रिस्च एल्गोरिदम: Difference between revisions

From Vigyanwiki
(Created page with "{{Use mdy dates|date=April 2022}} {{short description|Method for evaluating indefinite integrals}} {{calculus|expanded=integral}} प्रतीकात्मक गणन...")
 
m (Abhishekkshukla moved page रिस्क एल्गोरिदम to रिस्च एल्गोरिदम without leaving a redirect)
 
(8 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{Use mdy dates|date=April 2022}}
{{short description|Method for evaluating indefinite integrals}}
{{short description|Method for evaluating indefinite integrals}}
{{calculus|expanded=integral}}
प्रतीकात्मक गणना में, '''रिस्क एल्गोरिदम''' अनिश्चितकालीन एकीकरण की विधि है जिसका उपयोग कुछ कंप्यूटर बीजगणित प्रणालियों में प्रतिव्युत्पन्न खोजने के लिए किया जाता है। इसका नाम अमेरिकी गणितज्ञ रॉबर्ट हेनरी रिस्क के नाम पर रखा गया है, जो कंप्यूटर बीजगणित के विशेषज्ञ थे, जिन्होंने इसे 1968 में विकसित किया था।
[[प्रतीकात्मक गणना]] में, रिस्क एल्गोरिदम अनिश्चितकालीन एकीकरण की एक विधि है जिसका उपयोग कुछ कंप्यूटर बीजगणित प्रणालियों में [[ antiderivative ]] खोजने के लिए किया जाता है। इसका नाम अमेरिकी गणितज्ञ [[रॉबर्ट हेनरी रिस्क]] के नाम पर रखा गया है, जो कंप्यूटर बीजगणित के विशेषज्ञ थे, जिन्होंने इसे 1968 में विकसित किया था।


[[कलन विधि]] [[एकीकरण (कैलकुलस)]] की समस्या को [[विभेदक बीजगणित]] में एक समस्या में बदल देता है। यह एकीकृत किए जा रहे फ़ंक्शन के रूप और [[तर्कसंगत कार्य]]ों, Nth जड़ों, लघुगणक और घातांकीय कार्यों को एकीकृत करने के तरीकों पर आधारित है। रिश ने इसे [[निर्णय प्रक्रिया]] कहा, क्योंकि यह यह तय करने की एक विधि है कि क्या किसी फ़ंक्शन में अनिश्चितकालीन अभिन्न अंग के रूप में एक [[प्राथमिक कार्य]] है, और यदि ऐसा है, तो उस अनिश्चित अभिन्न को निर्धारित करने के लिए। हालाँकि, एल्गोरिथ्म हमेशा यह पहचानने में सफल नहीं होता है कि किसी दिए गए फ़ंक्शन का एंटीडेरिवेटिव वास्तव में प्राथमिक कार्यों के संदर्भ में व्यक्त किया जा सकता है या नहीं।{{Example needed|date=December 2021}}
[[कलन विधि|एल्गोरिथ्म]] एकीकरण (कैलकुलस) की समस्या को अवकल बीजगणित में समस्या में बदल देता है। यह एकीकृत किए जा रहे फलन के रूप और [[तर्कसंगत कार्य]], Nth मूलो, लघुगणक और घातांकीय कार्यों को एकीकृत करने के विधियों पर आधारित है। रिश ने इसे [[निर्णय प्रक्रिया]] कहा था, क्योंकि यह यह तय करने की विधि है कि क्या किसी फलन में अनिश्चितकालीन अभिन्न अंग के रूप में [[प्राथमिक कार्य]] है, और यदि ऐसा है, तो उस अनिश्चित अभिन्न को निर्धारित करने के लिए चूँकि, एल्गोरिथ्म सदैव यह पहचानने में सफल नहीं होता है कि किसी दिए गए फलन का एंटीडेरिवेटिव वास्तव में प्राथमिक कार्यों के संदर्भ में व्यक्त किया जा सकता है या नहीं किया जा सकता है।


रिस्क एल्गोरिथम का पूरा विवरण 100 से अधिक पृष्ठों का है।<ref>{{harvnb|Geddes|Czapor|Labahn|1992}}.</ref> रिस्क-नॉर्मन एल्गोरिदम एक सरल, तेज़, लेकिन कम शक्तिशाली संस्करण है जिसे 1976 में [[आर्थर नॉर्मन (कंप्यूटर वैज्ञानिक)]] द्वारा विकसित किया गया था।
रिस्क एल्गोरिथम का पूरा विवरण 100 से अधिक पृष्ठों का है।<ref>{{harvnb|Geddes|Czapor|Labahn|1992}}.</ref> रिस्क-नॉर्मन एल्गोरिदम सरल, तेज़, किन्तु कम शक्तिशाली संस्करण है जिसे 1976 में [[आर्थर नॉर्मन (कंप्यूटर वैज्ञानिक)]] द्वारा विकसित किया गया था।


ब्रायन एल. मिलर द्वारा मिश्रित ट्रान्सेंडैंटल-बीजगणितीय इंटीग्रल के लघुगणकीय भाग की गणना में कुछ महत्वपूर्ण प्रगति हुई है।<ref>{{Cite journal |last=Miller |first=Brian L. |date=May 2012 |title=On the integration of elementary functions: Computing the logarithmic part |url=https://ttu-ir.tdl.org/handle/2346/45299 |journal=}}</ref>
ब्रायन एल. मिलर द्वारा मिश्रित ट्रान्सेंडैंटल-बीजगणितीय इंटीग्रल के लघुगणकीय भाग की गणना में कुछ महत्वपूर्ण प्रगति हुई है।<ref>{{Cite journal |last=Miller |first=Brian L. |date=May 2012 |title=On the integration of elementary functions: Computing the logarithmic part |url=https://ttu-ir.tdl.org/handle/2346/45299 |journal=}}</ref>
==विवरण==
==विवरण==
प्राथमिक कार्यों को एकीकृत करने के लिए रिस्क एल्गोरिदम का उपयोग किया जाता है। ये घातांक, लघुगणक, रेडिकल, त्रिकोणमितीय फ़ंक्शन और चार अंकगणितीय संचालन की रचना करके प्राप्त किए गए फ़ंक्शन हैं ({{nowrap|+ − × ÷}}). [[पियरे-साइमन लाप्लास]] ने [[तर्कसंगत कार्य]]ों के मामले में इस समस्या को हल किया, क्योंकि उन्होंने दिखाया कि एक तर्कसंगत फ़ंक्शन का अनिश्चित अभिन्न अंग एक तर्कसंगत कार्य है और तर्कसंगत कार्यों के लघुगणक के निरंतर गुणकों की एक सीमित संख्या है {{citation needed|date=June 2021}}. लाप्लास द्वारा सुझाया गया एल्गोरिदम आमतौर पर कैलकुलस पाठ्यपुस्तकों में वर्णित है; एक कंप्यूटर प्रोग्राम के रूप में, इसे अंततः 1960 के दशक में लागू किया गया।{{Citation needed|date=November 2021}}
प्राथमिक कार्यों को एकीकृत करने के लिए रिस्क एल्गोरिदम का उपयोग किया जाता है। ये घातांक, लघुगणक, रेडिकल, त्रिकोणमितीय फलन और चार अंकगणितीय संचालन ({{nowrap|+ − × ÷}}) की रचना करके प्राप्त किए गए फलन हैं. [[पियरे-साइमन लाप्लास]] ने [[तर्कसंगत कार्य]] के स्थिति में इस समस्या को हल किया था, क्योंकि उन्होंने दिखाया कि तर्कसंगत फलन का अनिश्चित अभिन्न अंग तर्कसंगत कार्य है और तर्कसंगत कार्यों के लघुगणक के निरंतर गुणकों की सीमित संख्या है . लाप्लास द्वारा सुझाया गया एल्गोरिदम सामान्यतः कैलकुलस पाठ्यपुस्तकों में वर्णित है; कंप्यूटर प्रोग्राम के रूप में, इसे अंततः 1960 के दशक में प्रयुक्त किया गया था।


[[जोसेफ लिउविल]] ने उस समस्या को तैयार किया जिसे रिस्क एल्गोरिथम द्वारा हल किया गया है। लिउविल ने विश्लेषणात्मक माध्यमों से सिद्ध किया कि यदि कोई प्राथमिक समाधान है {{math|''g''}} समीकरण के लिए {{math|1=''g''′ = ''f''}} तो वहां स्थिरांक मौजूद हैं {{math|''α<sub>i</sub>''}} और कार्य {{math|''u<sub>i</sub>''}} और {{math|''v''}} द्वारा उत्पन्न क्षेत्र में {{math|''f''}} ऐसा कि समाधान स्वरूप का हो
[[जोसेफ लिउविल]] ने उस समस्या को तैयार किया जिसे रिस्क एल्गोरिथम द्वारा हल किया गया है। लिउविले ने विश्लेषणात्मक माध्यमों से सिद्ध किया कि यदि समीकरण {{math|1=''g''′ = ''f''}} का कोई प्रारंभिक समाधान {{math|''g''}} है तो {{math|''f''}} द्वारा उत्पन्न क्षेत्र में स्थिरांक {{math|''α<sub>i</sub>''}} और फलन {{math|''u<sub>i</sub>''}} और {{math|''v''}} उपस्थित हैं, जिससे समाधान इस प्रकार हो


:<math> g = v + \sum_{i<n} \alpha_i \ln (u_i) </math>
:<math> g = v + \sum_{i<n} \alpha_i \ln (u_i) </math>
रिस्क ने एक ऐसी विधि विकसित की जो किसी को लिउविल के रूप के कार्यों के केवल एक सीमित सेट पर विचार करने की अनुमति देती है।
रिस्क ने ऐसी विधि विकसित की जो किसी को लिउविल के रूप के कार्यों के केवल सीमित समुच्चय पर विचार करने की अनुमति देती है।


रिस्क एल्गोरिथ्म के लिए अंतर्ज्ञान विभेदन के तहत घातीय और लघुगणक कार्यों के व्यवहार से आता है। समारोह के लिए {{math|''f'' ''e<sup>g</sup>''}}, कहाँ {{math|''f''}} और {{math|''g''}} हमारे पास अवकलनीय कार्य हैं
रिस्क एल्गोरिथ्म के लिए अंतर्ज्ञान विभेदन के अनुसार घातीय और लघुगणक कार्यों के व्यवहार से आता है। फलन {{math|''f'' ''e<sup>g</sup>''}} के लिए, उदाहरण के लिए जहां {{math|''f''}} और {{math|''g''}} अवकलनीय फलन हैं, हमारे पास है


: <math> \left(f \cdot e^g\right)^\prime = \left(f^\prime + f\cdot g^\prime\right) \cdot e^g, \, </math>
: <math> \left(f \cdot e^g\right)^\prime = \left(f^\prime + f\cdot g^\prime\right) \cdot e^g, \, </math>
तो यदि {{math|''e<sup>g</sup>''}} अनिश्चितकालीन एकीकरण के परिणाम में थे, यह अभिन्न के अंदर होने की उम्मीद की जानी चाहिए। के रूप में भी
तो यदि {{math|''e<sup>g</sup>''}} अनिश्चितकालीन एकीकरण के परिणाम में थे, यह अभिन्न के अंदर होने की उम्मीद की जानी चाहिए। इसके अतिरिक्त


: <math> \left(f \cdot(\ln g)^n\right)^\prime =  f^\prime \left(\ln g\right)^n + n f  \frac{g^\prime}{g} \left(\ln g\right)^{n - 1} </math>
: <math> \left(f \cdot(\ln g)^n\right)^\prime =  f^\prime \left(\ln g\right)^n + n f  \frac{g^\prime}{g} \left(\ln g\right)^{n - 1} </math>
तो अगर {{math|(ln ''g'')<sup>''n''</sup>}} एकीकरण के परिणाम में थे, तो लघुगणक की केवल कुछ शक्तियों की अपेक्षा की जानी चाहिए।
तो यदि {{math|(ln ''g'')<sup>''n''</sup>}} एकीकरण के परिणाम में थे, तो लघुगणक की केवल कुछ घातो की अपेक्षा की जानी चाहिए।


==समस्या उदाहरण==
==समस्या उदाहरण==
एक प्राथमिक प्रतिअवकलन ढूँढना विवरण के प्रति बहुत संवेदनशील है। उदाहरण के लिए, निम्नलिखित बीजगणितीय फ़ंक्शन (1993 में [[हेनरी कोहेन (संख्या सिद्धांतकार)]] द्वारा sci.math.symbolic पर पोस्ट किया गया)<ref>{{Cite web |last=Cohen |first=Henri |date=December 21, 1993 |title=आपके पसंदीदा CAS के लिए एक क्रिसमस उपहार|url=https://groups.google.com/g/sci.math.symbolic/c/BPOIUsVMuY0/m/2moCKQY_cz4J |url-status=live}}</ref>) में एक प्रारंभिक प्रतिअवकलन है, जैसा कि संस्करण 13 से [[वोल्फ्राम मैथमैटिका]] दिखाता है (हालांकि, मैथमैटिका इस अभिन्न अंग की गणना करने के लिए रिस्क एल्गोरिदम का उपयोग नहीं करता है):<ref>{{Cite web|title=वोल्फ्राम बादल|url=https://www.wolframcloud.com/obj/d9af14f6-3b98-43c4-b996-11dedc9d9f10|access-date=December 11, 2021|website=वोल्फ्राम बादल|language=en}}</ref><ref>This example was posted by Manuel Bronstein to the [[Usenet]] forum ''comp.soft-sys.math.maple'' on November 24, 2000.[https://groups.google.com/d/msg/comp.soft-sys.math.maple/5CcPIR9Ft-Y/xYfGiyJauuoJ]</ref>
प्राथमिक प्रतिअवकलन खोजना विवरण के प्रति बहुत संवेदनशील है। उदाहरण के लिए, निम्नलिखित बीजगणितीय फलन (1993 में [[हेनरी कोहेन (संख्या सिद्धांतकार)]] द्वारा विज्ञान, गणित, प्रतीकात्मक पर पोस्ट किया गया)<ref>{{Cite web |last=Cohen |first=Henri |date=December 21, 1993 |title=आपके पसंदीदा CAS के लिए एक क्रिसमस उपहार|url=https://groups.google.com/g/sci.math.symbolic/c/BPOIUsVMuY0/m/2moCKQY_cz4J |url-status=live}}</ref>) में प्रारंभिक प्रतिअवकलन है, जैसा कि संस्करण 13 से [[वोल्फ्राम मैथमैटिका]] दिखाता है (चूँकि, मैथमैटिका इस अभिन्न अंग की गणना करने के लिए रिस्क एल्गोरिदम का उपयोग नहीं करता है):<ref>{{Cite web|title=वोल्फ्राम बादल|url=https://www.wolframcloud.com/obj/d9af14f6-3b98-43c4-b996-11dedc9d9f10|access-date=December 11, 2021|website=वोल्फ्राम बादल|language=en}}</ref><ref>This example was posted by Manuel Bronstein to the [[Usenet]] forum ''comp.soft-sys.math.maple'' on November 24, 2000.[https://groups.google.com/d/msg/comp.soft-sys.math.maple/5CcPIR9Ft-Y/xYfGiyJauuoJ]</ref>
: <math> f(x) = \frac{x}{\sqrt{x^4 + 10 x^2 - 96 x - 71}},</math>
: <math> f(x) = \frac{x}{\sqrt{x^4 + 10 x^2 - 96 x - 71}},</math>
अर्थात्:
अर्थात्:


: <math>\begin{align} F(x) = - \frac{1}{8}\ln &\,\Big( (x^6+15 x^4-80 x^3+27 x^2-528 x+781) \sqrt{ x^4+10 x^2-96 x-71} \Big. \\ & {} - \Big .(x^8 + 20 x^6 - 128 x^5 + 54 x^4 - 1408 x^3 + 3124 x^2 + 10001) \Big) + C. \end{align}</math>
: <math>\begin{align} F(x) = - \frac{1}{8}\ln &\,\Big( (x^6+15 x^4-80 x^3+27 x^2-528 x+781) \sqrt{ x^4+10 x^2-96 x-71} \Big. \\ & {} - \Big .(x^8 + 20 x^6 - 128 x^5 + 54 x^4 - 1408 x^3 + 3124 x^2 + 10001) \Big) + C. \end{align}</math>
लेकिन यदि अचर पद 71 को 72 में बदल दिया जाए, तो प्रारंभिक कार्यों के संदर्भ में प्रतिअवकलन का प्रतिनिधित्व करना संभव नहीं है,<ref name=":0" />जैसा कि [[FriCAS]] भी दिखाता है। कुछ कंप्यूटर बीजगणित प्रणालियाँ यहाँ गैर-प्राथमिक कार्यों (अर्थात अण्डाकार इंटीग्रल्स) के संदर्भ में एक एंटीडेरिवेटिव लौटा सकती हैं, जो रिस्क एल्गोरिदम के दायरे से बाहर हैं। इस अभिन्न अंग को [[पफनुटी चेबीशेव]] द्वारा हल किया गया था (और किन मामलों में यह प्राथमिक है),<ref>{{Cite book|last=Chebyshev|first=P. L.|url=http://archive.org/details/117744684_001|title=पी.एल. त्चेबीशेफ द्वारा काम किया गया|date=1899–1907|publisher=St. Petersbourg, Commissionaires de l'Academie imperiale des sciences|others=University of California Berkeley|language=French}}</ref> लेकिन इसका पुख्ता सबूत आख़िरकार [[ईगोर इवानोविच ज़ोलोटारेव]] ने किया।<ref name=":0">{{Cite journal|last=Zolotareff|first=G.|date=December 1, 1872|title=Sur la méthode d'intégration de M. Tchébychef|url=https://doi.org/10.1007/BF01442910|journal=Mathematische Annalen|language=fr|volume=5|issue=4|pages=560–580|doi=10.1007/BF01442910|s2cid=123629827 |issn=1432-1807}}</ref>
किन्तु यदि अचर पद 71 को 72 में बदल दिया जाता है, तो प्रारंभिक कार्यों के संदर्भ में प्रतिअवकलन का प्रतिनिधित्व करना संभव नहीं है,<ref name=":0" /> जैसा कि [[FriCAS|फ़्रीसीएएस]] भी दिखाता है। कुछ कंप्यूटर बीजगणित प्रणालियाँ यहाँ गैर-प्राथमिक कार्यों (अर्थात अण्डाकार इंटीग्रल्स) के संदर्भ में एंटीडेरिवेटिव लौटा सकती हैं, जो रिस्क एल्गोरिदम के सीमा से बाहर हैं। इस अभिन्न अंग को [[पफनुटी चेबीशेव]] द्वारा हल किया गया था (और किन स्थितियों में यह प्राथमिक है),<ref>{{Cite book|last=Chebyshev|first=P. L.|url=http://archive.org/details/117744684_001|title=पी.एल. त्चेबीशेफ द्वारा काम किया गया|date=1899–1907|publisher=St. Petersbourg, Commissionaires de l'Academie imperiale des sciences|others=University of California Berkeley|language=French}}</ref> किन्तु इसका सशक्त प्रमाण [[ईगोर इवानोविच ज़ोलोटारेव]] ने किया था।<ref name=":0">{{Cite journal|last=Zolotareff|first=G.|date=December 1, 1872|title=Sur la méthode d'intégration de M. Tchébychef|url=https://doi.org/10.1007/BF01442910|journal=Mathematische Annalen|language=fr|volume=5|issue=4|pages=560–580|doi=10.1007/BF01442910|s2cid=123629827 |issn=1432-1807}}</ref>
निम्नलिखित एक अधिक जटिल उदाहरण है जिसमें बीजीय और पारलौकिक दोनों प्रकार के कार्य शामिल हैं:<ref>{{harvnb|Bronstein|1998}}.</ref>
 
निम्नलिखित अधिक सम्मिश्र उदाहरण है जिसमें बीजीय और पारलौकिक दोनों प्रकार के कार्य सम्मिलित हैं:<ref>{{harvnb|Bronstein|1998}}.</ref>
: <math>f(x) = \frac{x^2+2x+1+ (3x+1)\sqrt{x+\ln x}}{x\,\sqrt{x+\ln x}\left(x+\sqrt{x+\ln x}\right)}.</math>
: <math>f(x) = \frac{x^2+2x+1+ (3x+1)\sqrt{x+\ln x}}{x\,\sqrt{x+\ln x}\left(x+\sqrt{x+\ln x}\right)}.</math>
वास्तव में, इस फ़ंक्शन के प्रतिअवकलन का काफी संक्षिप्त रूप है जिसे प्रतिस्थापन का उपयोग करके पाया जा सकता है  <math>u = x + \sqrt{x + \ln x}</math> ([[SymPy]] इसे हल कर सकता है जबकि FriCAS रिस्क एल्गोरिदम में कार्यान्वयन अपूर्ण (निरंतर अवशेष) त्रुटि के साथ विफल रहता है):
वास्तव में, इस फलन के प्रतिअवकलन का अधिक संक्षिप्त रूप है जिसे प्रतिस्थापन <math>u = x + \sqrt{x + \ln x}</math> का उपयोग करके पाया जा सकता है ([[SymPy|सिम्पी]] इसे हल कर सकता है जबकि फ़्रीसीएएस रिस्क एल्गोरिदम में कार्यान्वयन अपूर्ण (निरंतर अवशेष) त्रुटि के साथ विफल रहता है):


: <math>F(x) = 2 \left(\sqrt{x+\ln x} + \ln\left(x+\sqrt{x+\ln x}\right)\right) + C.</math>
: <math>F(x) = 2 \left(\sqrt{x+\ln x} + \ln\left(x+\sqrt{x+\ln x}\right)\right) + C.</math>
कुछ डेवनपोर्ट प्रमेय{{Definition needed|Davenport has not been mentioned to this point in the article, and his name only appears once later, and not in the context of theorems.|date=July 2022}} अभी भी स्पष्ट किया जा रहा है। उदाहरण के लिए 2020 में ऐसे प्रमेय का एक प्रतिउदाहरण पाया गया, जहां यह पता चलता है कि एक प्राथमिक प्रतिअवकलन आखिरकार मौजूद है।<ref>{{Cite journal |last1=Masser |first1=David |last2=Zannier |first2=Umberto |date=December 2020 |title=मरोड़ बिंदु, पेल का समीकरण, और प्रारंभिक शब्दों में एकीकरण|url=https://www.intlpress.com/site/pub/pages/journals/items/acta/content/vols/0225/0002/a002/ |journal=Acta Mathematica |language=EN |volume=225 |issue=2 |pages=227–312 |doi=10.4310/ACTA.2020.v225.n2.a2 |s2cid=221405883 |issn=1871-2509|doi-access=free }}</ref>
कुछ डेवनपोर्ट प्रमेय अभी भी स्पष्ट किया जा रहा है। उदाहरण के लिए 2020 में ऐसे प्रमेय का प्रतिउदाहरण पाया गया, जहां यह पता चलता है कि प्राथमिक प्रतिअवकलन अन्ततः उपस्थित है।<ref>{{Cite journal |last1=Masser |first1=David |last2=Zannier |first2=Umberto |date=December 2020 |title=मरोड़ बिंदु, पेल का समीकरण, और प्रारंभिक शब्दों में एकीकरण|url=https://www.intlpress.com/site/pub/pages/journals/items/acta/content/vols/0225/0002/a002/ |journal=Acta Mathematica |language=EN |volume=225 |issue=2 |pages=227–312 |doi=10.4310/ACTA.2020.v225.n2.a2 |s2cid=221405883 |issn=1871-2509|doi-access=free }}</ref>
 
 
==कार्यान्वयन==
==कार्यान्वयन==
रिस्क के सैद्धांतिक एल्गोरिदम को एक ऐसे एल्गोरिदम में बदलना जिसे कंप्यूटर द्वारा प्रभावी ढंग से निष्पादित किया जा सके, एक जटिल कार्य था जिसमें काफी समय लगा।
रिस्क के सैद्धांतिक एल्गोरिदम को ऐसे एल्गोरिदम में बदलना जिसे कंप्यूटर द्वारा प्रभावी विधि से निष्पादित किया जा सकता है, सम्मिश्र कार्य था जिसमें अधिक समय लगा था।
 
विशुद्ध रूप से पारलौकिक कार्यों (जिसमें बहुपदों की जड़ें शामिल नहीं हैं) का मामला अपेक्षाकृत आसान है और इसे अधिकांश कंप्यूटर बीजगणित प्रणालियों में जल्दी ही लागू किया गया था। पहला कार्यान्वयन [[ जोएल मूसा ]] द्वारा रिस्क के पेपर के प्रकाशन के तुरंत बाद [[मैकसिमा]] में किया गया था।<ref>{{harvnb|Moses|2012}}.</ref>
विशुद्ध रूप से बीजगणितीय कार्यों के मामले को जेम्स एच. डेवनपोर्ट द्वारा रिड्यूस (कंप्यूटर बीजगणित प्रणाली) में हल और कार्यान्वित किया गया था, हालांकि सादगी के लिए यह केवल वर्गमूलों और दोहराए गए वर्गमूलों से निपट सकता था, न कि सामान्य रेडिकल अभिव्यक्ति या चर के बीच अन्य गैर-द्विघात बीजीय समीकरण से।<ref>{{harvnb|Davenport|1981}}.</ref>
सामान्य मामला हल किया गया था और मैनुअल ब्रोंस्टीन द्वारा [[एक्सिओम (कंप्यूटर बीजगणित प्रणाली)]] के अग्रदूत स्क्रैचपैड में लगभग पूरी तरह से कार्यान्वित किया गया था, और अब इसे एक्सिओम के फोर्क, FriCAS में विकसित किया जा रहा है।<ref>{{harvnb|Bronstein|1990}}.</ref> हालाँकि, कार्यान्वयन में विशेष मामलों के लिए कुछ शाखाओं को पूरी तरह से शामिल नहीं किया गया।<ref>{{Cite web |last=Bronstein |first=Manuel |date=September 5, 2003 |title=एक्सिओम की एकीकरण क्षमताओं पर मैनुअल ब्रोंस्टीन|url=https://groups.google.com/g/sci.math.symbolic/c/YXlaU8WA2JI/m/1w1MxrSpm6IJ |access-date=2023-02-10 |website=groups.google.com}}</ref> वर्तमान में, रिस्क एल्गोरिथम का कोई ज्ञात पूर्ण कार्यान्वयन नहीं है।<ref>{{Cite web |date=Oct 15, 2020 |title=integration - Does there exist a complete implementation of the Risch algorithm? |url=https://mathoverflow.net/questions/374089/does-there-exist-a-complete-implementation-of-the-risch-algorithm |access-date=2023-02-10 |website=MathOverflow |language=en}}</ref>


विशुद्ध रूप से पारलौकिक कार्यों (जिसमें बहुपदों की मूल सम्मिलित नहीं हैं) का स्थिति अपेक्षाकृत सरल है और इसे अधिकांश कंप्यूटर बीजगणित प्रणालियों में जल्दी ही प्रयुक्त किया गया था। पहला कार्यान्वयन [[ जोएल मूसा |जोएल मूसा]] द्वारा रिस्क के पेपर के प्रकाशन के तुरंत बाद [[मैकसिमा]] में किया गया था।<ref>{{harvnb|Moses|2012}}.</ref>


विशुद्ध रूप से बीजगणितीय कार्यों के स्थिति को जेम्स एच. डेवनपोर्ट द्वारा रिड्यूस (कंप्यूटर बीजगणित प्रणाली) में हल और कार्यान्वित किया गया था, चूँकि सादगी के लिए यह केवल वर्गमूलों और दोहराए गए वर्गमूलों से निपट सकता था, न कि सामान्य रेडिकल अभिव्यक्ति या चर के बीच अन्य गैर-द्विघात बीजीय समीकरण से <ref>{{harvnb|Davenport|1981}}.</ref> सामान्य स्थिति हल किया गया था और मैनुअल ब्रोंस्टीन द्वारा [[एक्सिओम (कंप्यूटर बीजगणित प्रणाली)]] के अग्रदूत स्क्रैचपैड में लगभग पूरी तरह से कार्यान्वित किया गया था, और अब इसे एक्सिओम के फोर्क, फ़्रीसीएएस में विकसित किया जा रहा है।<ref>{{harvnb|Bronstein|1990}}.</ref> चूँकि, कार्यान्वयन में विशेष स्थितियों के लिए कुछ शाखाओं को पूरी तरह से सम्मिलित नहीं किया गया था।<ref>{{Cite web |last=Bronstein |first=Manuel |date=September 5, 2003 |title=एक्सिओम की एकीकरण क्षमताओं पर मैनुअल ब्रोंस्टीन|url=https://groups.google.com/g/sci.math.symbolic/c/YXlaU8WA2JI/m/1w1MxrSpm6IJ |access-date=2023-02-10 |website=groups.google.com}}</ref> वर्तमान में, रिस्क एल्गोरिथम का कोई ज्ञात पूर्ण कार्यान्वयन नहीं है।<ref>{{Cite web |date=Oct 15, 2020 |title=integration - Does there exist a complete implementation of the Risch algorithm? |url=https://mathoverflow.net/questions/374089/does-there-exist-a-complete-implementation-of-the-risch-algorithm |access-date=2023-02-10 |website=MathOverflow |language=en}}</ref>
==निर्णायकता==
==निर्णायकता==
सामान्य प्रारंभिक कार्यों पर लागू रिस्क एल्गोरिदम एक एल्गोरिदम नहीं है बल्कि एक [[आरई (जटिलता)]] | अर्ध-एल्गोरिदम है क्योंकि इसे अपने संचालन के एक भाग के रूप में जांचने की आवश्यकता है, यदि कुछ अभिव्यक्तियां शून्य (निरंतर समस्या) के बराबर हैं, विशेष रूप से स्थिर क्षेत्र में। उन अभिव्यक्तियों के लिए जिनमें केवल प्राथमिक कार्य माने जाने वाले कार्य शामिल हैं, यह ज्ञात नहीं है कि ऐसी जाँच करने वाला एल्गोरिदम मौजूद है या नहीं (वर्तमान कंप्यूटर बीजगणित प्रणालियाँ अनुमान का उपयोग करती हैं); इसके अलावा, यदि कोई प्राथमिक कार्यों की सूची में पूर्ण मान जोड़ता है, तो यह ज्ञात होता है कि ऐसा कोई एल्गोरिदम मौजूद नहीं है; रिचर्डसन का प्रमेय देखें।
सामान्य प्रारंभिक कार्यों पर प्रयुक्त रिस्क एल्गोरिदम एल्गोरिदम नहीं है किन्तु [[आरई (जटिलता)|आरई (सम्मिश्रता)]] या अर्ध-एल्गोरिदम है क्योंकि इसे अपने संचालन के भाग के रूप में जांचने की आवश्यकता है, यदि कुछ अभिव्यक्तियां शून्य (निरंतर समस्या) के समान हैं, विशेष रूप से स्थिर क्षेत्र में उन अभिव्यक्तियों के लिए जिनमें केवल प्राथमिक कार्य माने जाने वाले कार्य सम्मिलित हैं, यह ज्ञात नहीं है कि ऐसी जाँच करने वाला एल्गोरिदम उपस्थित है या नहीं (वर्तमान कंप्यूटर बीजगणित प्रणालियाँ अनुमान का उपयोग करती हैं); इसके अतिरिक्त, यदि कोई प्राथमिक कार्यों की सूची में पूर्ण मान जोड़ता है, तो यह ज्ञात होता है कि ऐसा कोई एल्गोरिदम उपस्थित नहीं है; रिचर्डसन का प्रमेय देखें।


ध्यान दें कि यह समस्या [[बहुपद विभाजन एल्गोरिथ्म]] में भी उत्पन्न होती है; यह एल्गोरिदम विफल हो जाएगा यदि यह सही ढंग से निर्धारित नहीं कर सकता है कि गुणांक समान रूप से गायब हो जाते हैं या नहीं।<ref>{{Cite web| title= Mathematica 7 Documentation: PolynomialQuotient| url= http://reference.wolfram.com/mathematica/ref/PolynomialQuotient.html| work= Section: Possible Issues| access-date= July 17, 2010}}</ref> वस्तुतः बहुपदों से संबंधित प्रत्येक गैर-तुच्छ एल्गोरिदम बहुपद विभाजन एल्गोरिदम का उपयोग करता है, जिसमें रिस्क एल्गोरिदम भी शामिल है। यदि स्थिर फ़ील्ड गणना योग्य है, यानी, उन तत्वों के लिए जो निर्भर नहीं हैं {{math|''x''}}, शून्य-समतुल्यता की समस्या निर्णायक है, तो रिस्क एल्गोरिदम एक पूर्ण एल्गोरिदम है। गणना योग्य स्थिरांक फ़ील्ड के उदाहरण हैं {{math|'''Q'''}} और {{math|'''Q'''(''y'')}}, अर्थात्, परिमेय संख्याएँ और परिमेय फलन {{mvar|''y''}}तर्कसंगत संख्या गुणांक के साथ, क्रमशः, जहां {{math|''y''}} एक अनिश्चित है जिस पर निर्भर नहीं है {{math|''x''}}.
ध्यान दें कि यह समस्या [[बहुपद विभाजन एल्गोरिथ्म]] में भी उत्पन्न होती है; यह एल्गोरिदम विफल हो जाएगा यदि यह सही विधि से निर्धारित नहीं कर सकता है कि गुणांक समान रूप से विलुप्त हो जाते हैं या नहीं होते है।<ref>{{Cite web| title= Mathematica 7 Documentation: PolynomialQuotient| url= http://reference.wolfram.com/mathematica/ref/PolynomialQuotient.html| work= Section: Possible Issues| access-date= July 17, 2010}}</ref> वस्तुतः बहुपदों से संबंधित प्रत्येक गैर-सामान्य एल्गोरिदम बहुपद विभाजन एल्गोरिदम का उपयोग करता है, जिसमें रिस्क एल्गोरिदम भी सम्मिलित है। यदि स्थिर क्षेत्र गणना योग्य है, अर्थात, {{math|''x''}} पर निर्भर नहीं होने वाले तत्वों के लिए, शून्य-समतुल्यता की समस्या निर्णय योग्य है, तो रिस्क एल्गोरिदम एक पूर्ण एल्गोरिदम है। गणना योग्य स्थिर क्षेत्र के उदाहरण {{math|'''Q'''}} और {{math|'''Q'''(''y'')}} हैं, अर्थात, क्रमशः तर्कसंगत संख्या गुणांक के साथ {{mvar|''y''}} में तर्कसंगत संख्याएं और तर्कसंगत कार्य, जहां {{mvar|''y''}} एक अनिश्चित है जो {{math|''x''}} पर निर्भर नहीं करता है।


यह [[ गाउस विलोपन ]] मैट्रिक्स एल्गोरिदम (या कोई भी एल्गोरिदम जो मैट्रिक्स के नलस्पेस की गणना कर सकता है) में भी एक मुद्दा है, जो रिस्क एल्गोरिदम के कई हिस्सों के लिए भी आवश्यक है। गाऊसी उन्मूलन गलत परिणाम देगा यदि यह सही ढंग से निर्धारित नहीं कर सकता है कि धुरी समान रूप से शून्य है या नहीं{{Citation needed|date=January 2012}}.
यह [[ गाउस विलोपन |गाउस विलोपन]] आव्यूह एल्गोरिदम (या कोई भी एल्गोरिदम जो आव्यूह के नलस्पेस की गणना कर सकता है) में भी उद्देश्य है, जो रिस्क एल्गोरिदम के कई भागो के लिए भी आवश्यक है। गाऊसी उन्मूलन गलत परिणाम देगा यदि यह सही विधि से निर्धारित नहीं कर सकता है कि धुरी समान रूप से शून्य है या नहीं है.


==यह भी देखें==
==यह भी देखें{{Portal|Computer programming|Mathematics}}==
{{Portal|Computer programming|Mathematics}}
*एक्सिओम (कंप्यूटर बीजगणित प्रणाली)
*एक्सिओम (कंप्यूटर बीजगणित प्रणाली)
*[[बंद-रूप अभिव्यक्ति]]
*[[बंद-रूप अभिव्यक्ति|संवृत-रूप अभिव्यक्ति]]
*[[अपूर्ण गामा फ़ंक्शन]]
*[[अपूर्ण गामा फ़ंक्शन|अपूर्ण गामा फलन]]
*[[अभिन्नों की सूची]]
*[[अभिन्नों की सूची|एकीकरण की सूची]]
*लिउविले का प्रमेय (विभेदक बीजगणित)
*लिउविले का प्रमेय (अवकल बीजगणित)
*अप्राथमिक अभिन्न अंग
*अप्राथमिक [[अभिन्नों की सूची|एकीकरण]]
*[[प्रतीकात्मक एकीकरण]]
*[[प्रतीकात्मक एकीकरण]]


==टिप्पणियाँ==
==टिप्पणियाँ                                                                                                                                                                                                                                                                                                                                                   ==
{{reflist}}
{{reflist}}
==संदर्भ==
==संदर्भ==


Line 187: Line 177:
  | jstor = 2318066
  | jstor = 2318066
  }}
  }}
==बाहरी संबंध==
==बाहरी संबंध==
*{{MathWorld
*{{MathWorld
Line 196: Line 184:
}}
}}


{{Integrals}}
{{DEFAULTSORT:Risch Algorithm}}
 
{{DEFAULTSORT:Risch Algorithm}}[[Category: कंप्यूटर बीजगणित]] [[Category: समाकलन गणित]] [[Category: विभेदक बीजगणित]]
 
 


[[Category: Machine Translated Page]]
[[Category:CS1]]
[[Category:Created On 23/07/2023]]
[[Category:CS1 English-language sources (en)]]
[[Category:CS1 errors|Risch Algorithm]]
[[Category:CS1 français-language sources (fr)]]
[[Category:CS1 maint]]
[[Category:Created On 23/07/2023|Risch Algorithm]]
[[Category:Lua-based templates|Risch Algorithm]]
[[Category:Machine Translated Page|Risch Algorithm]]
[[Category:Pages using sidebar with the child parameter|Risch Algorithm]]
[[Category:Pages with empty portal template|Risch Algorithm]]
[[Category:Pages with script errors|Risch Algorithm]]
[[Category:Portal templates with redlinked portals|Risch Algorithm]]
[[Category:Templates Vigyan Ready|Risch Algorithm]]
[[Category:Templates that add a tracking category|Risch Algorithm]]
[[Category:Templates that generate short descriptions|Risch Algorithm]]
[[Category:Templates using TemplateData|Risch Algorithm]]
[[Category:कंप्यूटर बीजगणित|Risch Algorithm]]
[[Category:विभेदक बीजगणित|Risch Algorithm]]
[[Category:समाकलन गणित|Risch Algorithm]]

Latest revision as of 17:10, 29 August 2023

प्रतीकात्मक गणना में, रिस्क एल्गोरिदम अनिश्चितकालीन एकीकरण की विधि है जिसका उपयोग कुछ कंप्यूटर बीजगणित प्रणालियों में प्रतिव्युत्पन्न खोजने के लिए किया जाता है। इसका नाम अमेरिकी गणितज्ञ रॉबर्ट हेनरी रिस्क के नाम पर रखा गया है, जो कंप्यूटर बीजगणित के विशेषज्ञ थे, जिन्होंने इसे 1968 में विकसित किया था।

एल्गोरिथ्म एकीकरण (कैलकुलस) की समस्या को अवकल बीजगणित में समस्या में बदल देता है। यह एकीकृत किए जा रहे फलन के रूप और तर्कसंगत कार्य, Nth मूलो, लघुगणक और घातांकीय कार्यों को एकीकृत करने के विधियों पर आधारित है। रिश ने इसे निर्णय प्रक्रिया कहा था, क्योंकि यह यह तय करने की विधि है कि क्या किसी फलन में अनिश्चितकालीन अभिन्न अंग के रूप में प्राथमिक कार्य है, और यदि ऐसा है, तो उस अनिश्चित अभिन्न को निर्धारित करने के लिए चूँकि, एल्गोरिथ्म सदैव यह पहचानने में सफल नहीं होता है कि किसी दिए गए फलन का एंटीडेरिवेटिव वास्तव में प्राथमिक कार्यों के संदर्भ में व्यक्त किया जा सकता है या नहीं किया जा सकता है।

रिस्क एल्गोरिथम का पूरा विवरण 100 से अधिक पृष्ठों का है।[1] रिस्क-नॉर्मन एल्गोरिदम सरल, तेज़, किन्तु कम शक्तिशाली संस्करण है जिसे 1976 में आर्थर नॉर्मन (कंप्यूटर वैज्ञानिक) द्वारा विकसित किया गया था।

ब्रायन एल. मिलर द्वारा मिश्रित ट्रान्सेंडैंटल-बीजगणितीय इंटीग्रल के लघुगणकीय भाग की गणना में कुछ महत्वपूर्ण प्रगति हुई है।[2]

विवरण

प्राथमिक कार्यों को एकीकृत करने के लिए रिस्क एल्गोरिदम का उपयोग किया जाता है। ये घातांक, लघुगणक, रेडिकल, त्रिकोणमितीय फलन और चार अंकगणितीय संचालन (+ − × ÷) की रचना करके प्राप्त किए गए फलन हैं. पियरे-साइमन लाप्लास ने तर्कसंगत कार्य के स्थिति में इस समस्या को हल किया था, क्योंकि उन्होंने दिखाया कि तर्कसंगत फलन का अनिश्चित अभिन्न अंग तर्कसंगत कार्य है और तर्कसंगत कार्यों के लघुगणक के निरंतर गुणकों की सीमित संख्या है . लाप्लास द्वारा सुझाया गया एल्गोरिदम सामान्यतः कैलकुलस पाठ्यपुस्तकों में वर्णित है; कंप्यूटर प्रोग्राम के रूप में, इसे अंततः 1960 के दशक में प्रयुक्त किया गया था।

जोसेफ लिउविल ने उस समस्या को तैयार किया जिसे रिस्क एल्गोरिथम द्वारा हल किया गया है। लिउविले ने विश्लेषणात्मक माध्यमों से सिद्ध किया कि यदि समीकरण g′ = f का कोई प्रारंभिक समाधान g है तो f द्वारा उत्पन्न क्षेत्र में स्थिरांक αi और फलन ui और v उपस्थित हैं, जिससे समाधान इस प्रकार हो

रिस्क ने ऐसी विधि विकसित की जो किसी को लिउविल के रूप के कार्यों के केवल सीमित समुच्चय पर विचार करने की अनुमति देती है।

रिस्क एल्गोरिथ्म के लिए अंतर्ज्ञान विभेदन के अनुसार घातीय और लघुगणक कार्यों के व्यवहार से आता है। फलन f eg के लिए, उदाहरण के लिए जहां f और g अवकलनीय फलन हैं, हमारे पास है

तो यदि eg अनिश्चितकालीन एकीकरण के परिणाम में थे, यह अभिन्न के अंदर होने की उम्मीद की जानी चाहिए। इसके अतिरिक्त

तो यदि (ln g)n एकीकरण के परिणाम में थे, तो लघुगणक की केवल कुछ घातो की अपेक्षा की जानी चाहिए।

समस्या उदाहरण

प्राथमिक प्रतिअवकलन खोजना विवरण के प्रति बहुत संवेदनशील है। उदाहरण के लिए, निम्नलिखित बीजगणितीय फलन (1993 में हेनरी कोहेन (संख्या सिद्धांतकार) द्वारा विज्ञान, गणित, प्रतीकात्मक पर पोस्ट किया गया)[3]) में प्रारंभिक प्रतिअवकलन है, जैसा कि संस्करण 13 से वोल्फ्राम मैथमैटिका दिखाता है (चूँकि, मैथमैटिका इस अभिन्न अंग की गणना करने के लिए रिस्क एल्गोरिदम का उपयोग नहीं करता है):[4][5]

अर्थात्:

किन्तु यदि अचर पद 71 को 72 में बदल दिया जाता है, तो प्रारंभिक कार्यों के संदर्भ में प्रतिअवकलन का प्रतिनिधित्व करना संभव नहीं है,[6] जैसा कि फ़्रीसीएएस भी दिखाता है। कुछ कंप्यूटर बीजगणित प्रणालियाँ यहाँ गैर-प्राथमिक कार्यों (अर्थात अण्डाकार इंटीग्रल्स) के संदर्भ में एंटीडेरिवेटिव लौटा सकती हैं, जो रिस्क एल्गोरिदम के सीमा से बाहर हैं। इस अभिन्न अंग को पफनुटी चेबीशेव द्वारा हल किया गया था (और किन स्थितियों में यह प्राथमिक है),[7] किन्तु इसका सशक्त प्रमाण ईगोर इवानोविच ज़ोलोटारेव ने किया था।[6]

निम्नलिखित अधिक सम्मिश्र उदाहरण है जिसमें बीजीय और पारलौकिक दोनों प्रकार के कार्य सम्मिलित हैं:[8]

वास्तव में, इस फलन के प्रतिअवकलन का अधिक संक्षिप्त रूप है जिसे प्रतिस्थापन का उपयोग करके पाया जा सकता है (सिम्पी इसे हल कर सकता है जबकि फ़्रीसीएएस रिस्क एल्गोरिदम में कार्यान्वयन अपूर्ण (निरंतर अवशेष) त्रुटि के साथ विफल रहता है):

कुछ डेवनपोर्ट प्रमेय अभी भी स्पष्ट किया जा रहा है। उदाहरण के लिए 2020 में ऐसे प्रमेय का प्रतिउदाहरण पाया गया, जहां यह पता चलता है कि प्राथमिक प्रतिअवकलन अन्ततः उपस्थित है।[9]

कार्यान्वयन

रिस्क के सैद्धांतिक एल्गोरिदम को ऐसे एल्गोरिदम में बदलना जिसे कंप्यूटर द्वारा प्रभावी विधि से निष्पादित किया जा सकता है, सम्मिश्र कार्य था जिसमें अधिक समय लगा था।

विशुद्ध रूप से पारलौकिक कार्यों (जिसमें बहुपदों की मूल सम्मिलित नहीं हैं) का स्थिति अपेक्षाकृत सरल है और इसे अधिकांश कंप्यूटर बीजगणित प्रणालियों में जल्दी ही प्रयुक्त किया गया था। पहला कार्यान्वयन जोएल मूसा द्वारा रिस्क के पेपर के प्रकाशन के तुरंत बाद मैकसिमा में किया गया था।[10]

विशुद्ध रूप से बीजगणितीय कार्यों के स्थिति को जेम्स एच. डेवनपोर्ट द्वारा रिड्यूस (कंप्यूटर बीजगणित प्रणाली) में हल और कार्यान्वित किया गया था, चूँकि सादगी के लिए यह केवल वर्गमूलों और दोहराए गए वर्गमूलों से निपट सकता था, न कि सामान्य रेडिकल अभिव्यक्ति या चर के बीच अन्य गैर-द्विघात बीजीय समीकरण से [11] सामान्य स्थिति हल किया गया था और मैनुअल ब्रोंस्टीन द्वारा एक्सिओम (कंप्यूटर बीजगणित प्रणाली) के अग्रदूत स्क्रैचपैड में लगभग पूरी तरह से कार्यान्वित किया गया था, और अब इसे एक्सिओम के फोर्क, फ़्रीसीएएस में विकसित किया जा रहा है।[12] चूँकि, कार्यान्वयन में विशेष स्थितियों के लिए कुछ शाखाओं को पूरी तरह से सम्मिलित नहीं किया गया था।[13] वर्तमान में, रिस्क एल्गोरिथम का कोई ज्ञात पूर्ण कार्यान्वयन नहीं है।[14]

निर्णायकता

सामान्य प्रारंभिक कार्यों पर प्रयुक्त रिस्क एल्गोरिदम एल्गोरिदम नहीं है किन्तु आरई (सम्मिश्रता) या अर्ध-एल्गोरिदम है क्योंकि इसे अपने संचालन के भाग के रूप में जांचने की आवश्यकता है, यदि कुछ अभिव्यक्तियां शून्य (निरंतर समस्या) के समान हैं, विशेष रूप से स्थिर क्षेत्र में उन अभिव्यक्तियों के लिए जिनमें केवल प्राथमिक कार्य माने जाने वाले कार्य सम्मिलित हैं, यह ज्ञात नहीं है कि ऐसी जाँच करने वाला एल्गोरिदम उपस्थित है या नहीं (वर्तमान कंप्यूटर बीजगणित प्रणालियाँ अनुमान का उपयोग करती हैं); इसके अतिरिक्त, यदि कोई प्राथमिक कार्यों की सूची में पूर्ण मान जोड़ता है, तो यह ज्ञात होता है कि ऐसा कोई एल्गोरिदम उपस्थित नहीं है; रिचर्डसन का प्रमेय देखें।

ध्यान दें कि यह समस्या बहुपद विभाजन एल्गोरिथ्म में भी उत्पन्न होती है; यह एल्गोरिदम विफल हो जाएगा यदि यह सही विधि से निर्धारित नहीं कर सकता है कि गुणांक समान रूप से विलुप्त हो जाते हैं या नहीं होते है।[15] वस्तुतः बहुपदों से संबंधित प्रत्येक गैर-सामान्य एल्गोरिदम बहुपद विभाजन एल्गोरिदम का उपयोग करता है, जिसमें रिस्क एल्गोरिदम भी सम्मिलित है। यदि स्थिर क्षेत्र गणना योग्य है, अर्थात, x पर निर्भर नहीं होने वाले तत्वों के लिए, शून्य-समतुल्यता की समस्या निर्णय योग्य है, तो रिस्क एल्गोरिदम एक पूर्ण एल्गोरिदम है। गणना योग्य स्थिर क्षेत्र के उदाहरण Q और Q(y) हैं, अर्थात, क्रमशः तर्कसंगत संख्या गुणांक के साथ y में तर्कसंगत संख्याएं और तर्कसंगत कार्य, जहां y एक अनिश्चित है जो x पर निर्भर नहीं करता है।

यह गाउस विलोपन आव्यूह एल्गोरिदम (या कोई भी एल्गोरिदम जो आव्यूह के नलस्पेस की गणना कर सकता है) में भी उद्देश्य है, जो रिस्क एल्गोरिदम के कई भागो के लिए भी आवश्यक है। गाऊसी उन्मूलन गलत परिणाम देगा यदि यह सही विधि से निर्धारित नहीं कर सकता है कि धुरी समान रूप से शून्य है या नहीं है.

यह भी देखें

टिप्पणियाँ

  1. Geddes, Czapor & Labahn 1992.
  2. Miller, Brian L. (May 2012). "On the integration of elementary functions: Computing the logarithmic part". {{cite journal}}: Cite journal requires |journal= (help)
  3. Cohen, Henri (December 21, 1993). "आपके पसंदीदा CAS के लिए एक क्रिसमस उपहार".{{cite web}}: CS1 maint: url-status (link)
  4. "वोल्फ्राम बादल". वोल्फ्राम बादल (in English). Retrieved December 11, 2021.
  5. This example was posted by Manuel Bronstein to the Usenet forum comp.soft-sys.math.maple on November 24, 2000.[1]
  6. 6.0 6.1 Zolotareff, G. (December 1, 1872). "Sur la méthode d'intégration de M. Tchébychef". Mathematische Annalen (in français). 5 (4): 560–580. doi:10.1007/BF01442910. ISSN 1432-1807. S2CID 123629827.
  7. Chebyshev, P. L. (1899–1907). पी.एल. त्चेबीशेफ द्वारा काम किया गया (in French). University of California Berkeley. St. Petersbourg, Commissionaires de l'Academie imperiale des sciences.{{cite book}}: CS1 maint: unrecognized language (link)
  8. Bronstein 1998.
  9. Masser, David; Zannier, Umberto (December 2020). "मरोड़ बिंदु, पेल का समीकरण, और प्रारंभिक शब्दों में एकीकरण". Acta Mathematica (in English). 225 (2): 227–312. doi:10.4310/ACTA.2020.v225.n2.a2. ISSN 1871-2509. S2CID 221405883.
  10. Moses 2012.
  11. Davenport 1981.
  12. Bronstein 1990.
  13. Bronstein, Manuel (September 5, 2003). "एक्सिओम की एकीकरण क्षमताओं पर मैनुअल ब्रोंस्टीन". groups.google.com. Retrieved 2023-02-10.
  14. "integration - Does there exist a complete implementation of the Risch algorithm?". MathOverflow (in English). Oct 15, 2020. Retrieved 2023-02-10.
  15. "Mathematica 7 Documentation: PolynomialQuotient". Section: Possible Issues. Retrieved July 17, 2010.

संदर्भ

बाहरी संबंध