अनुकूलित प्रक्रिया: Difference between revisions
(Created page with "स्टोकेस्टिक प्रक्रियाओं के अध्ययन में, एक अनुकूलित प्रक्रिया (जिस...") |
No edit summary |
||
(6 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
स्टोकेस्टिक प्रक्रियाओं के अध्ययन में, एक अनुकूलित प्रक्रिया (जिसे गैर-प्रत्याशित या गैर-प्रत्याशित प्रक्रिया भी कहा जाता है) वह है जो भविष्य में नहीं देख सकती है। एक अनौपचारिक व्याख्या<ref>{{cite book|last=Wiliams|first=David|year=1979|title=Diffusions, Markov Processes and Martingales: Foundations|volume=1|publisher=Wiley|isbn=0-471-99705-6|section=II.25}}</ref> | स्टोकेस्टिक प्रक्रियाओं के अध्ययन में, एक '''अनुकूलित प्रक्रिया''' (जिसे गैर-प्रत्याशित या गैर-प्रत्याशित प्रक्रिया भी कहा जाता है) वह है जो "भविष्य में नहीं देख सकती" है। एक अनौपचारिक व्याख्या <ref>{{cite book|last=Wiliams|first=David|year=1979|title=Diffusions, Markov Processes and Martingales: Foundations|volume=1|publisher=Wiley|isbn=0-471-99705-6|section=II.25}}</ref> यह है कि X को तभी अनुकूलित किया जाता है जब, प्रत्येक अनुभव और प्रत्येक n के लिए, ''X<sub>n</sub>'' को समय n पर जाना जाता है। उदाहरण के लिए, इटो इंटीग्रल की परिभाषा में एक अनुकूलित प्रक्रिया की अवधारणा आवश्यक है, जो केवल तभी समझ में आती है जब इंटीग्रैंड एक अनुकूलित प्रक्रिया है। | ||
==परिभाषा== | ==परिभाषा== | ||
होने देना | होने देना | ||
* <math>(\Omega, \mathcal{F}, \mathbb{P})</math> एक [[संभाव्यता स्थान]] बनें; | * <math>(\Omega, \mathcal{F}, \mathbb{P})</math> एक [[संभाव्यता स्थान|संभाव्यता समिष्ट]] बनें; | ||
* <math>I</math> कुल ऑर्डर | * <math>I</math> कुल ऑर्डर <math>\leq</math> (अधिकांशतः , <math>I</math> ,<math>\mathbb{N}</math>, <math>\mathbb{N}_0</math>, <math>[0, T]</math> या <math>[0, +\infty)</math>); के साथ एक इंडेक्स समुच्चय बनें | ||
* <math>\mathbb F = \left(\mathcal{F}_i\right)_{i \in I}</math> | *<math>\mathbb F = \left(\mathcal{F}_i\right)_{i \in I}</math> सिग्मा बीजगणित <math>\mathcal{F}</math> का निस्पंदन बनें। | ||
* <math>(S,\Sigma)</math> एक [[मापने योग्य स्थान]] हो, | * <math>(S,\Sigma)</math> एक [[मापने योग्य स्थान|मापीय समष्टि]] हो, अवस्था समष्टि; | ||
* <math>X: I \times \Omega \to S</math> एक स्टोकेस्टिक प्रक्रिया बनें। | * <math>X: I \times \Omega \to S</math> एक स्टोकेस्टिक प्रक्रिया बनें। | ||
प्रक्रिया <math>X</math> | कहा जाता है कि प्रक्रिया <math>X</math>को यादृच्छिक होने पर निस्पंदन <math>\left(\mathcal{F}_i\right)_{i \in I}</math> के लिए अनुकूलित किया जाता है चर <math>X_i: \Omega \to S</math> प्रत्येक <math>i \in I</math> के लिए एक <math>(\mathcal{F}_i, \Sigma)</math>-मापीय फलन है।<ref>{{cite book|last=Øksendal|first=Bernt|year=2003|title=स्टोकेस्टिक विभेदक समीकरण|page=25|isbn=978-3-540-04758-2|publisher=Springer}}</ref> | ||
==उदाहरण == | |||
एक स्टोकेस्टिक प्रक्रिया X पर विचार करें: [[0, ''T''] × Ω → '''R''', , और वास्तविक रेखा आर को विवर्त समुच्चयों द्वारा उत्पन्न उसके सामान्य बोरेल सिग्मा बीजगणित से सुसज्जित करें। | |||
*यदि हम प्राकृतिक निस्पंदन ''F''<sub>•</sub><sup>''X''</sup> लेते हैं, जहां ''F<sub>t</sub><sup>X</sup>'' के बोरेल उपसमुच्चय B और समय 0 ≤ s ≤ t के लिए पूर्व-छवियों ''X<sub>s</sub>''<sup>−1</sup>(''B'') द्वारा उत्पन्न σ-बीजगणित है, तो X स्वचालित रूप से ''F''<sub>•</sub><sup>''X''</sup>-अनुकूलित. सहज रूप से, प्राकृतिक निस्पंदन ''F''<sub>•</sub><sup>''X''</sup> में समय t तक X के व्यवहार के बारे में "कुल जानकारी" होती है। | |||
*यह एक गैर-अनुकूलित प्रक्रिया X का एक सरल उदाहरण प्रस्तुत करता है {{nowrap|: [0, 2] × Ω → '''R'''}} समय 0 ≤ t <1 के लिए ''F<sub>t</sub>'' को तुच्छ σ-बीजगणित {∅, Ω} के रूप में समुच्चय करें, और समय 1 ≤ t ≤ 2 के लिए ''F<sub>t</sub>'' = ''F<sub>t</sub><sup>X</sup>'' समुच्चय करें। चूंकि एकमात्र विधि यह है कि a फलन को तुच्छ σ-बीजगणित के संबंध में मापा जा सकता है, स्थिर होना है, कोई भी प्रक्रिया X जो [0, 1] पर गैर-स्थिर है, F•-अनुकूलित होने में विफल हो जाएगी। ऐसी प्रक्रिया की गैर-निरंतर प्रकृति अधिक परिष्कृत "भविष्य" σ-बीजगणित ''F<sub>t</sub>'',, 1 ≤ t ≤ 2 से "जानकारी का उपयोग करती है"। | |||
==यह भी देखें == | |||
* पूर्वानुमेय प्रक्रिया | |||
* उत्तरोत्तर मापीय प्रक्रिया | |||
==यह भी देखें== | |||
* | |||
* | |||
==संदर्भ== | ==संदर्भ== | ||
{{Reflist}} | {{Reflist}} | ||
[[Category:Created On 24/07/2023]] | [[Category:Created On 24/07/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:स्टचास्तिक प्रोसेसेज़]] |
Latest revision as of 12:35, 6 September 2023
स्टोकेस्टिक प्रक्रियाओं के अध्ययन में, एक अनुकूलित प्रक्रिया (जिसे गैर-प्रत्याशित या गैर-प्रत्याशित प्रक्रिया भी कहा जाता है) वह है जो "भविष्य में नहीं देख सकती" है। एक अनौपचारिक व्याख्या [1] यह है कि X को तभी अनुकूलित किया जाता है जब, प्रत्येक अनुभव और प्रत्येक n के लिए, Xn को समय n पर जाना जाता है। उदाहरण के लिए, इटो इंटीग्रल की परिभाषा में एक अनुकूलित प्रक्रिया की अवधारणा आवश्यक है, जो केवल तभी समझ में आती है जब इंटीग्रैंड एक अनुकूलित प्रक्रिया है।
परिभाषा
होने देना
- एक संभाव्यता समिष्ट बनें;
- कुल ऑर्डर (अधिकांशतः , ,, , या ); के साथ एक इंडेक्स समुच्चय बनें
- सिग्मा बीजगणित का निस्पंदन बनें।
- एक मापीय समष्टि हो, अवस्था समष्टि;
- एक स्टोकेस्टिक प्रक्रिया बनें।
कहा जाता है कि प्रक्रिया को यादृच्छिक होने पर निस्पंदन के लिए अनुकूलित किया जाता है चर प्रत्येक के लिए एक -मापीय फलन है।[2]
उदाहरण
एक स्टोकेस्टिक प्रक्रिया X पर विचार करें: [[0, T] × Ω → R, , और वास्तविक रेखा आर को विवर्त समुच्चयों द्वारा उत्पन्न उसके सामान्य बोरेल सिग्मा बीजगणित से सुसज्जित करें।
- यदि हम प्राकृतिक निस्पंदन F•X लेते हैं, जहां FtX के बोरेल उपसमुच्चय B और समय 0 ≤ s ≤ t के लिए पूर्व-छवियों Xs−1(B) द्वारा उत्पन्न σ-बीजगणित है, तो X स्वचालित रूप से F•X-अनुकूलित. सहज रूप से, प्राकृतिक निस्पंदन F•X में समय t तक X के व्यवहार के बारे में "कुल जानकारी" होती है।
- यह एक गैर-अनुकूलित प्रक्रिया X का एक सरल उदाहरण प्रस्तुत करता है : [0, 2] × Ω → R समय 0 ≤ t <1 के लिए Ft को तुच्छ σ-बीजगणित {∅, Ω} के रूप में समुच्चय करें, और समय 1 ≤ t ≤ 2 के लिए Ft = FtX समुच्चय करें। चूंकि एकमात्र विधि यह है कि a फलन को तुच्छ σ-बीजगणित के संबंध में मापा जा सकता है, स्थिर होना है, कोई भी प्रक्रिया X जो [0, 1] पर गैर-स्थिर है, F•-अनुकूलित होने में विफल हो जाएगी। ऐसी प्रक्रिया की गैर-निरंतर प्रकृति अधिक परिष्कृत "भविष्य" σ-बीजगणित Ft,, 1 ≤ t ≤ 2 से "जानकारी का उपयोग करती है"।
यह भी देखें
- पूर्वानुमेय प्रक्रिया
- उत्तरोत्तर मापीय प्रक्रिया
संदर्भ
- ↑ Wiliams, David (1979). "II.25". Diffusions, Markov Processes and Martingales: Foundations. Vol. 1. Wiley. ISBN 0-471-99705-6.
- ↑ Øksendal, Bernt (2003). स्टोकेस्टिक विभेदक समीकरण. Springer. p. 25. ISBN 978-3-540-04758-2.