प्ररोही विधि: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(6 intermediate revisions by 5 users not shown)
Line 6: Line 6:




मान लीजिये <math> y(t; a) </math> प्रारंभिक-मूल्य समस्या को हल करें<math display="block"> y''(t) = f(t, y(t), y'(t)), \quad y(t_0) = y_0, \quad y'(t_0) = a. </math>
मान लीजिये <math> y(t; a) </math> प्रारंभिक-मूल्य समस्या को हल करें<math display="block"> y''(t) = f(t, y(t), y'(t)), \quad y(t_0) = y_0, \quad y'(t_0) = a. </math>




यदि <math> y(t_1; a) = y_1 </math>, तब <math> y(t; a) </math> सीमा-मूल्य समस्या का भी समाधान है।  
यदि <math> y(t_1; a) = y_1 </math>, तब <math> y(t; a) </math> सीमा-मूल्य समस्या का भी समाधान है।                                                                                                  
शूटिंग विधि कई अलग-अलग मूल्यों के लिए प्रारंभिक मूल्य समस्या को हल करने की प्रक्रिया है जब तक कि कोई समाधान <math> y(t; a) </math> नहीं मिल जाता है जो वांछित सीमा नियमों को पूरा करता है। समान्यत: कोई ऐसा संख्यात्मक रूप से करता है। समाधान(s) की जड़(s) से मेल खाते हैं<math display="block"> F(a) = y(t_1; a) - y_1.</math>शूटिंग पैरामीटर <math> a </math> को व्यवस्थित रूप से बदलने और रूट खोजने के लिए, कोई मानक रूट-खोज एल्गोरिदम जैसे द्विभाजन विधि या न्यूटन की विधि को नियोजित कर सकता है।
 
शूटिंग विधि कई अलग-अलग मूल्यों के लिए प्रारंभिक मूल्य समस्या को हल करने की प्रक्रिया है जब तक कि कोई समाधान <math> y(t; a) </math> नहीं मिल जाता है जो वांछित सीमा नियमों को पूरा करता है। समान्यत: कोई ऐसा संख्यात्मक रूप से करता है। समाधान(s) की जड़(s) से मेल खाते हैं<math display="block"> F(a) = y(t_1; a) - y_1.                                                                                                                                                                            
                                                                                                                                                                                                                                                                                                                           
                                                                                                                                                                                                                                  </math>शूटिंग पैरामीटर <math> a </math> को व्यवस्थित रूप से बदलने और रूट खोजने के लिए, कोई मानक रूट-खोज एल्गोरिदम जैसे द्विभाजन विधि या न्यूटन की विधि को नियोजित कर सकता है।


<math> F </math> की मूल और सीमा मूल्य समस्या के समाधान समतुल्य हैं। यदि <math> a </math>, <math> F </math> का मूल है, तो <math> y(t; a) </math>सीमा मान समस्या का समाधान है। इसके विपरीत, यदि सीमा मान समस्या का समाधान <math> y(t) </math> है, तो यह प्रारंभिक मान समस्या का अद्वितीय समाधान <math> y(t; a) </math> भी है जहां <math> a = y'(t_0) </math> है, इसलिए <math> a </math> <math> F </math> का मूल है।
<math> F </math> की मूल और सीमा मूल्य समस्या के समाधान समतुल्य हैं। यदि <math> a </math>, <math> F </math> का मूल है, तो <math> y(t; a) </math>सीमा मान समस्या का समाधान है। इसके विपरीत, यदि सीमा मान समस्या का समाधान <math> y(t) </math> है, तो यह प्रारंभिक मान समस्या का अद्वितीय समाधान <math> y(t; a) </math> भी है जहां <math> a = y'(t_0) </math> है, इसलिए <math> a </math> <math> F </math> का मूल है।
Line 17: Line 20:
शूटिंग पद्धति शब्द की उत्पत्ति अर्तिल्लेरी से हुई है। शूटिंग विधि के लिए एक सादृश्य है
शूटिंग पद्धति शब्द की उत्पत्ति अर्तिल्लेरी से हुई है। शूटिंग विधि के लिए एक सादृश्य है


* स्थान पर एक अवस्था <math>y(t_0) = y_0</math> रखें , तब
* स्थान पर एक अवस्था <math>y(t_0) = y_0</math> रखें , तब
*बदलाव के कोण <math>a = y'(t_0)</math> को अलग-अलग करें
*बदलाव के कोण <math>a = y'(t_0)</math> को अलग-अलग करें
*तोप को तब तक दागें जब तक वह सीमा मान <math>y(t_1) = y_1</math> तक न पहुंच जाए।
*तोप को तब तक दागें जब तक वह सीमा मान <math>y(t_1) = y_1</math> तक न पहुंच जाए।
Line 28: Line 31:
इस स्थिति में, सीमा मूल्य समस्या का समाधान समान्यत: इस प्रकार दिया जाता है:
इस स्थिति में, सीमा मूल्य समस्या का समाधान समान्यत: इस प्रकार दिया जाता है:
<math display="block">y(t) = y_{(1)}(t) + \frac{y_{1}-y_{(1)}(t_1)}{y_{(2)}(t_1)} y_{(2)}(t)</math>
<math display="block">y(t) = y_{(1)}(t) + \frac{y_{1}-y_{(1)}(t_1)}{y_{(2)}(t_1)} y_{(2)}(t)</math>
जहाँ <math>y_{(1)}(t)</math> प्रारंभिक मूल्य समस्या का समाधान है:
जहाँ <math>y_{(1)}(t)</math> प्रारंभिक मूल्य समस्या का समाधान है:
<math display="block">y_{(1)}''(t) = p(t) y_{(1)}'(t) + q(t) y_{(1)}(t) + r(t),\quad y_{(1)}(t_0) = y_0, \quad y_{(1)}'(t_0) = 0, </math>
<math display="block">y_{(1)}''(t) = p(t) y_{(1)}'(t) + q(t) y_{(1)}(t) + r(t),\quad y_{(1)}(t_0) = y_0, \quad y_{(1)}'(t_0) = 0, </math>
और <math>y_{(2)}(t)</math> प्रारंभिक मूल्य समस्या का समाधान है:
और <math>y_{(2)}(t)</math> प्रारंभिक मूल्य समस्या का समाधान है:
Line 58: Line 61:
# श्रोडिंगर समीकरण को एकीकृत करें। उदाहरण के लिए, केंद्रीय [[परिमित अंतर विधि]] का उपयोग करें<math display="block">-\frac{1}{2} \frac{\psi^{i+1}_n - 2 \psi^i_n + \psi^{i-1}_n}{{\Delta x}^2} + \frac{1}{2} (x^i)^2 \psi^i_n = E_n \psi^i_n.</math>
# श्रोडिंगर समीकरण को एकीकृत करें। उदाहरण के लिए, केंद्रीय [[परिमित अंतर विधि]] का उपयोग करें<math display="block">-\frac{1}{2} \frac{\psi^{i+1}_n - 2 \psi^i_n + \psi^{i-1}_n}{{\Delta x}^2} + \frac{1}{2} (x^i)^2 \psi^i_n = E_n \psi^i_n.</math>
#*यदि n सम है, तो <math>\psi_0</math> को किसी इच्छित संख्या पर स्थित करें (मान लें कि <math>\psi^0_n = 1</math> - तरंगक्रिया को वैसे भी एकीकरण के बाद सामान्य किया जा सकता है) और सममित गुण का उपयोग करें शेष सभी <math>\psi_n^i</math> खोजें।
#*यदि n सम है, तो <math>\psi_0</math> को किसी इच्छित संख्या पर स्थित करें (मान लें कि <math>\psi^0_n = 1</math> - तरंगक्रिया को वैसे भी एकीकरण के बाद सामान्य किया जा सकता है) और सममित गुण का उपयोग करें शेष सभी <math>\psi_n^i</math> खोजें।
#*यदि n विषम है, तो <math>\psi^0_n = 0</math> को कुछ इच्छित संख्या पर स्थित करें (जैसे कि <math>\psi^1_n = 1</math>- वैसे भी एकीकरण के बाद तरंग फ़ंक्शन को सामान्य किया जा सकता है) और शेष सभी <math>\psi_n^i</math> खोजे  
#*यदि n विषम है, तो <math>\psi^0_n = 0</math> को कुछ इच्छित संख्या पर स्थित करें (जैसे कि <math>\psi^1_n = 1</math>- वैसे भी एकीकरण के बाद तरंग फ़ंक्शन को सामान्य किया जा सकता है) और शेष सभी <math>\psi_n^i</math> खोजे  
#<math>\psi_n</math> की मूल को गिनें और ऊर्जा <math>E_n</math> के अनुमान को परिष्कृत करें।
#<math>\psi_n</math> की मूल को गिनें और ऊर्जा <math>E_n</math> के अनुमान को परिष्कृत करें।
#*यदि n या उससे कम मूल हैं, तो अनुमानित ऊर्जा बहुत कम है, इसलिए इसे बढ़ाएं और प्रक्रिया को दोहराएं।
#*यदि n या उससे कम मूल हैं, तो अनुमानित ऊर्जा बहुत कम है, इसलिए इसे बढ़ाएं और प्रक्रिया को दोहराएं।
Line 66: Line 69:


== यह भी देखें                                                                                                                                                                                ==
== यह भी देखें                                                                                                                                                                                ==
[[प्रत्यक्ष एकाधिक शूटिंग विधि]]
*[[वायुमंडल में रेडियो तरंग क्षीणन की गणना]]
*[[वायुमंडल में रेडियो तरंग क्षीणन की गणना]]


Line 77: Line 80:
* [http://www.netlib.org/odepack/opks-sum Brief Description of ODEPACK] ''(at [[Netlib]]; contains LSODE)''
* [http://www.netlib.org/odepack/opks-sum Brief Description of ODEPACK] ''(at [[Netlib]]; contains LSODE)''
* [http://numericalmethods.eng.usf.edu/topics/shooting_method.html Shooting method of solving boundary value problems – Notes, PPT, Maple, Mathcad, Matlab, Mathematica] at ''Holistic Numerical Methods Institute'' [http://numericalmethods.eng.usf.edu]
* [http://numericalmethods.eng.usf.edu/topics/shooting_method.html Shooting method of solving boundary value problems – Notes, PPT, Maple, Mathcad, Matlab, Mathematica] at ''Holistic Numerical Methods Institute'' [http://numericalmethods.eng.usf.edu]
[[Category: संख्यात्मक अंतर समीकरण]] [[Category: सीमा मूल्य की समस्याएँ]]


[[Category: Machine Translated Page]]
[[Category:Created On 23/07/2023]]
[[Category:Created On 23/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:संख्यात्मक अंतर समीकरण]]
[[Category:सीमा मूल्य की समस्याएँ]]

Latest revision as of 16:45, 8 September 2023

संख्यात्मक विश्लेषण में, शूटिंग विधि एक सीमा मूल्य समस्या को प्रारंभिक मूल्य समस्या में कम करके हल करने की एक विधि है। इसमें विभिन्न प्रारंभिक स्थितियों के लिए प्रारंभिक मूल्य समस्या का समाधान खोज सम्मिलित है जब तक कि कोई ऐसा समाधान न मिल जाए जो सीमा मूल्य समस्या की सीमा नियमों को भी पूरा करता हो। समान्य आदमी के शब्दों में, कोई एक सीमा से अलग-अलग दिशाओं में प्रक्षेप पथ को तब तक "शूट" करता है जब तक कि उसे वह प्रक्षेप पथ नहीं मिल जाता जो दूसरी सीमा की स्थिति को "हिट" करता है।

गणितीय विवरण

मान लीजिए कोई सीमा-मूल्य समस्या को हल करना चाहता है


मान लीजिये प्रारंभिक-मूल्य समस्या को हल करें


यदि , तब सीमा-मूल्य समस्या का भी समाधान है।

शूटिंग विधि कई अलग-अलग मूल्यों के लिए प्रारंभिक मूल्य समस्या को हल करने की प्रक्रिया है जब तक कि कोई समाधान नहीं मिल जाता है जो वांछित सीमा नियमों को पूरा करता है। समान्यत: कोई ऐसा संख्यात्मक रूप से करता है। समाधान(s) की जड़(s) से मेल खाते हैं

शूटिंग पैरामीटर को व्यवस्थित रूप से बदलने और रूट खोजने के लिए, कोई मानक रूट-खोज एल्गोरिदम जैसे द्विभाजन विधि या न्यूटन की विधि को नियोजित कर सकता है।

की मूल और सीमा मूल्य समस्या के समाधान समतुल्य हैं। यदि , का मूल है, तो सीमा मान समस्या का समाधान है। इसके विपरीत, यदि सीमा मान समस्या का समाधान है, तो यह प्रारंभिक मान समस्या का अद्वितीय समाधान भी है जहां है, इसलिए का मूल है।

व्युत्पत्ति और अंतर्ज्ञान

शूटिंग पद्धति शब्द की उत्पत्ति अर्तिल्लेरी से हुई है। शूटिंग विधि के लिए एक सादृश्य है

  • स्थान पर एक अवस्था रखें , तब
  • बदलाव के कोण को अलग-अलग करें
  • तोप को तब तक दागें जब तक वह सीमा मान तक न पहुंच जाए।

प्रत्येक शॉट के बीच, तोप की दिशा को पिछले शॉट के आधार पर समायोजित किया जाता है, इसलिए प्रत्येक शॉट पिछले शॉट की तुलना में अधिक समीप लगता है। वांछित सीमा मान तक पहुंचने वाला प्रक्षेपवक्र सीमा मान समस्या का समाधान है - इसलिए इसे शूटिंग विधि नाम दिया गया है।

रेखीय शूटिंग विधि

यदि f का रूप है तो सीमा मान समस्या रैखिक है

इस स्थिति में, सीमा मूल्य समस्या का समाधान समान्यत: इस प्रकार दिया जाता है:
जहाँ प्रारंभिक मूल्य समस्या का समाधान है:
और प्रारंभिक मूल्य समस्या का समाधान है:
उस स्पष्ट स्थिति के लिए प्रमाण देखें जिसके अनुसार यह परिणाम मान्य है।[1]

उदाहरण

मानक सीमा मान समस्या

चित्र 1. s = w'(0) के लिए प्रक्षेपवक्र w(t;s) −7, −8, −10, −36, और −40 के बराबर है। बिंदु (1,1) को एक वृत्त से चिह्नित किया गया है।
चित्र 2. फलन F(s) = w(1;s) - 1.

स्टोअर और बुलिर्श[2] (धारा 7.3.1) द्वारा एक सीमा मूल्य समस्या इस प्रकार दी गई है।

प्रारंभिक मूल्य समस्या
चित्र 2 में प्लॉट किए गए s = −1, −2, −3, ..., −100, और F(s) = w(1;s) − 1 के लिए हल किया गया था। F के प्लॉट का निरीक्षण करने पर, हम देखते हैं कि −8 और −36 के पास मूल हैं। w(t;s) के कुछ प्रक्षेप पथ चित्र 1 में दिखाए गए हैं।

स्टोअर और बुलिर्श[2] बताएं कि दो समाधान हैं, जिसे बीजगणितीय विधियों से पाया जा सकता है।

ये प्रारंभिक स्थितियों w′(0) = −8 और w′(0) = −35.9 (लगभग) के अनुरूप हैं।

आइगेनवेल्यू समस्या

Illustration of the shooting method for finding the ground state of the quantum harmonic oscillator
ऊर्जा के साथ हार्मोनिक ऑसिलेटर की जमीनी स्थिति की खोज करते समय , शूटिंग विधि वेवफ़ंक्शन उत्पन्न करती है जो अनंत तक विसरित होती है। यहां, सही तरंग फ़ंक्शन की मूल शून्य होनी चाहिए और अनंत पर शून्य तक जाना चाहिए, इसलिए यह नारंगी और हरी रेखाओं के बीच कहीं स्थित है। इसलिए ऊर्जा बीच में है और (संख्यात्मक सटीकता के साथ)।

शूटिंग पद्धति का उपयोग आइजेनवैल्यू समस्याओं को हल करने के लिए भी किया जा सकता है। क्वांटम हार्मोनिक ऑसिलेटर के लिए समय-स्वतंत्र श्रोडिंगर समीकरण पर विचार करें

क्वांटम यांत्रिकी में, व्यक्ति सीमा स्थितियों के अधीन सामान्यीकरण योग्य तरंग कार्यों और उनकी संबंधित ऊर्जाओं की खोज करता है।
समस्या को विश्लेषणात्मक रूप से हल करके के लिए ऊर्जा का पता लगाया जा सकता है, किंतु यह शूटिंग पद्धति का एक उत्कृष्ट उदाहरण भी है। इसे प्रयुक्त करने के लिए, पहले श्रोडिंगर समीकरण के कुछ सामान्य गुणों पर ध्यान दें:

  • यदि एक ईजेनफंक्शन है, तो यह किसी भी गैर-शून्य स्थिरांक के लिए यह है।
  • n-वीं उत्तेजित अवस्था की मूल n हैं जहां है।
  • सम n के लिए, n-वीं उत्तेजित अवस्था मूल बिंदु पर सममित और शून्येतर है।
  • विषम n के लिए, n-वीं उत्तेजित अवस्था एंटीसिमेट्रिक है और इस प्रकार मूल पर शून्य है।

n-वें उत्तेजित अवस्था और उसकी ऊर्जा को खोजने के लिए, शूटिंग विधि यह है:

  1. कुछ ऊर्जा का अनुमान लगाएं .
  2. श्रोडिंगर समीकरण को एकीकृत करें। उदाहरण के लिए, केंद्रीय परिमित अंतर विधि का उपयोग करें
    • यदि n सम है, तो को किसी इच्छित संख्या पर स्थित करें (मान लें कि - तरंगक्रिया को वैसे भी एकीकरण के बाद सामान्य किया जा सकता है) और सममित गुण का उपयोग करें शेष सभी खोजें।
    • यदि n विषम है, तो को कुछ इच्छित संख्या पर स्थित करें (जैसे कि - वैसे भी एकीकरण के बाद तरंग फ़ंक्शन को सामान्य किया जा सकता है) और शेष सभी खोजे
  3. की मूल को गिनें और ऊर्जा के अनुमान को परिष्कृत करें।
    • यदि n या उससे कम मूल हैं, तो अनुमानित ऊर्जा बहुत कम है, इसलिए इसे बढ़ाएं और प्रक्रिया को दोहराएं।
    • यदि n से अधिक मूल हैं, तो अनुमानित ऊर्जा बहुत अधिक है, इसलिए इसे कम करें और प्रक्रिया को दोहराएं।

ऊर्जा-अनुमान द्विभाजन विधि से किया जा सकता है, और जब ऊर्जा अंतर पर्याप्त रूप से छोटा हो तो प्रक्रिया को समाप्त किया जा सकता है। तब कोई अंतराल में किसी भी ऊर्जा को सही ऊर्जा मान सकता है।

यह भी देखें

टिप्पणियाँ

  1. Mathews, John H.; Fink, Kurtis K. (2004). "9.8 Boundary Value Problems". MATLAB का उपयोग करके संख्यात्मक विधियाँ (PDF) (4th ed.). Upper Saddle River, N.J.: Pearson. ISBN 0-13-065248-2. Archived from the original (PDF) on 9 December 2006.
  2. 2.0 2.1 Stoer, J. and Bulirsch, R. Introduction to Numerical Analysis. New York: Springer-Verlag, 1980.

संदर्भ

बाहरी संबंध