालियों के भाग के रूप में भी उपयोग किया जा सकता है |<ref name="Parkinson_2012">{{cite web| first=Giles| last=Parkinson| title=किंग आइलैंड हमारे भविष्य के ग्रिड का खाका कैसे हो सकता है| date=31 October 2012| url=http://reneweconomy.com.au/2012/how-king-island-may-be-a-blueprint-for-our-future-grid-79336| publisher=Renew Economy Magazine| access-date=22 August 2014}}</ref>
* [[विद्युत ग्रिड]]ों को सहायक सेवाएं (विद्युत ऊर्जा) प्रदान करना।
* [[विद्युत ग्रिड|विद्युत ग्रिडो]] को सहायक सेवाएं (विद्युत ऊर्जा) प्रदान करने में उपयोग किया जा सकता है।


अल्ट्राबैटरी वस्तुतः 100 प्रतिशत पुनर्चक्रण योग्य है और इसे मौजूदा बैटरी विनिर्माण सुविधाओं में बनाया जा सकता है।<ref name=CSIROpedia_UltraBattery/>
अल्ट्राबैटरी वस्तुतः 100 प्रतिशत पुनर्चक्रण योग्य है और इसे उपस्तिथ बैटरी विनिर्माण सुविधाओं के माध्यम से बनाया जा सकता है।<ref name=CSIROpedia_UltraBattery/>
===हाइब्रिड इलेक्ट्रिक वाहनों में अल्ट्राबैटरी                                    ===


जब हाइब्रिड इलेक्ट्रिक वाहनों में उपयोग किया जाता है, तब अल्ट्राबैटरी का अल्ट्राकैपेसिटर उच्च-दर डिस्चार्जिंग और चार्जिंग के समय बफर के रूप में कार्य करता है, जो इसे वाहन त्वरण और ब्रेकिंग के समय शीघ्रता से चार्ज प्रदान करने और अवशोषित करने में सक्षम बनाता है। <ref name="PowerSources_2009_p1241_1245">{{cite journal|title=मध्यम-हाइब्रिड इलेक्ट्रिक वाहन ड्यूटी के तहत वीआरएलए-प्रकार अल्ट्राबैटरी का और प्रदर्शन और माइक्रो-हाइब्रिड इलेक्ट्रिक वाहन अनुप्रयोगों के लिए बाढ़-प्रकार अल्ट्राबैटरी का विकास|journal=Journal of Power Sources|volume=195|issue=4|date=2010|pages=1241–1245|doi=10.1016/j.jpowsour.2009.08.080 |bibcode=2010JPS...195.1241F|last1=Furukawa|first1=J.|last2=Takada|first2=T.|last3=Monma|first3=D.|last4=Lam|first4=L.T.}}</ref>


एडवांस्ड लीड एसिड बैटरी कंसोर्टियम द्वारा हाइब्रिड इलेक्ट्रिक वाहनों में अल्ट्राबैटरी के प्रदर्शन के परीक्षण ने बिना किसी महत्वपूर्ण निम्नीकरण के एकल बैटरी पैक पर 100,000 मील से अधिक की दूरी प्राप्त की जा सकती हैं। <ref name=ALABC_2013/> तथा अल्ट्राबैटरी प्रोटोटाइप के प्रयोगशाला के परिणाम बताते हैं कि उनकी क्षमता, शक्ति, उपलब्ध ऊर्जा, कोल्ड क्रैंकिंग और सेल्फ-डिस्चार्ज न्यूनतम और अधिकतम पावर-असिस्ट हाइब्रिड इलेक्ट्रिक वाहनों के लिए निर्धारित सभी प्रदर्शन लक्ष्यों को पूर्ण करते हैं, और इसके पश्चात्या उससे भी अधिक उपयोग करते हैं।


===हाइब्रिड इलेक्ट्रिक वाहनों में अल्ट्राबैटरी===
===माइक्रोग्रिड में अल्ट्राबैटरी                         ===


जब हाइब्रिड इलेक्ट्रिक वाहनों में उपयोग किया जाता है, तो अल्ट्राबैटरी का अल्ट्राकैपेसिटर उच्च-दर डिस्चार्जिंग और चार्जिंग के दौरान एक बफर के रूप में कार्य करता है, जो इसे वाहन त्वरण और ब्रेकिंग के दौरान तेजी से चार्ज प्रदान करने और अवशोषित करने में सक्षम बनाता है।<ref name=PowerSources_2009_p1241_1245>{{cite journal|title=मध्यम-हाइब्रिड इलेक्ट्रिक वाहन ड्यूटी के तहत वीआरएलए-प्रकार अल्ट्राबैटरी का और प्रदर्शन और माइक्रो-हाइब्रिड इलेक्ट्रिक वाहन अनुप्रयोगों के लिए बाढ़-प्रकार अल्ट्राबैटरी का विकास|journal=Journal of Power Sources|volume=195|issue=4|date=2010|pages=1241–1245|doi=10.1016/j.jpowsour.2009.08.080 |bibcode=2010JPS...195.1241F|last1=Furukawa|first1=J.|last2=Takada|first2=T.|last3=Monma|first3=D.|last4=Lam|first4=L.T.}}</ref>
अल्ट्राबैटरी का उपयोग अनुमानित बिजली उपलब्धता में सुधार के लिए माइक्रोग्रिड पर नवीकरणीय ऊर्जा स्रोतों को सुचारू और स्थानांतरित करने (अर्थात तत्पश्चात उपयोग के लिए स्टोर करने) के लिए किया जा सकता है। अल्ट्राबैटरी का उपयोग स्टैंडअलोन माइक्रोग्रिड प्रणाली , नवीकरणीय ऊर्जा प्रणाली और हाइब्रिड माइक्रोग्रिड में भी किया जा सकता है। यह स्टैंडअलोन माइक्रोग्रिड प्रणाली जीवाश्म-ईंधन ऊर्जा उत्पादन की दक्षता में सुधार करने के लिए डीजल या अन्य जीवाश्म ईंधन को अल्ट्राबैटरी संग्रहण के साथ जोड़ते हैं। और प्रणाली में ऊर्जा संग्रहण को सम्मिलित करने से जेन-सेट (अर्थात जनरेटर की सरणी) का आकार कम हो जाता है क्योंकि बैटरियां लोड में चोटियों को संभाल सकती हैं। अल्ट्राबैटरी जेन-सेट b की ईंधन उपयोग को भी कम करती है |  


एडवांस्ड लीड एसिड बैटरी कंसोर्टियम द्वारा हाइब्रिड इलेक्ट्रिक वाहनों में अल्ट्राबैटरी के प्रदर्शन के परीक्षण ने बिना किसी महत्वपूर्ण गिरावट के एकल बैटरी पैक पर 100,000 मील से अधिक की दूरी हासिल की।<ref name=ALABC_2013/>अल्ट्राबैटरी प्रोटोटाइप के प्रयोगशाला परिणाम बताते हैं कि उनकी क्षमता, शक्ति, उपलब्ध ऊर्जा, कोल्ड क्रैंकिंग और सेल्फ-डिस्चार्ज न्यूनतम और अधिकतम पावर-असिस्ट हाइब्रिड इलेक्ट्रिक वाहनों के लिए निर्धारित सभी प्रदर्शन लक्ष्यों को पूरा करते हैं, या उससे अधिक करते हैं।
नवीकरणीय ऊर्जा प्रणालियाँ स्थानीय बिजली प्रदान करने के लिए अल्ट्राबैटरी विधि को नवीकरणीय उत्पादन स्रोत के साथ जोड़ती हैं। यह हाइब्रिड माइक्रोग्रिड बेस-लोड उत्पादन की दक्षता को अधिकतम करने के लिए अल्ट्राबैटरी ऊर्जा संग्रहण और जीवाश्म-ईंधन जेन-सेट के साथ नवीकरणीय उत्पादन स्रोतों को एकीकृत करते हैं। यह केवल डीजल से संचालित माइक्रोग्रिड की तुलना में ऊर्जा के निवेश को अत्यधिक कम कर सकता है। वह ग्रीनहाउस गैस उत्सर्जन में भी अत्यधिक कमी लाते हैं। इस प्रकार के माइक्रोग्रिड का उदाहरण किंग आइलैंड नवीकरणीय ऊर्जा एकीकरण परियोजना (केआईआरईआईपी) होती है | <ref>{{cite web| title=हाइड्रो तस्मानिया| url=http://www.kingislandrenewableenergy.com.au| publisher=King Island Renewable Energy| access-date=22 August 2014}}</ref> जो कि हाइड्रो तस्मानिया द्वारा किया जा रहा है। इस मेगावाट मापदंड की नवीकरणीय ऊर्जा परियोजना का लक्ष्य द्वीप पर बिजली पहुंचाने की निवेश और कार्बन प्रदूषण दोनों को कम करना है।<ref name=Parkinson_2012/>


===माइक्रोग्रिड में अल्ट्राबैटरी===
===डेटा केंद्रों का बहुउद्देश्यीय                                                                                                                                                              ===


अल्ट्राबैटरी का उपयोग अनुमानित बिजली उपलब्धता में सुधार के लिए माइक्रोग्रिड पर नवीकरणीय ऊर्जा स्रोतों को सुचारू और स्थानांतरित करने (यानी बाद में उपयोग के लिए स्टोर करने) के लिए किया जा सकता है। अल्ट्राबैटरी का उपयोग स्टैंडअलोन माइक्रोग्रिड सिस्टम, नवीकरणीय ऊर्जा सिस्टम और हाइब्रिड माइक्रोग्रिड में भी किया जा सकता है।
अल्ट्राबैटरी का उपयोग निर्बाध बिजली आपूर्ति (यूपीएस) का बैकअप लेने के लिए किया जा सकता है। पारंपरिक यूपीएस प्रणाली में, ग्रिड आउटेज की घटना होने तक बैटरियां अनिवार्य रूप से अनुप्रयोग होती रहती हैं। क्योंकि अल्ट्राबैटरी आवृत्ति विनियमन और संबंधित ग्रिड सेवाएं प्रदान कर सकती है | इस प्रकार यह बैकअप पावर प्रदान करने के साथ-साथ यूपीएस परिसंपत्ति मालिक के लिए राजस्व उत्पन्न कर सकती है। <ref>{{cite web| first=Michael| last=Kanellos| date=13 September 2013| title=डेटा सेंटर ग्रिड के लिए अच्छे क्यों हो सकते हैं?| work=[[Forbes]]| url=https://www.forbes.com/sites/michaelkanellos/2013/09/13/why-data-centers-could-be-good-for-the-grid/| access-date=7 January 2015}}</ref>
स्टैंडअलोन माइक्रोग्रिड सिस्टम जीवाश्म-ईंधन ऊर्जा उत्पादन की दक्षता में सुधार करने के लिए डीजल या अन्य जीवाश्म ईंधन को अल्ट्राबैटरी भंडारण के साथ जोड़ते हैं। सिस्टम में ऊर्जा भंडारण को शामिल करने से जेन-सेट (यानी जनरेटर की सरणी) का आकार कम हो जाता है क्योंकि बैटरियां लोड में चोटियों को संभाल सकती हैं। अल्ट्राबैटरी जेन-सेट की ईंधन खपत को भी कम करती है, बी


नवीकरणीय ऊर्जा प्रणालियाँ स्थानीय बिजली प्रदान करने के लिए अल्ट्राबैटरी तकनीक को नवीकरणीय उत्पादन स्रोत के साथ जोड़ती हैं। हाइब्रिड माइक्रोग्रिड बेस-लोड उत्पादन की दक्षता को अधिकतम करने के लिए अल्ट्राबैटरी ऊर्जा भंडारण और जीवाश्म-ईंधन जेन-सेट के साथ नवीकरणीय उत्पादन स्रोतों को एकीकृत करते हैं। यह केवल डीजल से संचालित माइक्रोग्रिड की तुलना में ऊर्जा की लागत को काफी कम कर सकता है। वे ग्रीनहाउस गैस उत्सर्जन में भी काफी कमी लाते हैं। इस प्रकार के माइक्रोग्रिड का एक उदाहरण किंग आइलैंड नवीकरणीय ऊर्जा एकीकरण परियोजना (KIREIP) है,<ref>{{cite web| title=हाइड्रो तस्मानिया| url=http://www.kingislandrenewableenergy.com.au| publisher=King Island Renewable Energy| access-date=22 August 2014}}</ref> हाइड्रो तस्मानिया द्वारा किया जा रहा है। इस मेगावाट पैमाने की नवीकरणीय ऊर्जा परियोजना का लक्ष्य द्वीप पर बिजली पहुंचाने की लागत और कार्बन प्रदूषण दोनों को कम करना है।<ref name=Parkinson_2012/>
===सामुदायिक, वाणिज्यिक और अनुप्रयोग                                                                                                                                                                                                                                                                                    ===


सामुदायिक अनुप्रयोगों के लिए, अल्ट्राबैटरी का उपयोग ग्रिड आउटेज की स्थिति में बैकअप के रूप में किया जा सकता है | और यह (धारा 5.1 देखें) और पीक शेविंग के लिए भी उपयोग किया जाता है। इसको पीक लॉपिंग के रूप में भी जाना जाता है, पीक शेविंग ऑफ-पीक समय के समय बैटरी को चार्ज करने की क्षमता होती है | और इसमें बिजली के लिए उच्च शुल्क से बचने के लिए पीक समय के समय बैटरी से बिजली का उपयोग करने की क्षमता होती है। सामुदायिक अनुप्रयोग का अन्य उदाहरण जापान के किताकुशु में माएदा क्षेत्र में फुरुकावा बैटरी द्वारा स्थापित 300 किलोवाट स्मार्ट ग्रिड प्रदर्शन प्रणाली है। यह लोड-लेवलिंग एप्लिकेशन 336 अल्ट्राबैटरी सेल (1000 आह, 2 वोल्ट) का उपयोग करता है। कंपनी ने प्राकृतिक इतिहास और मानव इतिहास के किताकुशु संग्रहालय में अल्ट्राबैटरी पीक शिफ्टिंग विधि के दो स्मार्ट ग्रिड प्रदर्शन भी स्थापित किए हैं। <ref>{{cite web|title=FURUKAWA BATTERY REPORT 2013|url=http://www.furukawadenchi.co.jp/english/csr/pdf/report_2013.pdf|access-date=7 January 2015}}</ref>                                                                                                                                           


===डेटा केंद्रों का बहुउद्देश्यीय===
जापान में, शिमिज़ु कॉर्पोरेशन ने व्यावसायिक भवन में माइक्रोग्रिड स्थापित किया है | इसके लिए (धारा 5.2 देखते हैं। यह 'स्मार्ट बिल्डिंग' प्रणाली हैं | जिसमें 163 अल्ट्राबैटरी सेल (500 एएच, 2 वोल्ट) भी सम्मिलित होते हैं, जो कि सेल वोल्टेज, प्रतिबाधा और तापमान पर भी नज़र रखती है। फुरुकावा बैटरी की इवाकी फैक्ट्री में स्थापित दूसरी प्रणाली में 192 अल्ट्राबैटरी सेल, 100 किलोवाट पावर कंडीशनिंग प्रणाली और बैटरी प्रबंधन प्रणाली सम्मिलित है। यह लोड-लेवलिंग एप्लिकेशन कारखाने की बिजली की मांग को नियंत्रित करने के लिए स्थापित किया गया था।


अल्ट्राबैटरी का उपयोग निर्बाध बिजली आपूर्ति (यूपीएस) का बैकअप लेने के लिए किया जा सकता है। पारंपरिक यूपीएस सिस्टम में, ग्रिड आउटेज की घटना होने तक बैटरियां अनिवार्य रूप से अप्रयुक्त रहती हैं। क्योंकि अल्ट्राबैटरी आवृत्ति विनियमन और संबंधित ग्रिड सेवाएं प्रदान कर सकती है, यह बैकअप पावर प्रदान करने के साथ-साथ यूपीएस परिसंपत्ति मालिक के लिए राजस्व उत्पन्न कर सकती है।<ref>{{cite web| first=Michael| last=Kanellos| date=13 September 2013| title=डेटा सेंटर ग्रिड के लिए अच्छे क्यों हो सकते हैं?| work=[[Forbes]]| url=https://www.forbes.com/sites/michaelkanellos/2013/09/13/why-data-centers-could-be-good-for-the-grid/| access-date=7 January 2015}}</ref>
आवासीय अनुप्रयोगों के लिए, छत पर सौर ऊर्जा के स्थानीय उपयोग में अल्ट्राबैटरी का उपयोग करके सुधार किया जा सकता है, जो पैनल के मालिक निवासी द्वारा उपयोग के लिए बिजली स्टोर करता है, और उच्च-मूल्य शिखर के समय ग्रिड में बिजली या विनियमन सेवाओं को फ़ीड करता है।


===ग्रिड सेवाएँ                                                                                                ===


===सामुदायिक, वाणिज्यिक और अनुप्रयोग===
अल्ट्राबैटरी बिजली ग्रिड पर परिवर्तनशीलता को पांच मुख्य विधियों से प्रबंधित कर सकती है: जहाँ आवृत्ति विनियमन, नवीकरणीय ऊर्जा एकीकरण (सुचारूकरण और स्थानांतरण), स्पिनिंग रिजर्व, रैंप-दर नियंत्रण, और बिजली की गुणवत्ता और कमजोर-ग्रिड समर्थन को प्रबंधित किया जा सकता है।


सामुदायिक अनुप्रयोगों के लिए, अल्ट्राबैटरी का उपयोग ग्रिड आउटेज की स्थिति में बैकअप के रूप में किया जा सकता है (धारा 5.1 देखें) और चरम शेविंग के लिए। पीक लॉपिंग के रूप में भी जाना जाता है, पीक शेविंग ऑफ-पीक समय के दौरान बैटरी को चार्ज करने की क्षमता है, और बिजली के लिए उच्च शुल्क से बचने के लिए पीक समय के दौरान बैटरी से बिजली का उपयोग करने की क्षमता है। सामुदायिक अनुप्रयोग का एक अन्य उदाहरण जापान के किताकुशु में माएदा क्षेत्र में फुरुकावा बैटरी द्वारा स्थापित 300 किलोवाट स्मार्ट ग्रिड प्रदर्शन प्रणाली है। यह लोड-लेवलिंग एप्लिकेशन 336 अल्ट्राबैटरी सेल (1000 आह, 2 वोल्ट) का उपयोग करता है। कंपनी ने प्राकृतिक इतिहास और मानव इतिहास के किताकुशु संग्रहालय में अल्ट्राबैटरी पीक शिफ्टिंग तकनीक के दो स्मार्ट ग्रिड प्रदर्शन भी स्थापित किए हैं।<ref>{{cite web|title=FURUKAWA BATTERY REPORT 2013|url=http://www.furukawadenchi.co.jp/english/csr/pdf/report_2013.pdf|access-date=7 January 2015}}</ref>
====आवृत्ति विनियमन                                                ====
जापान में, शिमिज़ु कॉर्पोरेशन ने एक व्यावसायिक भवन में एक माइक्रोग्रिड स्थापित किया है (धारा 5.2 देखें)। 'स्मार्ट बिल्डिंग' प्रणाली, जिसमें 163 अल्ट्राबैटरी सेल (500 एएच, 2 वोल्ट) शामिल हैं, सेल वोल्टेज, प्रतिबाधा और तापमान पर भी नज़र रखती है। फुरुकावा बैटरी की इवाकी फैक्ट्री में स्थापित एक दूसरी प्रणाली में 192 अल्ट्राबैटरी सेल, एक 100 किलोवाट पावर कंडीशनिंग सिस्टम और एक बैटरी प्रबंधन प्रणाली शामिल है। यह लोड-लेवलिंग एप्लिकेशन कारखाने की बिजली की मांग को नियंत्रित करने के लिए स्थापित किया गया था।


आवासीय अनुप्रयोगों के लिए, छत पर सौर ऊर्जा के स्थानीय उपयोग में अल्ट्राबैटरी का उपयोग करके सुधार किया जा सकता है, जो पैनल के मालिक निवासी द्वारा उपयोग के लिए बिजली स्टोर करता है, और उच्च-मूल्य शिखर के दौरान ग्रिड में बिजली या विनियमन सेवाओं को फ़ीड करता है।
बिजली ग्रिड को ग्रिड के भौतिक संचालन को बनाए रखने के लिए तथा निरंतर आवृत्ति बनाए रखने के लिए बिजली की आपूर्ति और मांग में निरंतर उतार-चढ़ाव का प्रबंधन करना चाहिए। जिससे कि अल्ट्राबैटरी आपूर्ति और मांग के मध्य संतुलन को प्रबंधित करने और निरन्तर वोल्टेज बनाए रखने में सहायता करने के लिए ग्रिड को बिजली अवशोषित और वितरित कर सकती है। इकोल्ट ने ग्रिड-स्केल ऊर्जा संग्रहण में प्रणाली को क्रियान्वित किया जो संयुक्त स्तर अमेरिका में पेंसिल्वेनिया-जर्सी-मैरीलैंड (पीजेएम) इंटरकनेक्शन के ग्रिड पर 3 मेगावाट विनियमन सेवाएं प्रदान करती है। और अल्ट्राबैटरी सेल के चार तार ल्योन स्टेशन, पेंसिल्वेनिया में ग्रिड से जुड़े हुए हैं। यह परियोजना पीजेएम पर विवृत मार्केट में बिडिंग करने के लिए निरंतर आवृत्ति विनियमन सेवाएं प्रदान करती है।


===ग्रिड सेवाएँ===
====स्मूथिंग और शिफ्टिंग                      ====


अल्ट्राबैटरी बिजली ग्रिड पर परिवर्तनशीलता को पांच मुख्य तरीकों से प्रबंधित कर सकती है: आवृत्ति विनियमन, नवीकरणीय ऊर्जा एकीकरण (सुचारूकरण और स्थानांतरण), स्पिनिंग रिजर्व, रैंप-दर नियंत्रण, और बिजली की गुणवत्ता और कमजोर-ग्रिड समर्थन।
अल्ट्राबैटरी विधि का उपयोग नवीकरणीय उत्पादन में उतार-चढ़ाव को प्रबंधित करके, सौर और पवन जैसे नवीकरणीय ऊर्जा स्रोतों को बिजली ग्रिड में एकीकृत करने के लिए किया जा सकता है। जहाँ यह ऊर्जा को 'स्मूथिंग' और 'शिफ्टिंग' करके ऐसा करता है।


====आवृत्ति विनियमन====
स्मूथिंग फोटोवोल्टिक पैनलों या पवन टर्बाइनों से बिजली की अंतर्निहित परिवर्तनशीलता को सहज, तथा पूर्वानुमानित सिग्नल में परिवर्तित कर देती है। जहाँ प्रणाली आंतरायिक नवीकरणीय स्रोत के आउटपुट की निगरानी करता है| और जब सौर (या पवन) सिग्नल परिवर्तित होता है, तब अल्ट्राबैटरी या तब ऊर्जा क्रियान्वित करने या अतिरिक्त ऊर्जा को अवशोषित करने के लिए तुरंत प्रतिक्रिया करती है। इस तरह से नवीकरणीय सिग्नल की परिवर्तनशीलता को प्रबंधित करना नवीकरणीय ऊर्जा को अधिक विश्वसनीय बनाता है।


बिजली ग्रिड को ग्रिड के भौतिक संचालन को बनाए रखने के लिए निरंतर आवृत्ति बनाए रखने के लिए बिजली की आपूर्ति और मांग में निरंतर उतार-चढ़ाव का प्रबंधन करना चाहिए। अल्ट्राबैटरी आपूर्ति और मांग के बीच संतुलन को प्रबंधित करने और लगातार वोल्टेज बनाए रखने में मदद करने के लिए ग्रिड को बिजली अवशोषित और वितरित कर सकती है। इकोल्ट ने एक ग्रिड-स्केल ऊर्जा भंडारण प्रणाली लागू की जो संयुक्त राज्य अमेरिका में पेंसिल्वेनिया-जर्सी-मैरीलैंड (पीजेएम) इंटरकनेक्शन के ग्रिड पर 3 मेगावाट विनियमन सेवाएं प्रदान करती है। अल्ट्राबैटरी सेल के चार तार ल्योन स्टेशन, पेंसिल्वेनिया में ग्रिड से जुड़े हुए हैं। यह परियोजना पीजेएम पर खुले बाजार में बोली लगाने के लिए निरंतर आवृत्ति विनियमन सेवाएं प्रदान करती है।
शिफ्टिंग एनर्जी से तात्पर्य अल्ट्राबैटरी की ऑफ-पीक समय में नवीकरणीय संसाधनों द्वारा उत्पादित अतिरिक्त ऊर्जा को संग्रहीत करने और फिर पीक मांग की अवधि के समय जरूरत पड़ने पर इसे क्रियान्वित करने की क्षमता से है। इससे बिजली उपयोगिताओं को पीक समय पर अपने समग्र प्रणाली प्रदर्शन में सुधार करने की अनुमति मिलती है।


====स्मूथिंग और शिफ्टिंग====
संयुक्त स्तर अमेरिका के न्यू मैक्सिको में अग्रणी विद्युत उपयोगिता कंपनी पीएनएम ने डिस्पैचेबल नवीकरणीय संसाधन के रूप में उपयोग के लिए सौर ऊर्जा के सुचारू और स्थानांतरण को प्रदर्शित करने के लिए सौर ऊर्जा उत्पन्न करने वाले रूप के साथ अल्ट्राबैटरी ऊर्जा संग्रहण प्रणाली को एकीकृत किया है। पीएनएम समृद्धि परियोजना संयुक्त स्तर अमेरिका के फोटोवोल्टिक ऊर्जा और सौर पैनल बैटरी संग्रहण के सबसे बड़े संयोजनों में से होती है।


अल्ट्राबैटरी तकनीक का उपयोग नवीकरणीय उत्पादन में उतार-चढ़ाव को प्रबंधित करके, सौर और पवन जैसे नवीकरणीय ऊर्जा स्रोतों को बिजली ग्रिड में एकीकृत करने के लिए किया जा सकता है। यह ऊर्जा को 'स्मूथिंग' और 'शिफ्टिंग' करके ऐसा करता है।
====वितरित संग्रहण के लिए रैंप-दर नियंत्रण                                            ====


स्मूथिंग फोटोवोल्टिक पैनलों या पवन टर्बाइनों से बिजली की अंतर्निहित परिवर्तनशीलता को एक सहज, पूर्वानुमानित सिग्नल में बदल देती है। सिस्टम आंतरायिक नवीकरणीय स्रोत के आउटपुट की निगरानी करता है, और जब सौर (या पवन) सिग्नल बदलता है, तो अल्ट्राबैटरी या तो ऊर्जा जारी करने या अतिरिक्त ऊर्जा को अवशोषित करने के लिए तुरंत प्रतिक्रिया करती है। इस तरह से नवीकरणीय सिग्नल की परिवर्तनशीलता को प्रबंधित करना नवीकरणीय ऊर्जा को अधिक विश्वसनीय बनाता है।
छत पर फोटोवोल्टिक पैनलों की अनेक लघु मापदंड पर तैनाती सौर उत्पादन की रुक-रुक कर होने वाले प्रभाव को अनेक गुना बढ़ा देती है - जिससे ग्रिड संचालकों के लिए समस्या उत्पन्न हो जाती है। [आरईएफ] जहाँ अल्ट्राबैटरी ऊर्जा संग्रहण का उपयोग नियंत्रित विधियों से बिजली ग्रिड पर बिजली बढ़ाकर नवीकरणीय अंतराल को कम करने के लिए किया गया है, जिससे नवीकरणीय-उत्पन्न बिजली को अधिक पूर्वानुमानित बनाया जा सकता है ।


शिफ्टिंग एनर्जी से तात्पर्य अल्ट्राबैटरी की ऑफ-पीक समय में नवीकरणीय संसाधनों द्वारा उत्पादित अतिरिक्त ऊर्जा को संग्रहीत करने और फिर पीक मांग की अवधि के दौरान जरूरत पड़ने पर इसे जारी करने की क्षमता से है। इससे बिजली उपयोगिताओं को चरम समय पर अपने समग्र सिस्टम प्रदर्शन में सुधार करने की अनुमति मिलती है।
==गुण                                      ==


संयुक्त राज्य अमेरिका के न्यू मैक्सिको में अग्रणी विद्युत उपयोगिता कंपनी पीएनएम ने एक डिस्पैचेबल नवीकरणीय संसाधन के रूप में उपयोग के लिए सौर ऊर्जा के सुचारू और स्थानांतरण को प्रदर्शित करने के लिए सौर ऊर्जा पैदा करने वाले फार्म के साथ एक अल्ट्राबैटरी ऊर्जा भंडारण प्रणाली को एकीकृत किया है। पीएनएम समृद्धि परियोजना संयुक्त राज्य अमेरिका के फोटोवोल्टिक ऊर्जा और सौर पैनल बैटरी भंडारण के सबसे बड़े संयोजनों में से एक है।
अल्ट्राबैटरी की पांच मुख्य विशेषताएं हैं जो इस विधि और पारंपरिक वीआरएलए बैटरी विधि के मध्य अंतर बनाती हैं: और उच्च क्षमता टर्नओवर, कम जीवनकाल निवेश प्रति किलोवाट घंटा, उच्च डीसी-डीसी दक्षता, कम रिफ्रेश शुल्क की आवश्यकता और चार्ज स्वीकृति की उच्च दर को बढाता जाता है।


====वितरित भंडारण के लिए रैंप-दर नियंत्रण====
===कैपेसिटी टर्नओवर                           ===
 
छत पर फोटोवोल्टिक पैनलों की कई छोटे पैमाने पर तैनाती सौर उत्पादन की रुक-रुक कर होने वाले प्रभाव को कई गुना बढ़ा देती है - जिससे ग्रिड ऑपरेटरों के लिए एक समस्या पैदा हो जाती है। [आरईएफ] अल्ट्राबैटरी ऊर्जा भंडारण का उपयोग नियंत्रित तरीके से बिजली ग्रिड पर बिजली बढ़ाकर नवीकरणीय अंतराल को कम करने के लिए किया गया है, जिससे नवीकरणीय-उत्पन्न बिजली को अधिक पूर्वानुमानित बनाया जा सके।
 
==गुण==
 
अल्ट्राबैटरी की पांच मुख्य विशेषताएं हैं जो इस तकनीक और पारंपरिक वीआरएलए बैटरी तकनीक के बीच अंतर बनाती हैं: उच्च क्षमता टर्नओवर, कम जीवनकाल लागत प्रति किलोवाट घंटा, उच्च डीसी-डीसी दक्षता, कम ताज़ा शुल्क की आवश्यकता और चार्ज स्वीकृति की उच्च दर।
 
===क्षमता टर्नओवर===


क्षमता टर्नओवर इस बात का माप है कि किसी बैटरी की सैद्धांतिक क्षमता का उसके जीवनकाल में कितनी बार उपयोग किया जा सकता है।
क्षमता टर्नओवर इस बात का माप है कि किसी बैटरी की सैद्धांतिक क्षमता का उसके जीवनकाल में कितनी बार उपयोग किया जा सकता है।


जब प्रायोगिक स्थितियों में अल्ट्राबैटरी और मानक वीआरएलए (आंशिक एसओसी शासन में प्रयुक्त) की तुलना की जाती है, तो अल्ट्राबैटरी को मानक अवशोषित ग्लास मैट वीआरएलए बैटरी की क्षमता टर्नओवर का लगभग 13 गुना हासिल करने के लिए दिखाया गया है।<ref name=Hund_2008/>
जब भी प्रायोगिक स्थितियों में अल्ट्राबैटरी और मानक वीआरएलए (आंशिक एसओसी शासन में प्रयुक्त) की तुलना की जाती है, तब अल्ट्राबैटरी को मानक अवशोषित ग्लास मैट वीआरएलए बैटरी की क्षमता टर्नओवर का प्राय: 13 गुना प्राप्त करने के लिए दिखाया गया है। <ref name=Hund_2008/>


===प्रति किलोवाट घंटा आजीवन निवेश                                                                                                                                              ===


===जीवनपर्यंत लागत प्रति किलोवाट घंटा===
बैटरी का जीवनकाल इस बात पर निर्भर करता है कि इसका उपयोग कैसे किया जाता है, और इसे चार्ज करने और डिस्चार्ज करने के कितने चक्र चलाए जाते हैं। ऐसी स्थिति में जहां बैटरियों को प्रति दिन चार 40% चक्रों के माध्यम से रखा जाता है और जहां थ्रूपुट जीवन-सीमित कारक होता है | वंहा अल्ट्राबैटरी पारंपरिक वीआरएलए बैटरी की तुलना में प्राय: तीन से चार गुना अधिक समय तक चल सकती है। <ref name=DOE_Summer_2012/>


बैटरी का जीवनकाल इस बात पर निर्भर करता है कि इसका उपयोग कैसे किया जाता है, और इसे चार्ज करने और डिस्चार्ज करने के कितने चक्र चलाए जाते हैं। ऐसी स्थिति में जहां बैटरियों को प्रति दिन चार 40% चक्रों के माध्यम से रखा जाता है और जहां थ्रूपुट जीवन-सीमित कारक है, अल्ट्राबैटरी पारंपरिक वीआरएलए बैटरी की तुलना में लगभग तीन से चार गुना अधिक समय तक चलेगी।<ref name=DOE_Summer_2012/>
सीएसआईआरओ द्वारा प्रमाणित किया गया है, कि "तुलनीय प्रदर्शन वाली बैटरियों की तुलना में अल्ट्राबैटरी बनाना प्राय: 70 प्रतिशत सस्ता होता है और इसे उपस्तिथ विनिर्माण सुविधाओं का उपयोग करके बनाया जा सकता है"। <ref name=CSIRO_UltraBattery/>


सीएसआईआरओ का दावा है, "तुलनीय प्रदर्शन वाली बैटरियों की तुलना में अल्ट्राबैटरी बनाना लगभग 70 प्रतिशत सस्ता है और इसे मौजूदा विनिर्माण सुविधाओं का उपयोग करके बनाया जा सकता है"।<ref name=CSIRO_UltraBattery/>
===डीसी-डीसी दक्षता                    ===


बैटरी की डीसी-डीसी दक्षता चार्जिंग के समय बैटरी में डाली गई ऊर्जा की मात्रा के अनुपात के रूप में बैटरी से जुड़े लोड में डिस्चार्ज होने के लिए उपलब्ध ऊर्जा की मात्रा का वर्णन करती है। तथा चार्जिंग और डिस्चार्जिंग के समय , बैटरी की कुछ संग्रहीत ऊर्जा गर्मी के रूप में नष्ट हो जाती है, और कुछ साइड प्रतिक्रियाओं में नष्ट हो जाती है। जहाँ बैटरी की ऊर्जा हानि जितनी कम होती है, वंहा बैटरी उतनी ही अधिक कुशल होती है।


===डीसी-डीसी दक्षता===
अल्ट्राबैटरी के डेवलपर्स द्वारा प्रमाणित किया गया है कि यह आंशिक एसओसी शासन में परिवर्तनशीलता प्रबंधन अनुप्रयोगों को निष्पादित करते समय, डिस्चार्ज दर के आधार पर 93-95% (दर पर निर्भर) की डीसी-डीसी दक्षता प्राप्त कर सकता है, और ऊर्जा स्थानांतरण अनुप्रयोगों को निष्पादित करते समय 86-95% (दर पर निर्भर) प्राप्त कर सकता है।. तुलनात्मक रूप से, ऊर्जा स्थानांतरण (चार्ज शासन के विशिष्ट शीर्ष का उपयोग करके) पर क्रियान्वित मानक वीआरएलए बैटरियां बहुत कम दक्षता प्राप्त करती हैं - उदाहरण के लिए 79% से 84% चार्ज की स्थिति में, परीक्षण 55% के आसपास क्षमता दिखाते हैं। <ref name="Stevens_1996">{{Cite conference| last1=Stevens| first1=John W.| last2=Corey| first2=Garth P.| title=टॉप-ऑफ़-चार्ज के निकट लेड-एसिड बैटरी दक्षता और पीवी सिस्टम डिज़ाइन पर प्रभाव का अध्ययन| journal=Conference Record of the Photovoltaics Conference| url=http://windandsunpower.com/Download/Lead%20Acid%20Battery%20Efficiency.pdf| publisher=IEEE| conference=Photovoltaic Specialists Conference, 1996., Conference Record of the Twenty Fifth IEEE| pages=1485–1488| date=May 1996| conference-url=http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4263| issn=0160-8371| isbn=0-7803-3166-4| doi=10.1109/PVSC.1996.564417| access-date=21 April 2014}}</ref>


बैटरी की डीसी-डीसी दक्षता चार्जिंग के दौरान बैटरी में डाली गई ऊर्जा की मात्रा के अनुपात के रूप में बैटरी से जुड़े लोड में डिस्चार्ज होने के लिए उपलब्ध ऊर्जा की मात्रा का वर्णन करती है। चार्जिंग और डिस्चार्जिंग के दौरान, बैटरी की कुछ संग्रहीत ऊर्जा गर्मी के रूप में नष्ट हो जाती है, और कुछ साइड प्रतिक्रियाओं में नष्ट हो जाती है। बैटरी की ऊर्जा हानि जितनी कम होगी, बैटरी उतनी ही अधिक कुशल होगी।
अल्ट्राबैटरी की उच्च डीसी-डीसी दक्षता प्राप्त करने योग्य है क्योंकि (पारंपरिक वीआरएलए बैटरी की तरह) यह 80% एसओसी के नीचे बहुत कुशलता से संचालित होती है। प्रयोगों से संकेत मिलता है कि वीआरएलए बैटरियों के लिए "शून्य एसओसी से 84% एसओसी तक औसत समग्र बैटरी चार्जिंग दक्षता 91% है"। जबकि पारंपरिक वीआरएलए बैटरियां बार-बार रिफ्रेश किए बिना किसी भी महत्वपूर्ण अवधि के लिए इस रेंज में कार्य करना बर्दाश्त नहीं कर सकती हैं, अल्ट्राबैटरी महत्वपूर्ण निम्नीकरण के बिना चार्ज की बहुत कम स्थिति में कार्य करना बर्दाश्त कर सकती है। इसलिए यह बहुत अधिक दक्षता प्राप्त कर सकता है क्योंकि यह लेड एसिड बैटरियों के लिए सबसे कुशल क्षेत्र में लंबे समय तक कार्य कर सकता है।  


अल्ट्राबैटरी के डेवलपर्स का दावा है कि यह आंशिक एसओसी शासन में परिवर्तनशीलता प्रबंधन अनुप्रयोगों को निष्पादित करते समय, डिस्चार्ज दर के आधार पर 93-95% (दर पर निर्भर) की डीसी-डीसी दक्षता प्राप्त कर सकता है, और ऊर्जा स्थानांतरण अनुप्रयोगों को निष्पादित करते समय 86-95% (दर पर निर्भर) प्राप्त कर सकता है। . तुलनात्मक रूप से, ऊर्जा स्थानांतरण (चार्ज शासन के विशिष्ट शीर्ष का उपयोग करके) पर लागू मानक वीआरएलए बैटरियां बहुत कम दक्षता प्राप्त करती हैं - उदाहरण के लिए 79% से 84% चार्ज की स्थिति में, परीक्षण 55% के आसपास क्षमता दिखाते हैं।<ref name=Stevens_1996>{{Cite conference| last1=Stevens| first1=John W.| last2=Corey| first2=Garth P.| title=टॉप-ऑफ़-चार्ज के निकट लेड-एसिड बैटरी दक्षता और पीवी सिस्टम डिज़ाइन पर प्रभाव का अध्ययन| journal=Conference Record of the Photovoltaics Conference| url=http://windandsunpower.com/Download/Lead%20Acid%20Battery%20Efficiency.pdf| publisher=IEEE| conference=Photovoltaic Specialists Conference, 1996., Conference Record of the Twenty Fifth IEEE| pages=1485–1488| date=May 1996| conference-url=http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4263| issn=0160-8371| isbn=0-7803-3166-4| doi=10.1109/PVSC.1996.564417| access-date=21 April 2014}}</ref>
===रिफ्रेश चक्र                                      ===


अल्ट्राबैटरी की उच्च डीसी-डीसी दक्षता प्राप्त करने योग्य है क्योंकि (पारंपरिक वीआरएलए बैटरी की तरह) यह 80% एसओसी के नीचे बहुत कुशलता से संचालित होती है। प्रयोगों से संकेत मिलता है कि वीआरएलए बैटरियों के लिए "शून्य एसओसी से 84% एसओसी तक औसत समग्र बैटरी चार्जिंग दक्षता 91% है"। जबकि पारंपरिक वीआरएलए बैटरियां बार-बार रिफ्रेश किए बिना किसी भी महत्वपूर्ण अवधि के लिए इस रेंज में काम करना बर्दाश्त नहीं कर सकती हैं, अल्ट्राबैटरी महत्वपूर्ण गिरावट के बिना चार्ज की बहुत कम स्थिति में काम करना बर्दाश्त कर सकती है। इसलिए यह बहुत अधिक दक्षता हासिल कर सकता है क्योंकि यह लेड एसिड बैटरियों के लिए सबसे कुशल क्षेत्र में लंबे समय तक काम कर सकता है।
संचालन के समय , पारंपरिक वीआरएलए बैटरियों को ऋणात्मक इलेक्ट्रोड पर जमा हुए सल्फेट क्रिस्टल को भंग करने और बैटरी की क्षमता को फिर से भरने के लिए रिफ्रेश (ओवरचार्ज) किया जाना चाहिए। बैटरी को रिफ्रेश करने से स्ट्रिंग में बैटरी सेल (जहां अनेक बैटरियों का साथ उपयोग किया जाता है) को निरन्तर ऑपरेटिंग वोल्टेज पर वापस लाने में भी सहायता मिलती है। चूँकि, ओवर चार्जिंग प्रक्रिया इस तथ्य से सम्मिश्र है कि न केवल रिफ्रेश चक्र के समय बैटरी सेवा से बाहर है, किंतु ओवरचार्ज प्रक्रिया (उचित समय सीमा के अंदर ) को पूर्ण करने के लिए आवश्यक उच्च धाराएं भी विभिन्न परजीवी हानि का कारण हैं। इनमें विभिन्न साइड प्रतिक्रियाओं (मुख्य रूप से हाइड्रोजन विकास, ऑक्सीजन विकास और ग्रिड संक्षारण) के कारण थर्मल हानि और हानि सम्मिलित हैं।


===ताज़ा चक्र===
अल्ट्राबैटरी लंबे समय तक रिफ्रेश चार्ज के बिना कार्य कर सकती है। अक्षय ऊर्जा या ग्रिड समर्थन जैसे स्थिर साइक्लिंग अनुप्रयोगों के लिए, यह कार्यभार के आधार पर से चार महीने के मध्य हो सकता है; समान अनुप्रयोगों में मानक वीआरएलए बैटरियों को दैनिक चक्र चलाने पर हर दो सप्ताह में रिफ्रेश करने की आवश्यकता होती है - और साप्ताहिक रिफ्रेश चक्रों के साथ भी प्रदर्शन शीघ्रता से बिगड़ता है। <ref name=DOE_Summer_2012/>


ऑपरेशन के दौरान, पारंपरिक वीआरएलए बैटरियों को नकारात्मक इलेक्ट्रोड पर जमा हुए सल्फेट क्रिस्टल को भंग करने और बैटरी की क्षमता को फिर से भरने के लिए ताज़ा (ओवरचार्ज) किया जाना चाहिए। बैटरी को ताज़ा करने से स्ट्रिंग में बैटरी कोशिकाओं (जहां कई बैटरियों का एक साथ उपयोग किया जाता है) को लगातार ऑपरेटिंग वोल्टेज पर वापस लाने में भी मदद मिलती है। हालाँकि, ओवरचार्जिंग प्रक्रिया इस तथ्य से जटिल है कि न केवल ताज़ा चक्र के दौरान बैटरी सेवा से बाहर है, बल्कि ओवरचार्ज प्रक्रिया (उचित समय सीमा के भीतर) को पूरा करने के लिए आवश्यक उच्च धाराएं भी विभिन्न परजीवी नुकसान का कारण हैं। इनमें विभिन्न साइड प्रतिक्रियाओं (मुख्य रूप से हाइड्रोजन विकास, ऑक्सीजन विकास और ग्रिड संक्षारण) के कारण थर्मल नुकसान और नुकसान शामिल हैं।
[[हाइब्रिड इलेक्ट्रिक वाहन]] में ऑटोमोटिव अनुप्रयोगों में, अल्ट्राबैटरी को रिफ्रेश किए बिना आंशिक एसओसी शासन में कम या ज्यादा निरन्तर संचालित किया जा सकता है। फुरुकावा की रिपोर्ट: के अनुसार “अल्ट्राबैटरी पैक स्थापित करने के साथ [[होंडा इनसाइट]] हाइब्रिड इलेक्ट्रिक वाहन के फील्ड ड्राइविंग टेस्ट में, रिकवरी चार्जिंग के बिना 100,000 मील ( प्राय: 160,000 किमी) का लक्ष्य ड्राइव प्राप्त किया गया था। <ref>{{cite web| date=November 2008| first1=Yuichi| last1=Akasaka| first2=Hikaru| last2=Sakamoto| first3=Toshimichi| last3=Takada| first4=Daisuke| last4=Monma| first5=Akira| last5=Dobashi| first6=Tsutomu| last6=Yokoyama| first7=Yousuke| last7=Masuda| first8=Hidehito| last8=Nakajima| first9=Satoshi| last9=Shibata| first10=Jun| last10=Furukawa| first11=L. T.| last11=Lam| first12=N. P.| last12=Haigh| first13=O. V.| last13=Lim| first14=R.| last14=Louey| first15=C. G.| last15=Phyland| first16=D. G.| last16=Vella| first17=L. H.| last17=Vu
| title=Development of UltraBattery - 3rd report| url=http://www.furukawadenchi.co.jp/english/research/new/pdf/ultra_03.pdf| publisher=The Furukawa Battery Co., Ltd| access-date=5 August 2014| archive-url=https://web.archive.org/web/20140810200948/http://www.furukawadenchi.co.jp/english/research/new/pdf/ultra_03.pdf| archive-date=2014-08-10| url-status=dead}}</ref>


अल्ट्राबैटरी लंबे समय तक रिफ्रेश चार्ज के बिना काम कर सकती है। अक्षय ऊर्जा या ग्रिड समर्थन जैसे स्थिर साइक्लिंग अनुप्रयोगों के लिए, यह कार्यभार के आधार पर एक से चार महीने के बीच हो सकता है; समान अनुप्रयोगों में मानक वीआरएलए बैटरियों को दैनिक चक्र चलाने पर हर एक से दो सप्ताह में ताज़ा करने की आवश्यकता होती है - और साप्ताहिक ताज़ा चक्रों के साथ भी प्रदर्शन तेजी से बिगड़ता है।<ref name=DOE_Summer_2012/>
===प्रभार स्वीकृति                                                                                                  ===


[[हाइब्रिड इलेक्ट्रिक वाहन]] में ऑटोमोटिव अनुप्रयोगों में, अल्ट्राबैटरी को ताज़ा किए बिना आंशिक SoC शासन में कम या ज्यादा लगातार संचालित किया जा सकता है। फुरुकावा की रिपोर्ट: “अल्ट्राबैटरी पैक स्थापित करने के साथ [[होंडा इनसाइट]] हाइब्रिड इलेक्ट्रिक वाहन के फील्ड ड्राइविंग टेस्ट में, रिकवरी चार्जिंग के बिना 100,000 मील (लगभग 160,000 किमी) का लक्ष्य ड्राइव हासिल किया गया था।<ref>{{cite web| date=November 2008| first1=Yuichi| last1=Akasaka| first2=Hikaru| last2=Sakamoto| first3=Toshimichi| last3=Takada| first4=Daisuke| last4=Monma| first5=Akira| last5=Dobashi| first6=Tsutomu| last6=Yokoyama| first7=Yousuke| last7=Masuda| first8=Hidehito| last8=Nakajima| first9=Satoshi| last9=Shibata| first10=Jun| last10=Furukawa| first11=L. T.| last11=Lam| first12=N. P.| last12=Haigh| first13=O. V.| last13=Lim| first14=R.| last14=Louey| first15=C. G.| last15=Phyland| first16=D. G.| last16=Vella| first17=L. H.| last17=Vu
क्योंकि अल्ट्राबैटरी आंशिक एसओसी रेंज में प्रभावी रूप से कार्य करती है, यह पारंपरिक वीआरएलए बैटरियों की तुलना में अधिक कुशलता से चार्जिंग स्वीकार कर सकती है, जो सामान्यतः चार्जिंग की उच्च स्थिति पर कार्य करती हैं। सैंडिया नेशनल लेबोरेटरी परीक्षणों से पता चलता है कि वीआरएलए बैटरियां सामान्यतः 90% से अधिक चार्ज होने पर 50% से कम दक्षता प्राप्त करती हैं, 79% और 84% चार्ज के मध्य प्राय: 55% दक्षता प्राप्त करती हैं, और पूर्ण क्षमता के शून्य और 84% के मध्य चार्ज होने पर 90% से अधिक दक्षता प्राप्त करती हैं। <ref name=Stevens_1996/> <ref name=Hund_2008/> यह पारंपरिक वीआरएलए बैटरियों की तुलना में, अल्ट्राबैटरी को कुशलतापूर्वक और उच्च चार्जिंग/डिस्चार्जिंग दरों पर चार्ज किया जा सकता है। हंड एट अल के परीक्षण परिणामों से पता चला कि अल्ट्राबैटरी प्राय: 15,000 चक्रों के लिए 4C1 दर पर चक्र करने में सक्षम थी। इस परीक्षण प्रक्रिया का उपयोग करने वाली वीआरएलए बैटरी केवल 1C1 दर पर ही चक्र कर सकती है। 1C दर संकेत करती है कि इस दर पर घंटे में बैटरी की पूर्ण क्षमता का उपयोग किया जाएगा (या चार्ज करने पर प्रतिस्थापित किया जाएगा)। 4C दर चार गुना शीघ्र होती है | अर्थात 4C दर पर 15 मिनट में बैटरी पूर्ण तरह से डिस्चार्ज (या चार्ज) हो जाती हैं।
| title=Development of UltraBattery - 3rd report| url=http://www.furukawadenchi.co.jp/english/research/new/pdf/ultra_03.pdf| publisher=The Furukawa Battery Co., Ltd| access-date=5 August 2014| archive-url=https://web.archive.org/web/20140810200948/http://www.furukawadenchi.co.jp/english/research/new/pdf/ultra_03.pdf| archive-date=2014-08-10| url-status=dead}}</ref>


स्पष्ट रासायनिक प्रक्रिया जिसके द्वारा कार्बन सल्फेशन में इतनी देरी करता है,यह पूर्ण तरह से समझ में नहीं आता है। चूँकि, अल्ट्राबैटरी के समानांतर अल्ट्राकैपेसिटर की उपस्थिति स्पष्ट रूप से ऋणात्मक टर्मिनल को लेड सल्फेट क्रिस्टल की बड़ी सतह की प्रचुरता से बचाती है जो डिस्चार्ज की उच्च दर पर या पीएसओसी संचालन में लंबी अवधि के लिए संचालित वीआरएलए बैटरियों को प्रभावित करती है, जिससे सेल की रिचार्जेबिलिटी बढ़ जाती है | इसके लिए (हार्ड सल्फेशन भी देखें) जाते हैं |


===प्रभार स्वीकृति===
कम सल्फेशन इलेक्ट्रोड पर हाइड्रोजन गैस उत्पादन को कम करके चार्ज स्वीकृति को भी महत्वपूर्ण रूप से बढ़ाता है। यह अप्रत्याशित नहीं है क्योंकि अत्यधिक हाइड्रोजन गैस का उत्पादन (जो चार्जिंग प्रक्रिया से महत्वपूर्ण ऊर्जा को छीन लेता है) तब होता है जब चार्जिंग के समय इलेक्ट्रॉनों को ऋणात्मक प्लेट में धकेल दिया जाता है (जो सामान्यतः प्लेट के अंदर लेड सल्फेट क्रिस्टल के साथ प्रतिक्रिया करता है) प्लेट की सतह पर लेड सल्फेट के बड़े क्रिस्टल के साथ आसानी से प्रतिक्रिया करने में असमर्थ होते हैं, इसलिए इसके अतिरिक्त इलेक्ट्रोलाइट के प्रचुर मात्रा में हाइड्रोजन आयनों को हाइड्रोजन गैस में कम कर देते हैं।
 
क्योंकि अल्ट्राबैटरी आंशिक SoC रेंज में प्रभावी ढंग से काम करती है, यह पारंपरिक VRLA बैटरियों की तुलना में अधिक कुशलता से चार्ज स्वीकार कर सकती है, जो आमतौर पर चार्ज की उच्च स्थिति पर काम करती हैं। सैंडिया नेशनल लेबोरेटरी परीक्षणों से पता चलता है कि वीआरएलए बैटरियां आमतौर पर 90% से अधिक चार्ज होने पर 50% से कम दक्षता हासिल करती हैं, 79% और 84% चार्ज के बीच लगभग 55% दक्षता हासिल करती हैं, और पूरी क्षमता के शून्य और 84% के बीच चार्ज होने पर 90% से अधिक दक्षता हासिल करती हैं। .<ref name=Stevens_1996/><ref name=Hund_2008/>पारंपरिक वीआरएलए बैटरियों की तुलना में, अल्ट्राबैटरी को कुशलतापूर्वक और उच्च चार्जिंग/डिस्चार्जिंग दरों पर चार्ज किया जा सकता है। हंड एट अल के परीक्षण परिणामों से पता चला कि अल्ट्राबैटरी लगभग 15,000 चक्रों के लिए 4C1 दर पर चक्र करने में सक्षम थी। इस परीक्षण प्रक्रिया का उपयोग करने वाली VRLA बैटरी केवल 1C1 दर पर ही चक्र कर सकती है। 1C दर इंगित करती है कि इस दर पर एक घंटे में बैटरी की पूरी क्षमता का उपयोग किया जाएगा (या चार्ज करने पर प्रतिस्थापित किया जाएगा)। 4C दर चार गुना तेज है - यानी 4C दर पर 15 मिनट में बैटरी पूरी तरह से डिस्चार्ज (या चार्ज) हो जाएगी।
 
सटीक रासायनिक प्रक्रिया जिसके द्वारा कार्बन सल्फेशन में इतनी देरी करता है, पूरी तरह से समझ में नहीं आता है। हालाँकि, अल्ट्राबैटरी के समानांतर अल्ट्राकैपेसिटर की उपस्थिति स्पष्ट रूप से नकारात्मक टर्मिनल को लेड सल्फेट क्रिस्टल की बड़ी सतह की प्रचुरता से बचाती है जो डिस्चार्ज की उच्च दर पर या pSoC ऑपरेशन में लंबी अवधि के लिए संचालित VRLA बैटरियों को प्रभावित करती है, जिससे सेल की रिचार्जेबिलिटी बढ़ जाती है (हार्ड सल्फेशन भी देखें) ).
कम सल्फेशन इलेक्ट्रोड पर हाइड्रोजन गैस उत्पादन को कम करके चार्ज स्वीकृति को भी महत्वपूर्ण रूप से बढ़ाता है। यह अप्रत्याशित नहीं है क्योंकि अत्यधिक हाइड्रोजन गैस का उत्पादन (जो चार्जिंग प्रक्रिया से महत्वपूर्ण ऊर्जा को छीन लेता है) तब होता है जब चार्जिंग के दौरान इलेक्ट्रॉनों को नकारात्मक प्लेट में धकेल दिया जाता है (जो आमतौर पर प्लेट के अंदर लेड सल्फेट क्रिस्टल के साथ प्रतिक्रिया करता है) आसानी से प्रतिक्रिया करने में असमर्थ होते हैं प्लेट की सतह पर लेड सल्फेट के बड़े क्रिस्टल होते हैं, जिससे इलेक्ट्रोलाइट में प्रचुर मात्रा में मौजूद हाइड्रोजन आयन हाइड्रोजन गैस में बदल जाते हैं।


==मानक एवं सुरक्षा==
==मानक एवं सुरक्षा==


अल्ट्राबैटरी का निर्माण संयुक्त राज्य अमेरिका में ईस्ट पेन मैन्युफैक्चरिंग द्वारा ISO 9001:2008, ISO/TS 16949:2009 और ISO 14001:2004 प्रमाणन मानकों की वैश्विक आवश्यकताओं के अनुसार किया जाता है।
अल्ट्राबैटरी का निर्माण संयुक्त स्तर अमेरिका में ईस्ट पेन मैन्युफैक्चरिंग द्वारा ISO 9001:2008, ISO/TS 16949:2009 और ISO 14001:2004 प्रमाणन मानकों की वैश्विक आवश्यकताओं के अनुसार किया जाता है।


अल्ट्राबैटरी के इलेक्ट्रोलाइट समाधान में H होता है<sub>2</sub>इसलिए<sub>4</sub> पानी में, और इसके लीड इलेक्ट्रोड निष्क्रिय हैं। चूंकि इलेक्ट्रोलाइट काफी हद तक पानी है, अल्ट्राबैटरी अग्निरोधक है। UltraBatteries में पारंपरिक VRLA बैटरियों के समान ही परिवहन और जोखिम प्रतिबंध हैं
अल्ट्राबैटरी के इलेक्ट्रोलाइट समाधान में पानी में H<sub>2</sub>SO<sub>4</sub> होता है, और इसके लीड इलेक्ट्रोड निष्क्रिय होते हैं। चूंकि इलेक्ट्रोलाइट अधिक सीमा तक पानी है, अल्ट्राबैटरी अग्निरोधक होता है। अल्ट्राबैटरी में पारंपरिक वीआरएलए बैटरियों के समान ही परिवहन और संकट प्रतिबंध होता हैं |


==पुनर्चक्रण==
==पुनर्चक्रण==


प्रत्येक अल्ट्राबैटरी का प्रत्येक भाग - सीसा, प्लास्टिक, स्टील और एसिड - बाद में पुन: उपयोग के लिए लगभग 100% पुनर्चक्रण योग्य है। इन बैटरियों के लिए बड़े पैमाने पर रीसाइक्लिंग सुविधाएं पहले से ही उपलब्ध हैं और अमेरिका में उपयोग की जाने वाली 96% लेड एसिड बैटरियों को रीसाइक्लिंग किया जाता है।<ref>{{cite web|title=अपशिष्ट - संसाधन संरक्षण - सामान्य अपशिष्ट एवं सामग्री|url=http://www.epa.gov/osw/conserve/materials/battery.htm|publisher=US Environmental Protection Agency (EPA)|access-date=28 April 2014}}</ref> बैटरी निर्माता वीआरएलए बैटरियों से सीसा, प्लास्टिक और एसिड को पुनर्प्राप्त और अलग करते हैं। पुन: उपयोग के लिए सीसे को गलाया और परिष्कृत किया जाता है। प्लास्टिक के हिस्सों को साफ किया जाता है, पीसा जाता है, बाहर निकाला जाता है और नए प्लास्टिक हिस्सों में ढाला जाता है। एसिड को पुनः प्राप्त किया जाता है, साफ किया जाता है और नई बैटरियों में उपयोग किया जाता है।
प्रत्येक अल्ट्राबैटरी का प्रत्येक भाग - सीसा, प्लास्टिक, स्टील और एसिड - पश्चात् में पुन: उपयोग के लिए प्राय: 100% पुनर्चक्रण योग्य है। इन बैटरियों के लिए बड़े मापदंड पर रीसाइक्लिंग सुविधाएं पहले से ही उपलब्ध होती हैं और अमेरिका में उपयोग की जाने वाली 96% लेड एसिड बैटरियों को रीसाइक्लिंग किया जाता है। <ref>{{cite web|title=अपशिष्ट - संसाधन संरक्षण - सामान्य अपशिष्ट एवं सामग्री|url=http://www.epa.gov/osw/conserve/materials/battery.htm|publisher=US Environmental Protection Agency (EPA)|access-date=28 April 2014}}</ref> बैटरी निर्माता वीआरएलए बैटरियों से सीसा, प्लास्टिक और एसिड को पुनर्प्राप्त और अलग करते हैं। और पुन: उपयोग के लिए सीसे को गलाया और परिष्कृत किया जाता है। प्लास्टिक के भागो को साफ किया जाता है, पीसा जाता है, बाहर निकाला जाता है और नए प्लास्टिक भागो में ढाला जाता है। एसिड को पुनः प्राप्त किया जाता है, साफ किया जाता है और नई बैटरियों में उपयोग किया जाता है।


==अनुसंधान==
==अनुसंधान                                                                                                                                                                   ==


पारंपरिक वीआरएलए बैटरियों के साथ अल्ट्राबैटरी के प्रदर्शन की तुलना करने के लिए स्वतंत्र प्रयोगशालाओं के साथ-साथ ईस्ट पेन मैन्युफैक्चरिंग, फुरुकावा और इकोल्ट द्वारा परीक्षण किए गए हैं।
पारंपरिक वीआरएलए बैटरियों के साथ अल्ट्राबैटरी के प्रदर्शन की तुलना करने के लिए स्वतंत्र प्रयोगशालाओं के साथ-साथ ईस्ट पेन मैन्युफैक्चरिंग, फुरुकावा और इकोल्ट द्वारा परीक्षण किए गए हैं।
Line 164: Line 156:
===हाइब्रिड इलेक्ट्रिक वाहन परीक्षण===
===हाइब्रिड इलेक्ट्रिक वाहन परीक्षण===


माइक्रो हाइब्रिड इलेक्ट्रिक वाहनों की बैटरियों का पल्स चार्ज-डिस्चार्ज पैटर्न में 70% SoC पर परीक्षण किया गया। पारंपरिक वीआरएलए बैटरी की तुलना में अल्ट्राबैटरी की क्षमता टर्नओवर और इसलिए चक्र जीवन लगभग 1.8 गुना अधिक है।<ref name=Furukawa_DevUB_2013/>
माइक्रो हाइब्रिड इलेक्ट्रिक वाहनों की बैटरियों का पल्स चार्ज-डिस्चार्ज पैटर्न में 70% एसओसी पर परीक्षण किया गया हैं। पारंपरिक वीआरएलए बैटरी की तुलना में अल्ट्राबैटरी की क्षमता टर्नओवर और इसलिए चक्र जीवन प्राय: 1.8 गुना अधिक है। <ref name=Furukawa_DevUB_2013/>


एडवांस्ड लीड एसिड बैटरी कंसोर्टियम (एएलएबीसी) ने होंडा सिविक हाइब्रिड इलेक्ट्रिक वाहन के उच्च-दर, आंशिक स्टेट-ऑफ-चार्ज ऑपरेशन में अल्ट्राबैटरी के स्थायित्व का परीक्षण किया। परीक्षण कार में Ni-MH बैटरी द्वारा संचालित समान मॉडल के समान मील प्रति गैलन प्रदर्शन था।<ref name=ALABC_2013/>
एडवांस्ड लीड एसिड बैटरी कंसोर्टियम (एएलएबीसी) ने होंडा सिविक हाइब्रिड इलेक्ट्रिक वाहन के उच्च-दर, आंशिक स्टेट-ऑफ-चार्ज संचालन में अल्ट्राबैटरी के स्थायित्व का परीक्षण किया। परीक्षण कार में नी-एमएच बैटरी द्वारा संचालित समान मॉडल के समान मील प्रति गैलन प्रदर्शन था। <ref name=ALABC_2013/>


सूक्ष्म, हल्के और पूर्ण हाइब्रिड इलेक्ट्रिक वाहन कर्तव्यों के तहत, अल्ट्राबैटरी का साइक्लिंग प्रदर्शन पारंपरिक अत्याधुनिक वीआरएलए बैटरियों की तुलना में कम से कम चार गुना अधिक था और नी-एमएच कोशिकाओं की तुलना में तुलनीय या उससे भी बेहतर था। अल्ट्राबैटरी ने पुनर्योजी ब्रेकिंग से चार्ज की अच्छी स्वीकार्यता का भी प्रदर्शन किया, और इसलिए फील्ड परीक्षण के दौरान समकरण शुल्क की आवश्यकता नहीं थी।
सूक्ष्म, हल्के और पूर्ण हाइब्रिड इलेक्ट्रिक वाहन कर्तव्यों के अंतर्गत होते हैं | अल्ट्राबैटरी का साइक्लिंग प्रदर्शन पारंपरिक अत्याधुनिक वीआरएलए बैटरियों की तुलना में कम से कम चार गुना अधिक था और नी-एमएच सेलो की तुलना में तुलनीय या उससे भी उत्तम था। अल्ट्राबैटरी ने पुनर्योजी ब्रेकिंग से चार्ज की अच्छी स्वीकार्यता का भी प्रदर्शन किया, और इसलिए इसमे फील्ड परीक्षण के समय समकरण शुल्क की आवश्यकता नहीं थी।


===स्थिर ऊर्जा अनुप्रयोग===
===स्थिर ऊर्जा अनुप्रयोग===
Line 174: Line 166:
====दक्षता परीक्षण====
====दक्षता परीक्षण====


बिजली स्मार्ट ग्रिड के लिए एक स्थिर अनुप्रयोग में अल्ट्राबैटरी के Wh (वाट-घंटे) दक्षता परीक्षणों से पता चला कि 0.1 C10A की दरों पर चार्ज-डिस्चार्ज के 30 से अधिक चक्र, बैटरी की स्थिति के आधार पर Wh क्षमताएं 91% से 94.5% तक थीं। शुल्क। [आरईएफ] इसकी तुलना लेड-एसिड बैटरी दक्षता पर सैंडिया नेशनल लेबोरेटरीज के अध्ययन से की गई है, जिसमें पाया गया कि पारंपरिक लेड-एसिड बैटरियां 79% और 84% स्टेट-ऑफ-चार्ज ("शीर्ष" चार्ज मोड के बीच काम करती हैं, जिससे पारंपरिक लीड- एसिड बैटरियां आम तौर पर अपने जीवन को बढ़ाने के लिए प्रतिबंधित होती हैं) केवल 55% वृद्धिशील चार्जिंग दक्षता प्राप्त करती हैं।<ref name=Stevens_1996/>
बिजली स्मार्ट ग्रिड के लिए स्थिर अनुप्रयोग में अल्ट्राबैटरी के डब्लूएच(वाट-घंटे) दक्षता परीक्षणों से पता चला कि 0.1 C10A की दरों पर चार्ज-डिस्चार्ज के 30 से अधिक चक्रों में, बैटरी की स्थिति के आधार पर डब्लूएच क्षमताएं 91% से 94.5% तक थीं। शुल्क। [आरईएफ] इसकी तुलना लेड-एसिड बैटरी दक्षता पर सैंडिया नेशनल लेबोरेटरीज के अध्ययन से की गई है, जिसमें पाया गया कि पारंपरिक लेड-एसिड बैटरियां 79% और 84% स्टेट-ऑफ-चार्ज ("शीर्ष" चार्ज मोड जिस पर पारंपरिक लेड-एसिड बैटरियां सामान्यतः अपने जीवन को बढ़ाने के लिए प्रतिबंधित होती हैं) के मध्य कार्य करती हैं केवल 55% वृद्धिशील चार्जिंग दक्षता प्राप्त करती हैं। <ref name=Stevens_1996/>
 
===='''चक्र जीवन और पुनर्प्राप्ति परीक्षण'''====
 
====चक्र जीवन और पुनर्प्राप्ति परीक्षण====


बैटरियों को 60% चार्ज स्थिति पर 3 घंटे के चार्ज और डिस्चार्ज परीक्षणों के अधीन किया गया, जिसमें हर 90 चक्रों में 20 घंटे का रिकवरी चार्ज किया गया। क्षमता परीक्षणों से पता चला कि 270 चक्रों के बाद, अल्ट्राबैटरी क्षमता अनुपात पारंपरिक लीड स्टोरेज बैटरी के लिए 93% की तुलना में 103% के बराबर या उससे अधिक था। परीक्षणों से पता चला कि चार्ज की आंशिक स्थिति में काम करने पर पारंपरिक बैटरी की तुलना में अल्ट्राबैटरी का चक्र जीवन लंबा था और रिकवरी चार्ज विशेषताएँ बेहतर थीं।
बैटरियों को 60% चार्ज करने की स्थिति पर 3 घंटे के चार्ज और डिस्चार्ज परीक्षणों के अधीन किया गया था | जिसमें हर 90 चक्रों में 20 घंटे का रिकवरी चार्ज किया गया था। इन क्षमता परीक्षणों से पता चला कि 270 चक्रों के पश्चात् , अल्ट्राबैटरी क्षमता अनुपात पारंपरिक लीड स्टोरेज बैटरी के लिए 93% की तुलना में 103% के सामान्य या उससे अधिक था। इन परीक्षणों से पता चला कि चार्ज की आंशिक स्थिति में कार्य करने पर पारंपरिक बैटरी की तुलना में अल्ट्राबैटरी का चक्र जीवन लंबा था और इसमें रिकवरी चार्ज विशेषताएँ उत्तम थीं।


====उपयोगिता सेवाएँ और पवन फ़ार्म ऊर्जा स्मूथिंग====
====उपयोगिता सेवाएँ और पवन रूप ऊर्जा स्मूथिंग====


ऊर्जा भंडारण और पवन फार्म ऊर्जा स्मूथिंग के लिए उपयोगिता सहायक सेवा अनुप्रयोगों में उपयोग के लिए अल्ट्राबैटरी की क्षमता को मापने के लिए उच्च दर, आंशिक राज्य-प्रभारी चक्र परीक्षण किए गए थे। 1C1 से 4C1 दर पर उच्च-दर, आंशिक राज्य-चार्ज साइक्लिंग प्रोफ़ाइल का उपयोग करते हुए, अल्ट्राबैटरी 20% से कम क्षमता हानि के साथ 15,000 से अधिक चक्रों में सक्षम थी, और 4C1 दर पर चक्र कर सकती थी। समान परिस्थितियों में परीक्षण की गई एक अवशोषित ग्लास मैट (एजीएम) वीआरएलए बैटरी केवल 1C1 दर पर चक्र कर सकती है, लगभग 100 चक्रों के बाद रिकवरी चार्ज की आवश्यकता होती है, और 1100 चक्रों के बाद इसकी क्षमता 20% से अधिक खो जाती है। अल्ट्राबैटरी एजीएम वीआरएलए बैटरी (1000 बनाम 100) की तुलना में रिकवरी चार्ज के बीच दस गुना से अधिक चक्र चलाने में सक्षम थी।
ऊर्जा संग्रहण और पवन रूप ऊर्जा स्मूथिंग के लिए उपयोगिता सहायक सेवा अनुप्रयोगों में उपयोग के लिए अल्ट्राबैटरी की क्षमता को मापने के लिए उच्च दर, आंशिक स्तर-प्रभारी चक्र परीक्षण किए गए थे। 1C1 से 4C1 दर पर उच्च-दर, आंशिक स्तर-चार्ज साइक्लिंग प्रोफ़ाइल का उपयोग करते हुए, अल्ट्राबैटरी 20% से कम क्षमता हानि के साथ 15,000 से अधिक चक्रों में सक्षम थी, इस प्रकार यह 4C1 दर पर चक्र कर सकती थी। समान परिस्थितियों में परीक्षण की गई अवशोषित ग्लास मैट (एजीएम) वीआरएलए बैटरी केवल 1C1 दर पर चक्र कर सकती है | इसमें प्राय: 100 चक्रों के पश्चात् रिकवरी चार्ज की आवश्यकता होती है, और 1100 चक्रों के पश्चात् इसकी क्षमता 20% से अधिक विलुप्त हो जाती है। अल्ट्राबैटरी एजीएम वीआरएलए बैटरी (1000 बनाम 100) की तुलना में रिकवरी चार्ज के मध्य दस गुना से अधिक चक्र चलाने में सक्षम थी।


हैम्पटन, न्यू साउथ वेल्स (ऑस्ट्रेलिया) में एक पवन फार्म क्षेत्र परीक्षण, पवन उत्पादन की अल्पकालिक रुकावट को संबोधित करने के लिए ऊर्जा भंडारण के उपयोग को प्रदर्शित करने के लिए डिज़ाइन की गई प्रणाली का परीक्षण कर रहा है। परीक्षण ने नवीकरणीय ऊर्जा स्मूथिंग अनुप्रयोगों के लिए अल्ट्राबैटरी और तीन अन्य लीड-एसिड बैटरी प्रकारों के प्रदर्शन की तुलना की। श्रृंखला में जुड़े 60 कोशिकाओं की प्रत्येक स्ट्रिंग में सेल वोल्टेज में भिन्नता के माप से पता चला कि अल्ट्राबैटरी में 10 महीने की अवधि में बहुत कम भिन्नता थी (140% -251% की तुलना में वोल्टेज रेंज भिन्नता के मानक विचलन में 32% की वृद्धि) अन्य तीन प्रकार की बैटरी के लिए)
हैम्पटन, न्यू साउथ वेल्स (ऑस्ट्रेलिया) में पवन रूप क्षेत्र परीक्षण, पवन उत्पादन की अल्पकालिक रुकावट को संबोधित करने के लिए ऊर्जा संग्रहण के उपयोग को प्रदर्शित करने के लिए डिज़ाइन की गई प्रणाली का परीक्षण कर रहा है। परीक्षण ने नवीकरणीय ऊर्जा स्मूथिंग अनुप्रयोगों के लिए अल्ट्राबैटरी और तीन अन्य लीड-एसिड बैटरी प्रकारों के प्रदर्शन की तुलना की हैं । यह श्रृंखला में जुड़े 60 सेल की प्रत्येक स्ट्रिंग में सेल वोल्टेज में भिन्नता के माप से पता चला कि अल्ट्राबैटरी में 10 महीने की अवधि में बहुत कम भिन्नता होती थी | इसमें (वोल्टेज रेंज भिन्नता के मानक विचलन में 32% की वृद्धि होती हैं तथा अन्य तीन बैटरी प्रकारों के लिए 140% -251% की तुलना ) की जाती हैं।


====[[उपयोगिता साइकिलिंग]] और फोटोवोल्टिक हाइब्रिड ऊर्जा अनुप्रयोग====
====[[उपयोगिता साइकिलिंग]] और फोटोवोल्टिक हाइब्रिड ऊर्जा अनुप्रयोग====


सैंडिया नेशनल लेबोरेटरीज के परीक्षणों से पता चलता है कि अल्ट्राबैटरी उपयोगिता साइक्लिंग में पारंपरिक वीआरएलए बैटरियों की तुलना में अधिक समय तक काम करती है। इन परीक्षणों में साइकलिंग प्रोफ़ाइल का उद्देश्य अधिकतम शक्ति के साथ लगभग 4 चक्र प्रति घंटे के साथ आवृत्ति विनियमन कर्तव्य की नकल करना था, जिसका उद्देश्य विशिष्ट एसओसी रेंज देना था। परिणामों से पता चला कि एक पारंपरिक वीआरएलए बैटरी (चार्ज की आंशिक स्थिति (पीएसओसी) और डिस्चार्ज की 10% गहराई में चक्र) लगभग 3000 चक्रों के बाद अपनी प्रारंभिक क्षमता के 60% तक गिर गई। उसी परीक्षण में ईस्ट पेन द्वारा निर्मित एक अल्ट्राबैटरी 22,000 से अधिक चक्रों तक चली, बिना किसी रिकवरी चार्ज के अपनी प्रारंभिक क्षमता का अनिवार्य रूप से 100% बनाए रखा।<ref name=DOE_Summer_2012/>
सैंडिया नेशनल लेबोरेटरीज के परीक्षणों से पता चलता है कि अल्ट्राबैटरी उपयोगिता साइक्लिंग में पारंपरिक वीआरएलए बैटरियों की तुलना में अधिक समय तक कार्य करती है। इन परीक्षणों में साइकलिंग प्रोफ़ाइल का उद्देश्य अधिकतम शक्ति के साथ प्राय: 4 चक्र प्रति घंटे के साथ आवृत्ति विनियमन कर्तव्य की प्रतिलिपि करना था | जिसका उद्देश्य विशिष्ट एसओसी रेंज देना था। इसके परिणामों से यह पता चला कि पारंपरिक वीआरएलए बैटरी (चार्ज की आंशिक स्थिति (पीएसओसी) और डिस्चार्ज की 10% गहराई में चक्र) प्राय: 3000 चक्रों के पश्चात् अपनी प्रारंभिक क्षमता के 60% तक गिर गई। उसी परीक्षण में ईस्ट पेन द्वारा निर्मित अल्ट्राबैटरी 22,000 से अधिक चक्रों तक चली, यह बिना किसी रिकवरी चार्ज के अपनी प्रारंभिक क्षमता को अनिवार्य रूप से 100% बनाए रखता हैं। <ref name=DOE_Summer_2012/>


परीक्षणों से यह भी पता चला कि अल्ट्राबैटरी ऊर्जा अनुप्रयोगों में पारंपरिक वीआरएलए बैटरियों की तुलना में अधिक समय तक काम करती है, जैसा कि सैंडिया नेशनल लेबोरेटरीज द्वारा सिम्युलेटेड फोटोवोल्टिक हाइब्रिड चक्र-जीवन परीक्षण में दिखाया गया है। परीक्षण से यह निष्कर्ष निकला कि 40-दिवसीय घाटे के चार्ज पर भी (ऐसे चक्र जहां प्रत्येक दिन बैटरी से अधिक लिया जाता है, जितना वापस डाला जाता है)। अल्ट्राबैटरीज़ का प्रदर्शन पारंपरिक वीआरएलए बैटरियों से कहीं बेहतर है, तब भी जब पारंपरिक वीआरएलए बैटरियां केवल 7 दिन की डेफिसिट चार्ज व्यवस्था पर काम कर रही हैं। डेफिसिट चार्ज व्यवस्था में टेपर चार्ज द्वारा कोई रिकवरी नहीं होती है, जिसे बैटरियों के रिफ्रेशिंग/इक्वलाइजेशन के रूप में भी जाना जाता है, इसलिए इस ऑपरेटिंग व्यवस्था में पारंपरिक वीआरएलए के लिए सल्फेशन एक विशिष्ट विफलता मोड है।
परीक्षणों से यह भी पता चला कि अल्ट्राबैटरी ऊर्जा अनुप्रयोगों में पारंपरिक वीआरएलए बैटरियों की तुलना में अधिक समय तक कार्य करती है, जैसा कि सैंडिया नेशनल लेबोरेटरीज द्वारा सिम्युलेटेड फोटोवोल्टिक हाइब्रिड चक्र-जीवन परीक्षण में दिखाया गया है। इस परीक्षण से यह निष्कर्ष निकला कि 40-दिवसीय घाटे के चार्ज पर भी (ऐसे चक्र जहां प्रत्येक दिन बैटरी से अधिक लिया जाता है, जितना वापस डाला जाता है)। इन अल्ट्राबैटरीज़ का प्रदर्शन पारंपरिक वीआरएलए बैटरियों से कहीं उत्तम होता है, तब भी जब पारंपरिक वीआरएलए बैटरियां केवल 7 दिन की डेफिसिट चार्ज व्यवस्था पर कार्य कर रही हैं। डेफिसिट चार्ज व्यवस्था में टेपर चार्ज द्वारा कोई रिकवरी नहीं होती है, जिसे बैटरियों के रिफ्रेशिंग/इक्वलाइजेशन के रूप में भी जाना जाता है, इसलिए इस ऑपरेटिंग व्यवस्था में पारंपरिक वीआरएलए के लिए सल्फेशन विशिष्ट विफलता मोड होता है।


60% गहराई के डिस्चार्ज के साथ 100 दिनों की साइकिलिंग के बाद, हर 30 दिनों में ताज़ा चक्र प्राप्त करने वाली एक पारंपरिक वीआरएलए बैटरी अपनी प्रारंभिक क्षमता के 70% तक गिर गई थी। दो अल्ट्राबैटरी इकाइयां (एक फुरुकावा द्वारा बनाई गई, एक ईस्ट पेन द्वारा) प्रत्येक 40-दिवसीय घाटे वाले चार्ज का अनुभव कर रही थी, फिर भी पारंपरिक वीआरएलए बैटरी की तुलना में काफी बेहतर प्रदर्शन कर रही थी जो अधिक लगातार रिफ्रेश प्राप्त कर रही थी (इसमें अधिकतम 7-दिन के घाटे वाले चार्ज का अनुभव हुआ)430 दिनों की साइकिलिंग के बाद, ईस्ट पेन अल्ट्राबैटरी और फुरुकावा अल्ट्राबैटरी अभी भी विफल नहीं हुई थीं। ईस्ट पेन बैटरी अपनी प्रारंभिक क्षमता का 85% बनाए रख रही थी और फुरुकावा बैटरी अपनी प्रारंभिक क्षमता के 100% के बहुत करीब थी।
60% गहराई के डिस्चार्ज के साथ 100 दिनों की साइकिलिंग के पश्चात् , हर 30 दिनों में रिफ्रेश चक्र प्राप्त करने वाली पारंपरिक वीआरएलए बैटरी अपनी प्रारंभिक क्षमता के 70% तक गिर गई थी। दो अल्ट्राबैटरी इकाइयां (फुरुकावा द्वारा बनाई गई, ईस्ट पेन द्वारा) प्रत्येक 40-दिवसीय घाटे वाले चार्ज का अनुभव कर रही थी, फिर भी यह पारंपरिक वीआरएलए बैटरी की तुलना में अधिक उत्तम प्रदर्शन कर रही थी | जिससे यह अधिक निरन्तर रिफ्रेश प्राप्त कर रही थी (इसमें अधिकतम 7-दिन के घाटे वाले चार्ज का अनुभव होता) हैं। यह 430 दिनों की साइकिलिंग के पश्चात् , ईस्ट पेन अल्ट्राबैटरी और फुरुकावा अल्ट्राबैटरी अभी भी विफल नहीं हुई थीं। इसमें ईस्ट पेन बैटरी अपनी प्रारंभिक क्षमता का 85% तह बनाए रहती थी और फुरुकावा बैटरी अपनी प्रारंभिक क्षमता के 100% के बहुत समीप होती थी।


== यह भी देखें ==
== यह भी देखें ==
Line 205: Line 195:
* [http://www.arena.gov.au/ Australian Renewable Energy Agency]
* [http://www.arena.gov.au/ Australian Renewable Energy Agency]
* [http://www.csiro.au/ CSIRO Australia]
* [http://www.csiro.au/ CSIRO Australia]
[[Category: ऊर्जा भंडारण]] [[Category: रिचार्जेबल बैटरीज़]]


[[Category: Machine Translated Page]]
[[Category:CS1 errors]]
[[Category:Created On 18/07/2023]]
[[Category:Created On 18/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:ऊर्जा भंडारण]]
[[Category:रिचार्जेबल बैटरीज़]]

Latest revision as of 16:08, 30 August 2023

अल्ट्राबैटरी का स्कीमैटिक आरेख

अल्ट्राबैटरी फुरुकावा बैटरी कंपनी लिमिटेड द्वारा व्यावसायीकरण की गई लेड एसिड बैटरी बैटरी विधि का ट्रेडमार्क है। अल्ट्राबैटरी में ऋणात्मक प्लेटों के लिए स्पंजी लेड सक्रिय सामग्री पर पतली कार्बन परतें होती हैं। मूल विचार जो सामान्य इलेक्ट्रोलाइट के साथ एकल सेल में लेड-एसिड बैटरी विधि के साथ अल्ट्राकैपेसिटर विधिको जोड़ता है, वह राष्ट्रमंडल वैज्ञानिक और औद्योगिक अनुसंधान संगठन (सीएसआईआरओ) से आया था।

परिचय

संयुक्त स्तर अमेरिका की सैंडिया राष्ट्रीय प्रयोगशालाओं, [1] एडवांस्ड लीड-एसिड बैटरी कंसोर्टियम (एएलएबीसी) हैं| [2] कॉमनवेल्थ साइंटिफिक एंड इंडस्ट्रियल रिसर्च ऑर्गनाइजेशन (सीएसआईआरओ) हैं | [3] [4] [5] और ईस्ट द्वारा वाणिज्यिक परीक्षण जैसे स्वतंत्र प्रयोगशालाओं द्वारा किए गए अनुसंधान पेन मैन्युफैक्चरिंग, फुरुकावा बैटरी और इकोल्ट ने संकेत दिया है कि पारंपरिक वाल्व रेगुलेटेड लेड एसिड (वीआरएलए) बैटरियों की तुलना में, अल्ट्राबैटरी विधिमें उच्च ऊर्जा दक्षता, लंबा जीवनकाल और आंशिक चार्ज स्थिति (एसओसी) स्थितियों के तहत उत्तम चार्ज स्वीकृति होती है।

दो प्रौद्योगिकियों को बैटरी सेल में संयोजित करने का अर्थ है कि अल्ट्राबैटरी पारंपरिक लेड एसिड प्रौद्योगिकियों की तुलना में बहुत कुशलता से कार्य करती है[6] मुख्य रूप से इस तथ्य के कारण कि इसे आंशिक चार्ज अवस्था (पीएसओसी) में लंबे समय तक संचालित किया जा सकता है, जबकि पारंपरिक लेड एसिड बैटरियां सामान्यतः उच्च एसओसी उपयोग के लिए डिज़ाइन की जाती हैं (अर्थात जब बैटरी पूर्ण तरह से बंद हो जाती है) चार्ज किया गया)। [7] आंशिक एसओसी रेंज में संचालन करने से मुख्य रूप से सल्फेशन को कम करके और चार्ज की बहुत उच्च और बहुत कम स्थिति में संचालन में लगने वाले समय को कम करके बैटरी का जीवन बढ़ाया जाता है, जहां विभिन्न साइड प्रतिक्रियाएं खराब होने का कारण बनती हैं। इस आंशिक एसओसी रेंज में संचालित होने पर पारंपरिक वीआरएलए बैटरी शीघ्र खराब हो जाती है।[7]

इतिहास

अल्ट्राबैटरी का मूल विचार सीएसआईआरओ से आया था।[8]

अल्ट्राबैटरी के विकास को ऑस्ट्रेलियाई सरकार द्वारा वित्त पोषित किया गया था। जापानी कंपनी फुरुकावा बैटरी कंपनी लिमिटेड ने भी अल्ट्राबैटरी प्रौद्योगिकी के विकास में योगदान दिया, और जापानी सरकार ने नई ऊर्जा और औद्योगिक प्रौद्योगिकी विकास संगठन (एनईडीओ) के माध्यम से इसके विकास का कुछ भाग वित्त पोषित किया।

2007 में, ईस्ट पेन मैन्युफैक्चरिंग ने उद्देश्य और ऑटोमोटिव अनुप्रयोगों (विभिन्न क्षेत्रों में) और स्थिर ऊर्जा संग्रहण अनुप्रयोगों (वैश्विक स्तर पर, जापान और थाईलैंड के बाहर, जहां फुरुकावा बैटरी प्रमुख लाइसेंस धारक है) के लिए अल्ट्राबैटरी विधि के निर्माण और व्यावसायीकरण के लिए वैश्विक प्रमुख लाइसेंस प्राप्त किया गया था। [9]

संयुक्त स्तर अमेरिका के ऊर्जा विभाग ने ग्रिड-स्केल स्थिर ऊर्जा संग्रहण अनुप्रयोगों में अनुसंधान के लिए अल्ट्राबैटरी को भी वित्त पोषित किया है। तथा 2007 में, सीएसआईआरओ ने इस मार्केट को संबोधित करने के लिए सहायक कंपनी, इकोल्ट का गठन किया था। अल्ट्राबैटरी के विकास को आगे बढ़ाने के लिए इकोल्ट को ऑस्ट्रेलियाई सरकार से भी समर्थन मिला। इसको मई 2010 में, अमेरिकी बैटरी निर्माता ईस्ट पेन मैन्युफैक्चरिंग ने सीएसआईआरओ से इकोल्ट में अधिग्रहण किया गया था। [10] [11] [12]

मार्च 2013 में, ऑस्ट्रेलियाई सरकार ने आवासीय और वाणिज्यिक नवीकरणीय ऊर्जा प्रणालियों के लिए निवेश प्रभावी ऊर्जा संग्रहण के रूप में अल्ट्राबैटरी विधि को और विकसित करने के लिए ऑस्ट्रेलियाई नवीकरणीय ऊर्जा एजेंसी के उभरते नवीकरणीय कार्यक्रम के माध्यम से अतिरिक्त धनराशि की घोषणा की थी। [13][14][15]

संग्रहण सिद्धांत

अल्ट्राबैटरी का ऊर्जा संग्रहण सिद्धांत पारंपरिक लेड-एसिड बैटरी के समान है। यह ऋणात्मक इलेक्ट्रोड पर कार्बन परतें Pb2+ आयनों से Pb(0) में कम करने के लिए और Pb2+ आयनों के संग्रहण स्थलों के लिए प्रतिक्रिया स्थल के रूप में कार्य करती हैं।

कठोर सल्फेशन

सामान्य लेड-एसिड बैटरी संचालन के समय , डिस्चार्जिंग के समय ऋणात्मक इलेक्ट्रोड पर लेड सल्फेट क्रिस्टल बढ़ते हैं और चार्जिंग के समय फिर से घुल जाते हैं। इन क्रिस्टलों के निर्माण को सल्फेशन कहा जाता है। इसमें समय के साथ सल्फेशन स्थायी हो सकता है, क्योंकि कुछ क्रिस्टल बढ़ते हैं और घुलने का विरोध करते हैं। यह विशेष रूप से तब होता है जब बैटरी को डिस्चार्ज की बहुत उच्च दर पर कार्य करने के लिए मजबूर किया जाता है, जो इलेक्ट्रोड की सतह पर लेड सल्फेट क्रिस्टल के विकास को बढ़ावा देता है। डिस्चार्ज की मध्यम दर पर, लेड सल्फेट क्रिस्टल इलेक्ट्रोड प्लेट (जिसमें स्पंज जैसी स्थिरता होती है) के क्रॉस खंड में बढ़ते हैं क्योंकि प्रतिक्रिया की अनुमति देने के लिए इलेक्ट्रोलाइट (तनु सल्फ्यूरिक एसिड) को इलेक्ट्रोड के शरीर के माध्यम से फैलाया जाता है। और यह पूर्ण प्लेट में जगह बना लेते है | [16]

लेकिन डिस्चार्ज की बहुत शीघ्र दर पर, प्लेट के शरीर के अंदर पहले से ही उपस्तिथ एसिड का शीघ्रता से उपयोग हो जाता है और प्रतिक्रिया क्रियान्वित रखने के लिए ताजा एसिड समय पर इलेक्ट्रोड के माध्यम से फैल नहीं पाता है। इसलिए प्रतिक्रिया को इलेक्ट्रोड की बाहरी दीवार की ओर पसंद किया जाता है, जहां क्रिस्टल पूर्ण प्लेट में बिखरे हुए गुच्छों के अतिरिक्त घनी चटाई में बन सकते हैं। क्रिस्टल की यह चटाई इलेक्ट्रोलाइट स्थानांतरण को और भी बाधित करती है। क्रिस्टल फिर बड़े हो जाते हैं, और क्योंकि बड़े क्रिस्टल में उनके सतह क्षेत्र की तुलना में बड़ी मात्रा होती है, इसलिए चार्जिंग के समय उन्हें रासायनिक रूप से निकालना मुश्किल हो जाता है, विशेष रूप से जब इलेक्ट्रोलाइट में सल्फ्यूरिक एसिड की एकाग्रता अधिक होने की संभावना होती है (क्योंकि यह केवल सीमित होती है) तब प्लेट की सतह पर लेड सल्फेट बनाया गया है) और लेड सल्फेट तनु सल्फ्यूरिक एसिड की तुलना में सांद्र सल्फ्यूरिक एसिड (वजन के अनुसार प्राय: 10% सांद्रता से ऊपर) में कम घुलनशील होते है।

इस स्थिति को कभी-कभी बैटरी इलेक्ट्रोड का "हार्ड" सल्फेशन कहा जाता है। हार्ड सल्फेशन से बैटरी की प्रतिबाधा बढ़ जाती है (चूंकि लेड सल्फेट क्रिस्टल इलेक्ट्रोलाइट से इलेक्ट्रोड को अलग कर देते हैं) और अवांछित साइड प्रतिक्रियाओं में वृद्धि के कारण इसकी शक्ति, क्षमता और दक्षता कम हो जाती है, जिनमें से यह कुछ ऋणात्मक प्लेट के अंदर चार्जिंग के कारण होती हैं। लेड सल्फेट की कम उपलब्धता (प्लेट बॉडी के अंदर)। अवांछनीय प्रभाव प्लेट के अंदर हाइड्रोजन का उत्पादन है, जो प्रतिक्रिया की दक्षता को और कम कर देता है। और "हार्ड" सल्फेशन सामान्यतः अपरिवर्तनीय होता है क्योंकि बैटरी में अधिक से अधिक ऊर्जा अंदर की ओर ले जाने के कारण पार्श्व प्रतिक्रियाएं प्रबल हो जाती हैं। [17]

हार्ड सल्फेशन की संभावना को कम करने के लिए, पारंपरिक वीआरएलए बैटरियों को विभिन्न चार्जिंग एल्गोरिदम द्वारा निर्धारित विशिष्ट दरों पर डिस्चार्ज किया जाना चाहिए। इसके अतिरिक्त , उन्हें बार-बार रिफ्रेश किया जाना चाहिए और एसओसी के शीर्ष छोर (80% और 100% चार्ज के मध्य) की ओर संचालन के लिए सबसे उपयुक्त हैं। जबकि चार्ज की इस सीमित स्थिति में संचालन ऋणात्मक इलेक्ट्रोड पर स्थायी सल्फेशन को कम करता है, तथा पूर्ण एसओसी पर या उसके निकट विशेष रूप से बैटरी संचालन अत्यधिक अक्षम है। इसमें अक्षमता अधिक परिमाण में साइड प्रतिक्रियाओं (उदाहरण के लिए इलेक्ट्रोलिसिस) की घटनाओं में वृद्धि के कारण होता है जो कि ऊर्जा को नष्ट कर देती है।

अल्ट्राबैटरी में एकीकृत अल्ट्राकैपेसिटर की उपस्थिति सेल के अंदर कठोर सल्फेशन के गठन को सीमित करने का कार्य करती है। यह आंशिक एसओसी में बैटरी की लंबी अवधि तक संचालित होने की क्षमता का समर्थन करता है जहां बैटरी अधिक कुशलता से संचालित होती है। और पारंपरिक वीआरएलए को सल्फेशन से होने वाले हानि से बचाने के लिए उनकी चार्ज क्षमता के शीर्ष पर अकुशल क्षेत्र में कार्य करने के लिए कुछ विशेष रूप से बाध्य किया जाता है। उन कारणों पर शोध क्रियान्वित होता है कि क्यों अल्ट्राकैपेसिटर की उपस्थिति सल्फेशन को इतनी सफलतापूर्वक कम कर देती है। इसमें प्रायोगिक परिणाम बताते हैं कि वीआरएलए सेल के अंदर कार्बन की उपस्थिति में कुछ कुएंचिंग प्रभाव होता है लेकिन अल्ट्राबैटरी के अंदर समानांतर-जुड़े अल्ट्राकैपेसिटर के सुरक्षात्मक प्रभाव कहीं अधिक महत्वपूर्ण होते हैं। उदाहरण के लिए, हंड एट अल ने पाया कि विशिष्ट वीआरएलए बैटरी विफलता मोड (पानी की हानि, ऋणात्मक प्लेट सल्फेशन और ग्रिड संक्षारण) सभी अल्ट्राबैटरी में कम से कम हैं। हंड के नतीजों से यह भी पता चला है कि उच्च दर आंशिक चार्ज एप्लिकेशन में उपयोग की जाने वाली अल्ट्राबैटरी, पारंपरिक वीआरएलए सेल की तुलना में कम गैसिंग, न्यूनतम ऋणात्मक प्लेट हार्ड सल्फेशन, उत्तम पावर प्रदर्शन और न्यूनतम ऑपरेटिंग तापमान प्रदर्शित करती है।

प्रयुक्त सामग्री

स्पंज लेड और कार्बन परतें ऋणात्मक इलेक्ट्रोड बनाती हैं।

इलेक्ट्रोलाइट घोल सल्फ्यूरिक एसिड और पानी से बना होता है।

लेड सल्फेट सफेद क्रिस्टल या पाउडर होता है। इसमें सामान्य लेड एसिड बैटरी संचालन में डिस्चार्जिंग के समय ऋणात्मक इलेक्ट्रोड पर लघु लेड सल्फेट क्रिस्टल बढ़ते हैं और चार्जिंग के समय वापस इलेक्ट्रोलाइट में घुल जाते हैं।

इलेक्ट्रोड लेड ग्रिड से निर्मित होते हैं, जिसमें लेड-आधारित सक्रिय सामग्री यौगिक - लेड(IV) लेड(IV) ऑक्साइड - धनात्मक प्लेट के शेष भाग का निर्माण करता है।

अनुप्रयोग

अल्ट्राबैटरी का उपयोग अनेक प्रकार के ऊर्जा संग्रहण अनुप्रयोगों के लिए किया जा सकता है, जैसे

अल्ट्राबैटरी वस्तुतः 100 प्रतिशत पुनर्चक्रण योग्य है और इसे उपस्तिथ बैटरी विनिर्माण सुविधाओं के माध्यम से बनाया जा सकता है।[9]

हाइब्रिड इलेक्ट्रिक वाहनों में अल्ट्राबैटरी

जब हाइब्रिड इलेक्ट्रिक वाहनों में उपयोग किया जाता है, तब अल्ट्राबैटरी का अल्ट्राकैपेसिटर उच्च-दर डिस्चार्जिंग और चार्जिंग के समय बफर के रूप में कार्य करता है, जो इसे वाहन त्वरण और ब्रेकिंग के समय शीघ्रता से चार्ज प्रदान करने और अवशोषित करने में सक्षम बनाता है। [19]

एडवांस्ड लीड एसिड बैटरी कंसोर्टियम द्वारा हाइब्रिड इलेक्ट्रिक वाहनों में अल्ट्राबैटरी के प्रदर्शन के परीक्षण ने बिना किसी महत्वपूर्ण निम्नीकरण के एकल बैटरी पैक पर 100,000 मील से अधिक की दूरी प्राप्त की जा सकती हैं। [2] तथा अल्ट्राबैटरी प्रोटोटाइप के प्रयोगशाला के परिणाम बताते हैं कि उनकी क्षमता, शक्ति, उपलब्ध ऊर्जा, कोल्ड क्रैंकिंग और सेल्फ-डिस्चार्ज न्यूनतम और अधिकतम पावर-असिस्ट हाइब्रिड इलेक्ट्रिक वाहनों के लिए निर्धारित सभी प्रदर्शन लक्ष्यों को पूर्ण करते हैं, और इसके पश्चात्या उससे भी अधिक उपयोग करते हैं।

माइक्रोग्रिड में अल्ट्राबैटरी

अल्ट्राबैटरी का उपयोग अनुमानित बिजली उपलब्धता में सुधार के लिए माइक्रोग्रिड पर नवीकरणीय ऊर्जा स्रोतों को सुचारू और स्थानांतरित करने (अर्थात तत्पश्चात उपयोग के लिए स्टोर करने) के लिए किया जा सकता है। अल्ट्राबैटरी का उपयोग स्टैंडअलोन माइक्रोग्रिड प्रणाली , नवीकरणीय ऊर्जा प्रणाली और हाइब्रिड माइक्रोग्रिड में भी किया जा सकता है। यह स्टैंडअलोन माइक्रोग्रिड प्रणाली जीवाश्म-ईंधन ऊर्जा उत्पादन की दक्षता में सुधार करने के लिए डीजल या अन्य जीवाश्म ईंधन को अल्ट्राबैटरी संग्रहण के साथ जोड़ते हैं। और प्रणाली में ऊर्जा संग्रहण को सम्मिलित करने से जेन-सेट (अर्थात जनरेटर की सरणी) का आकार कम हो जाता है क्योंकि बैटरियां लोड में चोटियों को संभाल सकती हैं। अल्ट्राबैटरी जेन-सेट b की ईंधन उपयोग को भी कम करती है |

नवीकरणीय ऊर्जा प्रणालियाँ स्थानीय बिजली प्रदान करने के लिए अल्ट्राबैटरी विधि को नवीकरणीय उत्पादन स्रोत के साथ जोड़ती हैं। यह हाइब्रिड माइक्रोग्रिड बेस-लोड उत्पादन की दक्षता को अधिकतम करने के लिए अल्ट्राबैटरी ऊर्जा संग्रहण और जीवाश्म-ईंधन जेन-सेट के साथ नवीकरणीय उत्पादन स्रोतों को एकीकृत करते हैं। यह केवल डीजल से संचालित माइक्रोग्रिड की तुलना में ऊर्जा के निवेश को अत्यधिक कम कर सकता है। वह ग्रीनहाउस गैस उत्सर्जन में भी अत्यधिक कमी लाते हैं। इस प्रकार के माइक्रोग्रिड का उदाहरण किंग आइलैंड नवीकरणीय ऊर्जा एकीकरण परियोजना (केआईआरईआईपी) होती है | [20] जो कि हाइड्रो तस्मानिया द्वारा किया जा रहा है। इस मेगावाट मापदंड की नवीकरणीय ऊर्जा परियोजना का लक्ष्य द्वीप पर बिजली पहुंचाने की निवेश और कार्बन प्रदूषण दोनों को कम करना है।[18]

डेटा केंद्रों का बहुउद्देश्यीय

अल्ट्राबैटरी का उपयोग निर्बाध बिजली आपूर्ति (यूपीएस) का बैकअप लेने के लिए किया जा सकता है। पारंपरिक यूपीएस प्रणाली में, ग्रिड आउटेज की घटना होने तक बैटरियां अनिवार्य रूप से अनुप्रयोग होती रहती हैं। क्योंकि अल्ट्राबैटरी आवृत्ति विनियमन और संबंधित ग्रिड सेवाएं प्रदान कर सकती है | इस प्रकार यह बैकअप पावर प्रदान करने के साथ-साथ यूपीएस परिसंपत्ति मालिक के लिए राजस्व उत्पन्न कर सकती है। [21]

सामुदायिक, वाणिज्यिक और अनुप्रयोग

सामुदायिक अनुप्रयोगों के लिए, अल्ट्राबैटरी का उपयोग ग्रिड आउटेज की स्थिति में बैकअप के रूप में किया जा सकता है | और यह (धारा 5.1 देखें) और पीक शेविंग के लिए भी उपयोग किया जाता है। इसको पीक लॉपिंग के रूप में भी जाना जाता है, पीक शेविंग ऑफ-पीक समय के समय बैटरी को चार्ज करने की क्षमता होती है | और इसमें बिजली के लिए उच्च शुल्क से बचने के लिए पीक समय के समय बैटरी से बिजली का उपयोग करने की क्षमता होती है। सामुदायिक अनुप्रयोग का अन्य उदाहरण जापान के किताकुशु में माएदा क्षेत्र में फुरुकावा बैटरी द्वारा स्थापित 300 किलोवाट स्मार्ट ग्रिड प्रदर्शन प्रणाली है। यह लोड-लेवलिंग एप्लिकेशन 336 अल्ट्राबैटरी सेल (1000 आह, 2 वोल्ट) का उपयोग करता है। कंपनी ने प्राकृतिक इतिहास और मानव इतिहास के किताकुशु संग्रहालय में अल्ट्राबैटरी पीक शिफ्टिंग विधि के दो स्मार्ट ग्रिड प्रदर्शन भी स्थापित किए हैं। [22]

जापान में, शिमिज़ु कॉर्पोरेशन ने व्यावसायिक भवन में माइक्रोग्रिड स्थापित किया है | इसके लिए (धारा 5.2 देखते हैं। यह 'स्मार्ट बिल्डिंग' प्रणाली हैं | जिसमें 163 अल्ट्राबैटरी सेल (500 एएच, 2 वोल्ट) भी सम्मिलित होते हैं, जो कि सेल वोल्टेज, प्रतिबाधा और तापमान पर भी नज़र रखती है। फुरुकावा बैटरी की इवाकी फैक्ट्री में स्थापित दूसरी प्रणाली में 192 अल्ट्राबैटरी सेल, 100 किलोवाट पावर कंडीशनिंग प्रणाली और बैटरी प्रबंधन प्रणाली सम्मिलित है। यह लोड-लेवलिंग एप्लिकेशन कारखाने की बिजली की मांग को नियंत्रित करने के लिए स्थापित किया गया था।

आवासीय अनुप्रयोगों के लिए, छत पर सौर ऊर्जा के स्थानीय उपयोग में अल्ट्राबैटरी का उपयोग करके सुधार किया जा सकता है, जो पैनल के मालिक निवासी द्वारा उपयोग के लिए बिजली स्टोर करता है, और उच्च-मूल्य शिखर के समय ग्रिड में बिजली या विनियमन सेवाओं को फ़ीड करता है।

ग्रिड सेवाएँ

अल्ट्राबैटरी बिजली ग्रिड पर परिवर्तनशीलता को पांच मुख्य विधियों से प्रबंधित कर सकती है: जहाँ आवृत्ति विनियमन, नवीकरणीय ऊर्जा एकीकरण (सुचारूकरण और स्थानांतरण), स्पिनिंग रिजर्व, रैंप-दर नियंत्रण, और बिजली की गुणवत्ता और कमजोर-ग्रिड समर्थन को प्रबंधित किया जा सकता है।

आवृत्ति विनियमन

बिजली ग्रिड को ग्रिड के भौतिक संचालन को बनाए रखने के लिए तथा निरंतर आवृत्ति बनाए रखने के लिए बिजली की आपूर्ति और मांग में निरंतर उतार-चढ़ाव का प्रबंधन करना चाहिए। जिससे कि अल्ट्राबैटरी आपूर्ति और मांग के मध्य संतुलन को प्रबंधित करने और निरन्तर वोल्टेज बनाए रखने में सहायता करने के लिए ग्रिड को बिजली अवशोषित और वितरित कर सकती है। इकोल्ट ने ग्रिड-स्केल ऊर्जा संग्रहण में प्रणाली को क्रियान्वित किया जो संयुक्त स्तर अमेरिका में पेंसिल्वेनिया-जर्सी-मैरीलैंड (पीजेएम) इंटरकनेक्शन के ग्रिड पर 3 मेगावाट विनियमन सेवाएं प्रदान करती है। और अल्ट्राबैटरी सेल के चार तार ल्योन स्टेशन, पेंसिल्वेनिया में ग्रिड से जुड़े हुए हैं। यह परियोजना पीजेएम पर विवृत मार्केट में बिडिंग करने के लिए निरंतर आवृत्ति विनियमन सेवाएं प्रदान करती है।

स्मूथिंग और शिफ्टिंग

अल्ट्राबैटरी विधि का उपयोग नवीकरणीय उत्पादन में उतार-चढ़ाव को प्रबंधित करके, सौर और पवन जैसे नवीकरणीय ऊर्जा स्रोतों को बिजली ग्रिड में एकीकृत करने के लिए किया जा सकता है। जहाँ यह ऊर्जा को 'स्मूथिंग' और 'शिफ्टिंग' करके ऐसा करता है।

स्मूथिंग फोटोवोल्टिक पैनलों या पवन टर्बाइनों से बिजली की अंतर्निहित परिवर्तनशीलता को सहज, तथा पूर्वानुमानित सिग्नल में परिवर्तित कर देती है। जहाँ प्रणाली आंतरायिक नवीकरणीय स्रोत के आउटपुट की निगरानी करता है| और जब सौर (या पवन) सिग्नल परिवर्तित होता है, तब अल्ट्राबैटरी या तब ऊर्जा क्रियान्वित करने या अतिरिक्त ऊर्जा को अवशोषित करने के लिए तुरंत प्रतिक्रिया करती है। इस तरह से नवीकरणीय सिग्नल की परिवर्तनशीलता को प्रबंधित करना नवीकरणीय ऊर्जा को अधिक विश्वसनीय बनाता है।

शिफ्टिंग एनर्जी से तात्पर्य अल्ट्राबैटरी की ऑफ-पीक समय में नवीकरणीय संसाधनों द्वारा उत्पादित अतिरिक्त ऊर्जा को संग्रहीत करने और फिर पीक मांग की अवधि के समय जरूरत पड़ने पर इसे क्रियान्वित करने की क्षमता से है। इससे बिजली उपयोगिताओं को पीक समय पर अपने समग्र प्रणाली प्रदर्शन में सुधार करने की अनुमति मिलती है।

संयुक्त स्तर अमेरिका के न्यू मैक्सिको में अग्रणी विद्युत उपयोगिता कंपनी पीएनएम ने डिस्पैचेबल नवीकरणीय संसाधन के रूप में उपयोग के लिए सौर ऊर्जा के सुचारू और स्थानांतरण को प्रदर्शित करने के लिए सौर ऊर्जा उत्पन्न करने वाले रूप के साथ अल्ट्राबैटरी ऊर्जा संग्रहण प्रणाली को एकीकृत किया है। पीएनएम समृद्धि परियोजना संयुक्त स्तर अमेरिका के फोटोवोल्टिक ऊर्जा और सौर पैनल बैटरी संग्रहण के सबसे बड़े संयोजनों में से होती है।

वितरित संग्रहण के लिए रैंप-दर नियंत्रण

छत पर फोटोवोल्टिक पैनलों की अनेक लघु मापदंड पर तैनाती सौर उत्पादन की रुक-रुक कर होने वाले प्रभाव को अनेक गुना बढ़ा देती है - जिससे ग्रिड संचालकों के लिए समस्या उत्पन्न हो जाती है। [आरईएफ] जहाँ अल्ट्राबैटरी ऊर्जा संग्रहण का उपयोग नियंत्रित विधियों से बिजली ग्रिड पर बिजली बढ़ाकर नवीकरणीय अंतराल को कम करने के लिए किया गया है, जिससे नवीकरणीय-उत्पन्न बिजली को अधिक पूर्वानुमानित बनाया जा सकता है ।

गुण

अल्ट्राबैटरी की पांच मुख्य विशेषताएं हैं जो इस विधि और पारंपरिक वीआरएलए बैटरी विधि के मध्य अंतर बनाती हैं: और उच्च क्षमता टर्नओवर, कम जीवनकाल निवेश प्रति किलोवाट घंटा, उच्च डीसी-डीसी दक्षता, कम रिफ्रेश शुल्क की आवश्यकता और चार्ज स्वीकृति की उच्च दर को बढाता जाता है।

कैपेसिटी टर्नओवर

क्षमता टर्नओवर इस बात का माप है कि किसी बैटरी की सैद्धांतिक क्षमता का उसके जीवनकाल में कितनी बार उपयोग किया जा सकता है।

जब भी प्रायोगिक स्थितियों में अल्ट्राबैटरी और मानक वीआरएलए (आंशिक एसओसी शासन में प्रयुक्त) की तुलना की जाती है, तब अल्ट्राबैटरी को मानक अवशोषित ग्लास मैट वीआरएलए बैटरी की क्षमता टर्नओवर का प्राय: 13 गुना प्राप्त करने के लिए दिखाया गया है। [1]

प्रति किलोवाट घंटा आजीवन निवेश

बैटरी का जीवनकाल इस बात पर निर्भर करता है कि इसका उपयोग कैसे किया जाता है, और इसे चार्ज करने और डिस्चार्ज करने के कितने चक्र चलाए जाते हैं। ऐसी स्थिति में जहां बैटरियों को प्रति दिन चार 40% चक्रों के माध्यम से रखा जाता है और जहां थ्रूपुट जीवन-सीमित कारक होता है | वंहा अल्ट्राबैटरी पारंपरिक वीआरएलए बैटरी की तुलना में प्राय: तीन से चार गुना अधिक समय तक चल सकती है। [7]

सीएसआईआरओ द्वारा प्रमाणित किया गया है, कि "तुलनीय प्रदर्शन वाली बैटरियों की तुलना में अल्ट्राबैटरी बनाना प्राय: 70 प्रतिशत सस्ता होता है और इसे उपस्तिथ विनिर्माण सुविधाओं का उपयोग करके बनाया जा सकता है"। [8]

डीसी-डीसी दक्षता

बैटरी की डीसी-डीसी दक्षता चार्जिंग के समय बैटरी में डाली गई ऊर्जा की मात्रा के अनुपात के रूप में बैटरी से जुड़े लोड में डिस्चार्ज होने के लिए उपलब्ध ऊर्जा की मात्रा का वर्णन करती है। तथा चार्जिंग और डिस्चार्जिंग के समय , बैटरी की कुछ संग्रहीत ऊर्जा गर्मी के रूप में नष्ट हो जाती है, और कुछ साइड प्रतिक्रियाओं में नष्ट हो जाती है। जहाँ बैटरी की ऊर्जा हानि जितनी कम होती है, वंहा बैटरी उतनी ही अधिक कुशल होती है।

अल्ट्राबैटरी के डेवलपर्स द्वारा प्रमाणित किया गया है कि यह आंशिक एसओसी शासन में परिवर्तनशीलता प्रबंधन अनुप्रयोगों को निष्पादित करते समय, डिस्चार्ज दर के आधार पर 93-95% (दर पर निर्भर) की डीसी-डीसी दक्षता प्राप्त कर सकता है, और ऊर्जा स्थानांतरण अनुप्रयोगों को निष्पादित करते समय 86-95% (दर पर निर्भर) प्राप्त कर सकता है।. तुलनात्मक रूप से, ऊर्जा स्थानांतरण (चार्ज शासन के विशिष्ट शीर्ष का उपयोग करके) पर क्रियान्वित मानक वीआरएलए बैटरियां बहुत कम दक्षता प्राप्त करती हैं - उदाहरण के लिए 79% से 84% चार्ज की स्थिति में, परीक्षण 55% के आसपास क्षमता दिखाते हैं। [23]

अल्ट्राबैटरी की उच्च डीसी-डीसी दक्षता प्राप्त करने योग्य है क्योंकि (पारंपरिक वीआरएलए बैटरी की तरह) यह 80% एसओसी के नीचे बहुत कुशलता से संचालित होती है। प्रयोगों से संकेत मिलता है कि वीआरएलए बैटरियों के लिए "शून्य एसओसी से 84% एसओसी तक औसत समग्र बैटरी चार्जिंग दक्षता 91% है"। जबकि पारंपरिक वीआरएलए बैटरियां बार-बार रिफ्रेश किए बिना किसी भी महत्वपूर्ण अवधि के लिए इस रेंज में कार्य करना बर्दाश्त नहीं कर सकती हैं, अल्ट्राबैटरी महत्वपूर्ण निम्नीकरण के बिना चार्ज की बहुत कम स्थिति में कार्य करना बर्दाश्त कर सकती है। इसलिए यह बहुत अधिक दक्षता प्राप्त कर सकता है क्योंकि यह लेड एसिड बैटरियों के लिए सबसे कुशल क्षेत्र में लंबे समय तक कार्य कर सकता है।

रिफ्रेश चक्र

संचालन के समय , पारंपरिक वीआरएलए बैटरियों को ऋणात्मक इलेक्ट्रोड पर जमा हुए सल्फेट क्रिस्टल को भंग करने और बैटरी की क्षमता को फिर से भरने के लिए रिफ्रेश (ओवरचार्ज) किया जाना चाहिए। बैटरी को रिफ्रेश करने से स्ट्रिंग में बैटरी सेल (जहां अनेक बैटरियों का साथ उपयोग किया जाता है) को निरन्तर ऑपरेटिंग वोल्टेज पर वापस लाने में भी सहायता मिलती है। चूँकि, ओवर चार्जिंग प्रक्रिया इस तथ्य से सम्मिश्र है कि न केवल रिफ्रेश चक्र के समय बैटरी सेवा से बाहर है, किंतु ओवरचार्ज प्रक्रिया (उचित समय सीमा के अंदर ) को पूर्ण करने के लिए आवश्यक उच्च धाराएं भी विभिन्न परजीवी हानि का कारण हैं। इनमें विभिन्न साइड प्रतिक्रियाओं (मुख्य रूप से हाइड्रोजन विकास, ऑक्सीजन विकास और ग्रिड संक्षारण) के कारण थर्मल हानि और हानि सम्मिलित हैं।

अल्ट्राबैटरी लंबे समय तक रिफ्रेश चार्ज के बिना कार्य कर सकती है। अक्षय ऊर्जा या ग्रिड समर्थन जैसे स्थिर साइक्लिंग अनुप्रयोगों के लिए, यह कार्यभार के आधार पर से चार महीने के मध्य हो सकता है; समान अनुप्रयोगों में मानक वीआरएलए बैटरियों को दैनिक चक्र चलाने पर हर दो सप्ताह में रिफ्रेश करने की आवश्यकता होती है - और साप्ताहिक रिफ्रेश चक्रों के साथ भी प्रदर्शन शीघ्रता से बिगड़ता है। [7]

हाइब्रिड इलेक्ट्रिक वाहन में ऑटोमोटिव अनुप्रयोगों में, अल्ट्राबैटरी को रिफ्रेश किए बिना आंशिक एसओसी शासन में कम या ज्यादा निरन्तर संचालित किया जा सकता है। फुरुकावा की रिपोर्ट: के अनुसार “अल्ट्राबैटरी पैक स्थापित करने के साथ होंडा इनसाइट हाइब्रिड इलेक्ट्रिक वाहन के फील्ड ड्राइविंग टेस्ट में, रिकवरी चार्जिंग के बिना 100,000 मील ( प्राय: 160,000 किमी) का लक्ष्य ड्राइव प्राप्त किया गया था। [24]

प्रभार स्वीकृति

क्योंकि अल्ट्राबैटरी आंशिक एसओसी रेंज में प्रभावी रूप से कार्य करती है, यह पारंपरिक वीआरएलए बैटरियों की तुलना में अधिक कुशलता से चार्जिंग स्वीकार कर सकती है, जो सामान्यतः चार्जिंग की उच्च स्थिति पर कार्य करती हैं। सैंडिया नेशनल लेबोरेटरी परीक्षणों से पता चलता है कि वीआरएलए बैटरियां सामान्यतः 90% से अधिक चार्ज होने पर 50% से कम दक्षता प्राप्त करती हैं, 79% और 84% चार्ज के मध्य प्राय: 55% दक्षता प्राप्त करती हैं, और पूर्ण क्षमता के शून्य और 84% के मध्य चार्ज होने पर 90% से अधिक दक्षता प्राप्त करती हैं। [23] [1] यह पारंपरिक वीआरएलए बैटरियों की तुलना में, अल्ट्राबैटरी को कुशलतापूर्वक और उच्च चार्जिंग/डिस्चार्जिंग दरों पर चार्ज किया जा सकता है। हंड एट अल के परीक्षण परिणामों से पता चला कि अल्ट्राबैटरी प्राय: 15,000 चक्रों के लिए 4C1 दर पर चक्र करने में सक्षम थी। इस परीक्षण प्रक्रिया का उपयोग करने वाली वीआरएलए बैटरी केवल 1C1 दर पर ही चक्र कर सकती है। 1C दर संकेत करती है कि इस दर पर घंटे में बैटरी की पूर्ण क्षमता का उपयोग किया जाएगा (या चार्ज करने पर प्रतिस्थापित किया जाएगा)। 4C दर चार गुना शीघ्र होती है | अर्थात 4C दर पर 15 मिनट में बैटरी पूर्ण तरह से डिस्चार्ज (या चार्ज) हो जाती हैं।

स्पष्ट रासायनिक प्रक्रिया जिसके द्वारा कार्बन सल्फेशन में इतनी देरी करता है,यह पूर्ण तरह से समझ में नहीं आता है। चूँकि, अल्ट्राबैटरी के समानांतर अल्ट्राकैपेसिटर की उपस्थिति स्पष्ट रूप से ऋणात्मक टर्मिनल को लेड सल्फेट क्रिस्टल की बड़ी सतह की प्रचुरता से बचाती है जो डिस्चार्ज की उच्च दर पर या पीएसओसी संचालन में लंबी अवधि के लिए संचालित वीआरएलए बैटरियों को प्रभावित करती है, जिससे सेल की रिचार्जेबिलिटी बढ़ जाती है | इसके लिए (हार्ड सल्फेशन भी देखें) जाते हैं |

कम सल्फेशन इलेक्ट्रोड पर हाइड्रोजन गैस उत्पादन को कम करके चार्ज स्वीकृति को भी महत्वपूर्ण रूप से बढ़ाता है। यह अप्रत्याशित नहीं है क्योंकि अत्यधिक हाइड्रोजन गैस का उत्पादन (जो चार्जिंग प्रक्रिया से महत्वपूर्ण ऊर्जा को छीन लेता है) तब होता है जब चार्जिंग के समय इलेक्ट्रॉनों को ऋणात्मक प्लेट में धकेल दिया जाता है (जो सामान्यतः प्लेट के अंदर लेड सल्फेट क्रिस्टल के साथ प्रतिक्रिया करता है) प्लेट की सतह पर लेड सल्फेट के बड़े क्रिस्टल के साथ आसानी से प्रतिक्रिया करने में असमर्थ होते हैं, इसलिए इसके अतिरिक्त इलेक्ट्रोलाइट के प्रचुर मात्रा में हाइड्रोजन आयनों को हाइड्रोजन गैस में कम कर देते हैं।

मानक एवं सुरक्षा

अल्ट्राबैटरी का निर्माण संयुक्त स्तर अमेरिका में ईस्ट पेन मैन्युफैक्चरिंग द्वारा ISO 9001:2008, ISO/TS 16949:2009 और ISO 14001:2004 प्रमाणन मानकों की वैश्विक आवश्यकताओं के अनुसार किया जाता है।

अल्ट्राबैटरी के इलेक्ट्रोलाइट समाधान में पानी में H2SO4 होता है, और इसके लीड इलेक्ट्रोड निष्क्रिय होते हैं। चूंकि इलेक्ट्रोलाइट अधिक सीमा तक पानी है, अल्ट्राबैटरी अग्निरोधक होता है। अल्ट्राबैटरी में पारंपरिक वीआरएलए बैटरियों के समान ही परिवहन और संकट प्रतिबंध होता हैं |

पुनर्चक्रण

प्रत्येक अल्ट्राबैटरी का प्रत्येक भाग - सीसा, प्लास्टिक, स्टील और एसिड - पश्चात् में पुन: उपयोग के लिए प्राय: 100% पुनर्चक्रण योग्य है। इन बैटरियों के लिए बड़े मापदंड पर रीसाइक्लिंग सुविधाएं पहले से ही उपलब्ध होती हैं और अमेरिका में उपयोग की जाने वाली 96% लेड एसिड बैटरियों को रीसाइक्लिंग किया जाता है। [25] बैटरी निर्माता वीआरएलए बैटरियों से सीसा, प्लास्टिक और एसिड को पुनर्प्राप्त और अलग करते हैं। और पुन: उपयोग के लिए सीसे को गलाया और परिष्कृत किया जाता है। प्लास्टिक के भागो को साफ किया जाता है, पीसा जाता है, बाहर निकाला जाता है और नए प्लास्टिक भागो में ढाला जाता है। एसिड को पुनः प्राप्त किया जाता है, साफ किया जाता है और नई बैटरियों में उपयोग किया जाता है।

अनुसंधान

पारंपरिक वीआरएलए बैटरियों के साथ अल्ट्राबैटरी के प्रदर्शन की तुलना करने के लिए स्वतंत्र प्रयोगशालाओं के साथ-साथ ईस्ट पेन मैन्युफैक्चरिंग, फुरुकावा और इकोल्ट द्वारा परीक्षण किए गए हैं।

हाइब्रिड इलेक्ट्रिक वाहन परीक्षण

माइक्रो हाइब्रिड इलेक्ट्रिक वाहनों की बैटरियों का पल्स चार्ज-डिस्चार्ज पैटर्न में 70% एसओसी पर परीक्षण किया गया हैं। पारंपरिक वीआरएलए बैटरी की तुलना में अल्ट्राबैटरी की क्षमता टर्नओवर और इसलिए चक्र जीवन प्राय: 1.8 गुना अधिक है। [6]

एडवांस्ड लीड एसिड बैटरी कंसोर्टियम (एएलएबीसी) ने होंडा सिविक हाइब्रिड इलेक्ट्रिक वाहन के उच्च-दर, आंशिक स्टेट-ऑफ-चार्ज संचालन में अल्ट्राबैटरी के स्थायित्व का परीक्षण किया। परीक्षण कार में नी-एमएच बैटरी द्वारा संचालित समान मॉडल के समान मील प्रति गैलन प्रदर्शन था। [2]

सूक्ष्म, हल्के और पूर्ण हाइब्रिड इलेक्ट्रिक वाहन कर्तव्यों के अंतर्गत होते हैं | अल्ट्राबैटरी का साइक्लिंग प्रदर्शन पारंपरिक अत्याधुनिक वीआरएलए बैटरियों की तुलना में कम से कम चार गुना अधिक था और नी-एमएच सेलो की तुलना में तुलनीय या उससे भी उत्तम था। अल्ट्राबैटरी ने पुनर्योजी ब्रेकिंग से चार्ज की अच्छी स्वीकार्यता का भी प्रदर्शन किया, और इसलिए इसमे फील्ड परीक्षण के समय समकरण शुल्क की आवश्यकता नहीं थी।

स्थिर ऊर्जा अनुप्रयोग

दक्षता परीक्षण

बिजली स्मार्ट ग्रिड के लिए स्थिर अनुप्रयोग में अल्ट्राबैटरी के डब्लूएच(वाट-घंटे) दक्षता परीक्षणों से पता चला कि 0.1 C10A की दरों पर चार्ज-डिस्चार्ज के 30 से अधिक चक्रों में, बैटरी की स्थिति के आधार पर डब्लूएच क्षमताएं 91% से 94.5% तक थीं। शुल्क। [आरईएफ] इसकी तुलना लेड-एसिड बैटरी दक्षता पर सैंडिया नेशनल लेबोरेटरीज के अध्ययन से की गई है, जिसमें पाया गया कि पारंपरिक लेड-एसिड बैटरियां 79% और 84% स्टेट-ऑफ-चार्ज ("शीर्ष" चार्ज मोड जिस पर पारंपरिक लेड-एसिड बैटरियां सामान्यतः अपने जीवन को बढ़ाने के लिए प्रतिबंधित होती हैं) के मध्य कार्य करती हैं केवल 55% वृद्धिशील चार्जिंग दक्षता प्राप्त करती हैं। [23]

चक्र जीवन और पुनर्प्राप्ति परीक्षण

बैटरियों को 60% चार्ज करने की स्थिति पर 3 घंटे के चार्ज और डिस्चार्ज परीक्षणों के अधीन किया गया था | जिसमें हर 90 चक्रों में 20 घंटे का रिकवरी चार्ज किया गया था। इन क्षमता परीक्षणों से पता चला कि 270 चक्रों के पश्चात् , अल्ट्राबैटरी क्षमता अनुपात पारंपरिक लीड स्टोरेज बैटरी के लिए 93% की तुलना में 103% के सामान्य या उससे अधिक था। इन परीक्षणों से पता चला कि चार्ज की आंशिक स्थिति में कार्य करने पर पारंपरिक बैटरी की तुलना में अल्ट्राबैटरी का चक्र जीवन लंबा था और इसमें रिकवरी चार्ज विशेषताएँ उत्तम थीं।

उपयोगिता सेवाएँ और पवन रूप ऊर्जा स्मूथिंग

ऊर्जा संग्रहण और पवन रूप ऊर्जा स्मूथिंग के लिए उपयोगिता सहायक सेवा अनुप्रयोगों में उपयोग के लिए अल्ट्राबैटरी की क्षमता को मापने के लिए उच्च दर, आंशिक स्तर-प्रभारी चक्र परीक्षण किए गए थे। 1C1 से 4C1 दर पर उच्च-दर, आंशिक स्तर-चार्ज साइक्लिंग प्रोफ़ाइल का उपयोग करते हुए, अल्ट्राबैटरी 20% से कम क्षमता हानि के साथ 15,000 से अधिक चक्रों में सक्षम थी, इस प्रकार यह 4C1 दर पर चक्र कर सकती थी। समान परिस्थितियों में परीक्षण की गई अवशोषित ग्लास मैट (एजीएम) वीआरएलए बैटरी केवल 1C1 दर पर चक्र कर सकती है | इसमें प्राय: 100 चक्रों के पश्चात् रिकवरी चार्ज की आवश्यकता होती है, और 1100 चक्रों के पश्चात् इसकी क्षमता 20% से अधिक विलुप्त हो जाती है। अल्ट्राबैटरी एजीएम वीआरएलए बैटरी (1000 बनाम 100) की तुलना में रिकवरी चार्ज के मध्य दस गुना से अधिक चक्र चलाने में सक्षम थी।

हैम्पटन, न्यू साउथ वेल्स (ऑस्ट्रेलिया) में पवन रूप क्षेत्र परीक्षण, पवन उत्पादन की अल्पकालिक रुकावट को संबोधित करने के लिए ऊर्जा संग्रहण के उपयोग को प्रदर्शित करने के लिए डिज़ाइन की गई प्रणाली का परीक्षण कर रहा है। परीक्षण ने नवीकरणीय ऊर्जा स्मूथिंग अनुप्रयोगों के लिए अल्ट्राबैटरी और तीन अन्य लीड-एसिड बैटरी प्रकारों के प्रदर्शन की तुलना की हैं । यह श्रृंखला में जुड़े 60 सेल की प्रत्येक स्ट्रिंग में सेल वोल्टेज में भिन्नता के माप से पता चला कि अल्ट्राबैटरी में 10 महीने की अवधि में बहुत कम भिन्नता होती थी | इसमें (वोल्टेज रेंज भिन्नता के मानक विचलन में 32% की वृद्धि होती हैं तथा अन्य तीन बैटरी प्रकारों के लिए 140% -251% की तुलना ) की जाती हैं।

उपयोगिता साइकिलिंग और फोटोवोल्टिक हाइब्रिड ऊर्जा अनुप्रयोग

सैंडिया नेशनल लेबोरेटरीज के परीक्षणों से पता चलता है कि अल्ट्राबैटरी उपयोगिता साइक्लिंग में पारंपरिक वीआरएलए बैटरियों की तुलना में अधिक समय तक कार्य करती है। इन परीक्षणों में साइकलिंग प्रोफ़ाइल का उद्देश्य अधिकतम शक्ति के साथ प्राय: 4 चक्र प्रति घंटे के साथ आवृत्ति विनियमन कर्तव्य की प्रतिलिपि करना था | जिसका उद्देश्य विशिष्ट एसओसी रेंज देना था। इसके परिणामों से यह पता चला कि पारंपरिक वीआरएलए बैटरी (चार्ज की आंशिक स्थिति (पीएसओसी) और डिस्चार्ज की 10% गहराई में चक्र) प्राय: 3000 चक्रों के पश्चात् अपनी प्रारंभिक क्षमता के 60% तक गिर गई। उसी परीक्षण में ईस्ट पेन द्वारा निर्मित अल्ट्राबैटरी 22,000 से अधिक चक्रों तक चली, यह बिना किसी रिकवरी चार्ज के अपनी प्रारंभिक क्षमता को अनिवार्य रूप से 100% बनाए रखता हैं। [7]

परीक्षणों से यह भी पता चला कि अल्ट्राबैटरी ऊर्जा अनुप्रयोगों में पारंपरिक वीआरएलए बैटरियों की तुलना में अधिक समय तक कार्य करती है, जैसा कि सैंडिया नेशनल लेबोरेटरीज द्वारा सिम्युलेटेड फोटोवोल्टिक हाइब्रिड चक्र-जीवन परीक्षण में दिखाया गया है। इस परीक्षण से यह निष्कर्ष निकला कि 40-दिवसीय घाटे के चार्ज पर भी (ऐसे चक्र जहां प्रत्येक दिन बैटरी से अधिक लिया जाता है, जितना वापस डाला जाता है)। इन अल्ट्राबैटरीज़ का प्रदर्शन पारंपरिक वीआरएलए बैटरियों से कहीं उत्तम होता है, तब भी जब पारंपरिक वीआरएलए बैटरियां केवल 7 दिन की डेफिसिट चार्ज व्यवस्था पर कार्य कर रही हैं। डेफिसिट चार्ज व्यवस्था में टेपर चार्ज द्वारा कोई रिकवरी नहीं होती है, जिसे बैटरियों के रिफ्रेशिंग/इक्वलाइजेशन के रूप में भी जाना जाता है, इसलिए इस ऑपरेटिंग व्यवस्था में पारंपरिक वीआरएलए के लिए सल्फेशन विशिष्ट विफलता मोड होता है।

60% गहराई के डिस्चार्ज के साथ 100 दिनों की साइकिलिंग के पश्चात् , हर 30 दिनों में रिफ्रेश चक्र प्राप्त करने वाली पारंपरिक वीआरएलए बैटरी अपनी प्रारंभिक क्षमता के 70% तक गिर गई थी। दो अल्ट्राबैटरी इकाइयां (फुरुकावा द्वारा बनाई गई, ईस्ट पेन द्वारा) प्रत्येक 40-दिवसीय घाटे वाले चार्ज का अनुभव कर रही थी, फिर भी यह पारंपरिक वीआरएलए बैटरी की तुलना में अधिक उत्तम प्रदर्शन कर रही थी | जिससे यह अधिक निरन्तर रिफ्रेश प्राप्त कर रही थी (इसमें अधिकतम 7-दिन के घाटे वाले चार्ज का अनुभव होता) हैं। यह 430 दिनों की साइकिलिंग के पश्चात् , ईस्ट पेन अल्ट्राबैटरी और फुरुकावा अल्ट्राबैटरी अभी भी विफल नहीं हुई थीं। इसमें ईस्ट पेन बैटरी अपनी प्रारंभिक क्षमता का 85% तह बनाए रहती थी और फुरुकावा बैटरी अपनी प्रारंभिक क्षमता के 100% के बहुत समीप होती थी।

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 Hund, T; Clark, N.; Baca, W. (2008). Marincic, Nikola (ed.). यूटिलिटी साइक्लिंग अनुप्रयोगों के लिए अल्ट्राबैटरी परीक्षण परिणाम. International Seminar on Double Layer Capacitors And Hybrid Energy Storage Devices. Redox Engineering, LLC. pp. 195–207. Retrieved 20 December 2013.
  2. 2.0 2.1 2.2 "ALABC अल्ट्राबैटरी हाइब्रिड फ्लीट ड्यूटी के 100,000 मील को पार करता है" (PDF). The Advanced Lead Acid Battery Consortium. 4 June 2013. Retrieved 20 December 2013.
  3. रेफरी>"अल्ट्राबैटरी". CSIRO. Retrieved 19 March 2016.<nowiki>
  4. </nowiki><nowiki>
  5. </nowiki><nowiki>
  6. 6.0 6.1 Nakajima, Hidehito; Honma, Tokunori; Midorikawa, Kiyoshi; Akasaka, Yuichi; Shibata, Satoshi; Yoshida, Hideaki; Hashimoto, Kensuke; Ogino, Yusuke; Tezuka, Wataru; Miura, Masaru; Furukawa, Jun; Lam, L. T.; Sugata, Sumio (March 2013). "अल्ट्राबैटरी का विकास" (PDF). Furukawa Review. The Furukawa Battery Co., Ltd (43, Smart Grid). ISSN 1348-1797. Retrieved 12 November 2014.
  7. 7.0 7.1 7.2 7.3 7.4 Ferreira, Summer; Baca, Wes; Hund, Tom; Rose, David (28 September 2012). ऊर्जा भंडारण उपकरणों का जीवन चक्र परीक्षण और मूल्यांकन (PDF). 2012 DOE Energy Storage Program Peer Review and Update Meeting. U.S. Department of Energy, Office of Electricity Delivery & Energy Reliability, Energy Storage Systems (ESS) Program. Retrieved 20 December 2013.
  8. 8.0 8.1 "अल्ट्राबैटरी: कोई साधारण बैटरी नहीं". CSIRO. 22 March 2013. Archived from the original on 2013-10-15. Retrieved 22 December 2013.
  9. 9.0 9.1 "अल्ट्राबैटरी". CSIROpedia. CSIRO. 22 March 2011. Retrieved 19 March 2016.
  10. रेफरी>Coppin, Peter; Wood, John (19 October 2011). मेगावॉट स्केल पर अल्ट्राबैटरी स्टोरेज टेक्नोलॉजी और उन्नत एल्गोरिदम (PDF). Electrical Energy Storage Applications and Technologies (EESAT) 2011. Energy Storage Association (ESA). Archived from the original (PDF) on 2016-03-19. Retrieved 19 March 2015.<nowiki>
  11. </nowiki> <nowiki>
  12. </nowiki><nowiki>
  13. रेफरी>"नवीकरणीय ऊर्जा भंडारण समाधान के लिए वित्तपोषण शुल्क". Retrieved 24 December 2013.<nowiki>
  14. </nowiki><nowiki>
  15. </nowiki><nowiki>
  16. Moseley, Patrick T.; Garche, Jürgen; Parker, C.D.; Rand, D.A.J. (24 February 2004). "Chapter 17: VRLA Batteries in New Generation Road Vehicles". वाल्व विनियमित लीड एसिड बैटरियां. Elsevier. pp. 556–557. ISBN 978-0-444-50746-4.
  17. "सैंडिया नेशनल लेबोरेटरीज, कार्बन-एन्हांस्ड वीआरएलए बैटरियां" (PDF). 10 October 2011. Retrieved 25 February 2015. {{cite journal}}: Cite journal requires |journal= (help)
  18. 18.0 18.1 Parkinson, Giles (31 October 2012). "किंग आइलैंड हमारे भविष्य के ग्रिड का खाका कैसे हो सकता है". Renew Economy Magazine. Retrieved 22 August 2014.
  19. Furukawa, J.; Takada, T.; Monma, D.; Lam, L.T. (2010). "मध्यम-हाइब्रिड इलेक्ट्रिक वाहन ड्यूटी के तहत वीआरएलए-प्रकार अल्ट्राबैटरी का और प्रदर्शन और माइक्रो-हाइब्रिड इलेक्ट्रिक वाहन अनुप्रयोगों के लिए बाढ़-प्रकार अल्ट्राबैटरी का विकास". Journal of Power Sources. 195 (4): 1241–1245. Bibcode:2010JPS...195.1241F. doi:10.1016/j.jpowsour.2009.08.080.
  20. "हाइड्रो तस्मानिया". King Island Renewable Energy. Retrieved 22 August 2014.
  21. Kanellos, Michael (13 September 2013). "डेटा सेंटर ग्रिड के लिए अच्छे क्यों हो सकते हैं?". Forbes. Retrieved 7 January 2015.
  22. "FURUKAWA BATTERY REPORT 2013" (PDF). Retrieved 7 January 2015.
  23. 23.0 23.1 23.2 Stevens, John W.; Corey, Garth P. (May 1996). टॉप-ऑफ़-चार्ज के निकट लेड-एसिड बैटरी दक्षता और पीवी सिस्टम डिज़ाइन पर प्रभाव का अध्ययन (PDF). Photovoltaic Specialists Conference, 1996., Conference Record of the Twenty Fifth IEEE. Conference Record of the Photovoltaics Conference. IEEE. pp. 1485–1488. doi:10.1109/PVSC.1996.564417. ISBN 0-7803-3166-4. ISSN 0160-8371. Retrieved 21 April 2014.
  24. Akasaka, Yuichi; Sakamoto, Hikaru; Takada, Toshimichi; Monma, Daisuke; Dobashi, Akira; Yokoyama, Tsutomu; Masuda, Yousuke; Nakajima, Hidehito; Shibata, Satoshi; Furukawa, Jun; Lam, L. T.; Haigh, N. P.; Lim, O. V.; Louey, R.; Phyland, C. G.; Vella, D. G.; Vu, L. H. (November 2008). "Development of UltraBattery - 3rd report" (PDF). The Furukawa Battery Co., Ltd. Archived from the original (PDF) on 2014-08-10. Retrieved 5 August 2014.
  25. "अपशिष्ट - संसाधन संरक्षण - सामान्य अपशिष्ट एवं सामग्री". US Environmental Protection Agency (EPA). Retrieved 28 April 2014.


बाहरी संबंध