प्रतिव्युत्पन्न (सम्मिश्र विश्लेषण): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(6 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|Concept in complex analysis}}
{{Short description|Concept in complex analysis}}
{{Complex analysis sidebar}}




सम्मिश्र विश्लेषण में, गणित की एक शाखा, एक सम्मिश्र-मूल्यवान फलन <math>g</math> का एंटीडेरिवेटिव, या प्राचीन, एक फलन है जिसका सम्मिश्र व्युत्पन्न <math>g</math> है। अधिक स्पष्ट रूप से, सम्मिश्र स्थान में एक विवर्त समुच्चय <math>U</math>और एक फलन <math>g:U\to \mathbb C,</math> दिया गया है, <math>g</math> का प्रतिअवकलन एक फलन <math>f:U\to \mathbb C</math> है जो <math>\frac{df}{dz}=g</math> को संतुष्ट करता है।
सम्मिश्र विश्लेषण में, गणित की एक शाखा, एक सम्मिश्र-मूल्यवान फलन <math>g</math> का एंटीडेरिवेटिव, या प्राचीन, एक फलन है जिसका सम्मिश्र व्युत्पन्न <math>g</math> है। अधिक स्पष्ट रूप से, सम्मिश्र स्थान में एक विवर्त समुच्चय <math>U</math>और एक फलन <math>g:U\to \mathbb C,</math> दिया गया है, <math>g                                                                                                                                                                                          
                                                                                                                                                                                                 
                                                                                            </math> का प्रतिअवकलन एक फलन <math>f:U\to \mathbb C</math> है जो <math>\frac{df}{dz}=g</math> को संतुष्ट करता है।


इस प्रकार, यह अवधारणा एक [[वास्तविक संख्या]]-मूल्य फलन के प्रतिअवकलन का सम्मिश्र-वेरिएबल संस्करण है।
इस प्रकार, यह अवधारणा एक [[वास्तविक संख्या]]-मूल्य फलन के प्रतिअवकलन का सम्मिश्र-वेरिएबल संस्करण है।


==अद्वितीयता==
==अद्वितीयता                                                                 ==


एक स्थिर फलन का व्युत्पन्न शून्य फलन है। इसलिए, कोई भी स्थिर फलन शून्य फलन का प्रतिअवकलन है। यदि <math>U</math> एक जुड़ा हुआ समुच्चय है, तो स्थिर फलन शून्य फलन के एकमात्र एंटीडेरिवेटिव हैं। अन्यथा, एक फलन शून्य फलन का एक प्रतिअवकलन है यदि और केवल यदि यह <math>U</math> के प्रत्येक जुड़े घटक पर स्थिर है (उन स्थिरांकों को समान होने की आवश्यकता नहीं है)।
एक स्थिर फलन का व्युत्पन्न शून्य फलन है। इसलिए, कोई भी स्थिर फलन शून्य फलन का प्रतिअवकलन है। यदि <math>U</math> एक जुड़ा हुआ समुच्चय है, तो स्थिर फलन शून्य फलन के एकमात्र एंटीडेरिवेटिव हैं। अन्यथा, एक फलन शून्य फलन का एक प्रतिअवकलन है यदि और केवल यदि यह <math>U</math> के प्रत्येक जुड़े घटक पर स्थिर है (उन स्थिरांकों को समान होने की आवश्यकता नहीं है)।


इस अवलोकन का तात्पर्य यह है कि यदि किसी फलन <math>g:U\to \mathbb C</math> में एक एंटीडेरिवेटिव है, तो वह एंटीडेरिवेटिव एक फलन को जोड़ने तक अद्वितीय है जो <math>U</math> के प्रत्येक जुड़े घटक पर स्थिर है।
इस अवलोकन का तात्पर्य यह है कि यदि किसी फलन <math>g:U\to \mathbb C</math> में एक एंटीडेरिवेटिव है, तो वह एंटीडेरिवेटिव एक फलन को जोड़ने तक अद्वितीय है जो <math>U</math> के प्रत्येक जुड़े घटक पर स्थिर है।


==अस्तित्व==
==अस्तित्व==
वास्तविक वेरिएबल के कार्यों के स्थिति की तरह, सम्मिश्र स्थान में पथ इंटीग्रल्स के माध्यम से एंटीडेरिवेटिव्स के अस्तित्व को चिह्नित किया जा सकता है। संभवतः आश्चर्य की बात नहीं है, ''g'' में एक एंटीडेरिवेटिव ''f'' है यदि और केवल यदि, ''a'' से ''b'' तक प्रत्येक γ पथ के लिए, पथ अभिन्न अंग है  
वास्तविक वेरिएबल के कार्यों के स्थिति की तरह, सम्मिश्र स्थान में पथ इंटीग्रल्स के माध्यम से एंटीडेरिवेटिव्स के अस्तित्व को चिह्नित किया जा सकता है। संभवतः आश्चर्य की बात नहीं है, ''g'' में एक एंटीडेरिवेटिव ''f'' है यदि और केवल यदि, ''a'' से ''b'' तक प्रत्येक γ पथ के लिए, पथ अभिन्न अंग है  


:<math> \int_{\gamma} g(\zeta) \, d \zeta = f(b) - f(a).</math>
:<math> \int_{\gamma} g(\zeta) \, d \zeta = f(b) - f(a).</math>
Line 22: Line 23:
किसी भी संवर्त पथ के लिए γ.
किसी भी संवर्त पथ के लिए γ.


चूँकि इस औपचारिक समानता के अतिरिक्त एक सम्मिश्र-एंटीडेरिवेटिव का होना इसके वास्तविक समकक्ष की तुलना में बहुत अधिक प्रतिबंधात्मक स्थिति है। जबकि एक असंतत वास्तविक फलन के लिए एक एंटी-डेरिवेटिव होना संभव है, एक सम्मिश्र वेरिएबल के होलोमोर्फिक फलन के लिए भी एंटी-डेरिवेटिव उपस्थित होने में विफल हो सकते हैं। उदाहरण के लिए, व्युत्क्रम फलन, g(z) = 1/z पर विचार करें जो छिद्रित तल 'C'\{0} पर होलोमोर्फिक है। एक प्रत्यक्ष गणना से पता चलता है कि मूल बिंदु को घेरने वाले किसी भी वृत्त के अनुदिश g का अभिन्न अंग शून्य नहीं है। तो g ऊपर उद्धृत नियम में विफल रहता है। यह [[रूढ़िवादी वेक्टर क्षेत्र|रूढ़िवादी सदिश क्षेत्र]] के लिए संभावित कार्यों के अस्तित्व के समान है, जिसमें ग्रीन का प्रमेय केवल पथ स्वतंत्रता की अश्वासन देने में सक्षम है जब प्रश्न में फलन को बस जुड़े हुए क्षेत्र पर परिभाषित किया जाता है, जैसा कि [[कॉची इंटीग्रल प्रमेय]] के स्थिति में होता है।
चूँकि इस औपचारिक समानता के अतिरिक्त एक सम्मिश्र-एंटीडेरिवेटिव का होना इसके वास्तविक समकक्ष की तुलना में बहुत अधिक प्रतिबंधात्मक स्थिति है। जबकि एक असंतत वास्तविक फलन के लिए एक एंटी-डेरिवेटिव होना संभव है, एक सम्मिश्र वेरिएबल के होलोमोर्फिक फलन के लिए भी एंटी-डेरिवेटिव उपस्थित होने में विफल हो सकते हैं। उदाहरण के लिए, व्युत्क्रम फलन, g(z) = 1/z पर विचार करें जो छिद्रित तल 'C'\{0} पर होलोमोर्फिक है। एक प्रत्यक्ष गणना से पता चलता है कि मूल बिंदु को घेरने वाले किसी भी वृत्त के अनुदिश g का अभिन्न अंग शून्य नहीं है। तो g ऊपर उद्धृत नियम में विफल रहता है। यह [[रूढ़िवादी वेक्टर क्षेत्र|रूढ़िवादी सदिश क्षेत्र]] के लिए संभावित कार्यों के अस्तित्व के समान है, जिसमें ग्रीन का प्रमेय केवल पथ स्वतंत्रता की अश्वासन देने में सक्षम है जब प्रश्न में फलन को बस जुड़े हुए क्षेत्र पर परिभाषित किया जाता है, जैसा कि [[कॉची इंटीग्रल प्रमेय]] के स्थिति में होता है।


वास्तव में, होलोमॉर्फी की विशेषता स्थानीय रूप से एक एंटीडेरिवेटिव है, अर्थात, g होलोमोर्फिक है यदि इसके डोमेन में प्रत्येक z के लिए, z का कुछ निकटतम ''U'' है जैसे कि g का ''U'' पर एक एंटीडेरिवेटिव है। इसके अतिरिक्त, होलोमोर्फी एक फलन के लिए एक एंटीडेरिवेटिव होने के लिए एक आवश्यक नियम है, क्योंकि किसी भी होलोमोर्फिक फलन का व्युत्पन्न होलोमोर्फिक है।
वास्तव में, होलोमॉर्फी की विशेषता स्थानीय रूप से एक एंटीडेरिवेटिव है, अर्थात, g होलोमोर्फिक है यदि इसके डोमेन में प्रत्येक z के लिए, z का कुछ निकटतम ''U'' है जैसे कि g का ''U'' पर एक एंटीडेरिवेटिव है। इसके अतिरिक्त, होलोमोर्फी एक फलन के लिए एक एंटीडेरिवेटिव होने के लिए एक आवश्यक नियम है, क्योंकि किसी भी होलोमोर्फिक फलन का व्युत्पन्न होलोमोर्फिक है।


कॉची इंटीग्रल प्रमेय के विभिन्न संस्करण, कॉची फलन सिद्धांत का एक आधार परिणाम, जो पथ इंटीग्रल्स का भारी उपयोग करता है, पर्याप्त स्थितियां देता है जिसके अनुसार, एक होलोमोर्फिक g के लिए उपयोग करता है  
कॉची इंटीग्रल प्रमेय के विभिन्न संस्करण, कॉची फलन सिद्धांत का एक आधार परिणाम, जो पथ इंटीग्रल्स का भारी उपयोग करता है, पर्याप्त स्थितियां देता है जिसके अनुसार, एक होलोमोर्फिक g के लिए उपयोग करता है  
Line 43: Line 44:
आगे हम दिखाते हैं कि यदि g होलोमोर्फिक है, और किसी भी पथ पर g का अभिन्न अंग केवल अंतिम बिंदुओं पर निर्भर करता है, तो g में एक प्रतिअवकलन होता है। हम स्पष्ट रूप से एक प्रति-व्युत्पन्न खोज कर ऐसा करेंगे।
आगे हम दिखाते हैं कि यदि g होलोमोर्फिक है, और किसी भी पथ पर g का अभिन्न अंग केवल अंतिम बिंदुओं पर निर्भर करता है, तो g में एक प्रतिअवकलन होता है। हम स्पष्ट रूप से एक प्रति-व्युत्पन्न खोज कर ऐसा करेंगे।


व्यापकता के हानि के बिना, हम मान सकते हैं कि g का डोमेन U जुड़ा हुआ है, अन्यथा प्रत्येक जुड़े हुए घटक पर एक एंटीडेरिवेटिव के अस्तित्व को सिद्ध किया जा सकता है। इस धारणा के साथ, U में एक बिंदु ''z''<sub>0</sub> तय करें और U में किसी भी z के लिए फलन को परिभाषित करें
व्यापकता के हानि के बिना, हम मान सकते हैं कि g का डोमेन U जुड़ा हुआ है, अन्यथा प्रत्येक जुड़े हुए घटक पर एक एंटीडेरिवेटिव के अस्तित्व को सिद्ध किया जा सकता है। इस धारणा के साथ, U में एक बिंदु ''z''<sub>0</sub> तय करें और U में किसी भी z के लिए फलन को परिभाषित करें


: <math>f(z)=\int_{\gamma}\! g(\zeta)\, d\zeta</math>
: <math>f(z)=\int_{\gamma}\! g(\zeta)\, d\zeta</math>
जहां γ ''z''<sub>0</sub> को z से जोड़ने वाला कोई पथ है। ऐसा पथ उपस्थित है क्योंकि U को एक विवर्त जुड़ा हुआ समुच्चय माना जाता है। फलन f अच्छी तरह से परिभाषित है क्योंकि इंटीग्रल केवल γ के अंतिम बिंदुओं पर निर्भर करता है।
जहां γ ''z''<sub>0</sub> को z से जोड़ने वाला कोई पथ है। ऐसा पथ उपस्थित है क्योंकि U को एक विवर्त जुड़ा हुआ समुच्चय माना जाता है। फलन f अच्छी तरह से परिभाषित है क्योंकि इंटीग्रल केवल γ के अंतिम बिंदुओं पर निर्भर करता है।


यह कि यह f, g का प्रतिअवकलन है, वास्तविक स्थिति की तरह ही तर्क दिया जा सकता है। हमारे पास है, U में दिए गए z के लिए, कि z पर केंद्रित एक डिस्क उपस्थित होनी चाहिए और पूरी तरह से U के अंदर समाहित होनी चाहिए। फिर इस डिस्क के अंदर z के अतिरिक्त हर w के लिए समाहित होता है  
यह कि यह f, g का प्रतिअवकलन है, वास्तविक स्थिति की तरह ही तर्क दिया जा सकता है। हमारे पास है, U में दिए गए z के लिए, कि z पर केंद्रित एक डिस्क उपस्थित होनी चाहिए और पूरी तरह से U के अंदर समाहित होनी चाहिए। फिर इस डिस्क के अंदर z के अतिरिक्त हर w के लिए समाहित होता है  


:<math>\begin{align}  
:<math>\begin{align}  
Line 65: Line 66:
==बाहरी संबंध==
==बाहरी संबंध==
* {{MathWorld | urlname= FundamentalTheoremsofCalculus | title= Fundamental Theorems of Calculus}}
* {{MathWorld | urlname= FundamentalTheoremsofCalculus | title= Fundamental Theorems of Calculus}}
[[Category: जटिल विश्लेषण]]


[[Category: Machine Translated Page]]
[[Category:Created On 23/07/2023]]
[[Category:Created On 23/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages that use a deprecated format of the math tags]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal-inline template with redlinked portals]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:जटिल विश्लेषण]]

Latest revision as of 16:06, 30 August 2023


सम्मिश्र विश्लेषण में, गणित की एक शाखा, एक सम्मिश्र-मूल्यवान फलन का एंटीडेरिवेटिव, या प्राचीन, एक फलन है जिसका सम्मिश्र व्युत्पन्न है। अधिक स्पष्ट रूप से, सम्मिश्र स्थान में एक विवर्त समुच्चय और एक फलन दिया गया है, का प्रतिअवकलन एक फलन है जो को संतुष्ट करता है।

इस प्रकार, यह अवधारणा एक वास्तविक संख्या-मूल्य फलन के प्रतिअवकलन का सम्मिश्र-वेरिएबल संस्करण है।

अद्वितीयता

एक स्थिर फलन का व्युत्पन्न शून्य फलन है। इसलिए, कोई भी स्थिर फलन शून्य फलन का प्रतिअवकलन है। यदि एक जुड़ा हुआ समुच्चय है, तो स्थिर फलन शून्य फलन के एकमात्र एंटीडेरिवेटिव हैं। अन्यथा, एक फलन शून्य फलन का एक प्रतिअवकलन है यदि और केवल यदि यह के प्रत्येक जुड़े घटक पर स्थिर है (उन स्थिरांकों को समान होने की आवश्यकता नहीं है)।

इस अवलोकन का तात्पर्य यह है कि यदि किसी फलन में एक एंटीडेरिवेटिव है, तो वह एंटीडेरिवेटिव एक फलन को जोड़ने तक अद्वितीय है जो के प्रत्येक जुड़े घटक पर स्थिर है।

अस्तित्व

वास्तविक वेरिएबल के कार्यों के स्थिति की तरह, सम्मिश्र स्थान में पथ इंटीग्रल्स के माध्यम से एंटीडेरिवेटिव्स के अस्तित्व को चिह्नित किया जा सकता है। संभवतः आश्चर्य की बात नहीं है, g में एक एंटीडेरिवेटिव f है यदि और केवल यदि, a से b तक प्रत्येक γ पथ के लिए, पथ अभिन्न अंग है

समान रूप से,

किसी भी संवर्त पथ के लिए γ.

चूँकि इस औपचारिक समानता के अतिरिक्त एक सम्मिश्र-एंटीडेरिवेटिव का होना इसके वास्तविक समकक्ष की तुलना में बहुत अधिक प्रतिबंधात्मक स्थिति है। जबकि एक असंतत वास्तविक फलन के लिए एक एंटी-डेरिवेटिव होना संभव है, एक सम्मिश्र वेरिएबल के होलोमोर्फिक फलन के लिए भी एंटी-डेरिवेटिव उपस्थित होने में विफल हो सकते हैं। उदाहरण के लिए, व्युत्क्रम फलन, g(z) = 1/z पर विचार करें जो छिद्रित तल 'C'\{0} पर होलोमोर्फिक है। एक प्रत्यक्ष गणना से पता चलता है कि मूल बिंदु को घेरने वाले किसी भी वृत्त के अनुदिश g का अभिन्न अंग शून्य नहीं है। तो g ऊपर उद्धृत नियम में विफल रहता है। यह रूढ़िवादी सदिश क्षेत्र के लिए संभावित कार्यों के अस्तित्व के समान है, जिसमें ग्रीन का प्रमेय केवल पथ स्वतंत्रता की अश्वासन देने में सक्षम है जब प्रश्न में फलन को बस जुड़े हुए क्षेत्र पर परिभाषित किया जाता है, जैसा कि कॉची इंटीग्रल प्रमेय के स्थिति में होता है।

वास्तव में, होलोमॉर्फी की विशेषता स्थानीय रूप से एक एंटीडेरिवेटिव है, अर्थात, g होलोमोर्फिक है यदि इसके डोमेन में प्रत्येक z के लिए, z का कुछ निकटतम U है जैसे कि g का U पर एक एंटीडेरिवेटिव है। इसके अतिरिक्त, होलोमोर्फी एक फलन के लिए एक एंटीडेरिवेटिव होने के लिए एक आवश्यक नियम है, क्योंकि किसी भी होलोमोर्फिक फलन का व्युत्पन्न होलोमोर्फिक है।

कॉची इंटीग्रल प्रमेय के विभिन्न संस्करण, कॉची फलन सिद्धांत का एक आधार परिणाम, जो पथ इंटीग्रल्स का भारी उपयोग करता है, पर्याप्त स्थितियां देता है जिसके अनुसार, एक होलोमोर्फिक g के लिए उपयोग करता है

किसी भी संवर्त पथ γ के लिए विलुप्त हो जाता है (उदाहरण के लिए, ऐसा हो सकता है कि g का डोमेन बस जुड़ा हो या स्टार-उत्तल होता है)।

आवश्यकता

पहले हम दिखाते हैं कि यदि f, U पर g का एक प्रतिअवकलन है, तो g में ऊपर दिया गया पथ अभिन्न गुण है। किसी भी टुकड़ों में C1 पथ को देखते हुए γ: [a, b] → U, कोई γ पर g के पथ समाकलन को इस प्रकार व्यक्त कर सकता है

शृंखला नियम और कलन के मौलिक प्रमेय के अनुसार किसी के पास यह होता है

इसलिए, γ पर g का अभिन्न अंग वास्तविक पथ γ पर निर्भर नहीं करता है, किंतु केवल इसके अंतिम बिंदुओं पर निर्भर करता है, जो कि हम दिखाना चाहते थे।

पर्याप्तता

आगे हम दिखाते हैं कि यदि g होलोमोर्फिक है, और किसी भी पथ पर g का अभिन्न अंग केवल अंतिम बिंदुओं पर निर्भर करता है, तो g में एक प्रतिअवकलन होता है। हम स्पष्ट रूप से एक प्रति-व्युत्पन्न खोज कर ऐसा करेंगे।

व्यापकता के हानि के बिना, हम मान सकते हैं कि g का डोमेन U जुड़ा हुआ है, अन्यथा प्रत्येक जुड़े हुए घटक पर एक एंटीडेरिवेटिव के अस्तित्व को सिद्ध किया जा सकता है। इस धारणा के साथ, U में एक बिंदु z0 तय करें और U में किसी भी z के लिए फलन को परिभाषित करें

जहां γ z0 को z से जोड़ने वाला कोई पथ है। ऐसा पथ उपस्थित है क्योंकि U को एक विवर्त जुड़ा हुआ समुच्चय माना जाता है। फलन f अच्छी तरह से परिभाषित है क्योंकि इंटीग्रल केवल γ के अंतिम बिंदुओं पर निर्भर करता है।

यह कि यह f, g का प्रतिअवकलन है, वास्तविक स्थिति की तरह ही तर्क दिया जा सकता है। हमारे पास है, U में दिए गए z के लिए, कि z पर केंद्रित एक डिस्क उपस्थित होनी चाहिए और पूरी तरह से U के अंदर समाहित होनी चाहिए। फिर इस डिस्क के अंदर z के अतिरिक्त हर w के लिए समाहित होता है

जहां [z, w], z और w के बीच रेखा खंड को दर्शाता है। g की निरंतरता से, जैसे-जैसे w, z के समीप पहुंचता है, अंतिम अभिव्यक्ति शून्य हो जाती है। दूसरे शब्दों में f′ = g.

संदर्भ

  • Ian Stewart, David O. Tall (Mar 10, 1983). Complex Analysis. Cambridge University Press. ISBN 0-521-28763-4.
  • Alan D Solomon (Jan 1, 1994). The Essentials of Complex Variables I. Research & Education Assoc. ISBN 0-87891-661-X.


बाहरी संबंध