न्यूमैन परिसीमा प्रतिबंध: Difference between revisions

From Vigyanwiki
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Short description|Mathematics}}
{{Short description|Mathematics}}
गणित में, '''न्यूमैन (या दूसरे प्रकार की) सीमा स्थिति''' प्रकार की सीमा स्थिति है, जिसका नाम [[कार्ल न्यूमैन]] के नाम पर रखा गया है।<ref>{{Cite journal | doi = 10.1016/j.enganabound.2004.12.001| title = सीमा तत्व विधि की विरासत और प्रारंभिक इतिहास| journal = Engineering Analysis with Boundary Elements| volume = 29| issue = 3| pages = 268| year = 2005| last1 = Cheng | first1 = A. H.-D. | last2 = Cheng | first2 = D. T. }}</ref> जब [[साधारण अंतर समीकरण|साधारण या आंशिक अंतर समीकरण]] पर लगाया जाता है, तब स्थिति [[डोमेन (गणितीय विश्लेषण)]] की [[सीमा (टोपोलॉजी)]] पर प्रयुक्त व्युत्पन्न के मानों को निर्दिष्ट करती है।
गणित में, '''न्यूमैन परिसीमा प्रतिबंध''' प्रकार की परिसीमा प्रतिबंध है, जिसका नाम [[कार्ल न्यूमैन]] के नाम पर रखा गया है।<ref>{{Cite journal | doi = 10.1016/j.enganabound.2004.12.001| title = सीमा तत्व विधि की विरासत और प्रारंभिक इतिहास| journal = Engineering Analysis with Boundary Elements| volume = 29| issue = 3| pages = 268| year = 2005| last1 = Cheng | first1 = A. H.-D. | last2 = Cheng | first2 = D. T. }}</ref> जब [[साधारण अंतर समीकरण|साधारण या आंशिक अंतर समीकरण]] पर लगाया जाता है, तब प्रतिबंध [[डोमेन (गणितीय विश्लेषण)]] की [[सीमा (टोपोलॉजी)|परिसीमा (टोपोलॉजी)]] पर प्रयुक्त व्युत्पन्न के मानों को निर्दिष्ट करती है।


इस प्रकार कि अन्य सीमाओं की स्थितियों का उपयोग करके समस्या का वर्णन करना संभव होता है | जो [[डिरिचलेट सीमा स्थिति]] में सीमा पर स्वयं समाधान के मानों को निर्दिष्ट करती है (इसके व्युत्पन्न के विपरीत) हैं, जबकि [[कॉची सीमा स्थिति]], मिश्रित सीमा स्थिति और [[रॉबिन सीमा स्थिति]] सभी न्यूमैन और डिरिचलेट सीमा स्थितियों के विभिन्न प्रकार के संयोजन हैं।
इस प्रकार कि अन्य परिसीमाओं की प्रतिबंधयों का उपयोग करके समस्या का वर्णन करना संभव होता है | जो [[डिरिचलेट सीमा स्थिति|डिरिचलेट परिसीमा प्रतिबंध]] में परिसीमा पर स्वयं समाधान के मानों को निर्दिष्ट करती है (इसके व्युत्पन्न के विपरीत) हैं, जबकि [[कॉची सीमा स्थिति|कॉची परिसीमा प्रतिबंध]], मिश्रित परिसीमा प्रतिबंध और [[रॉबिन सीमा स्थिति|रॉबिन परिसीमा प्रतिबंध]] सभी न्यूमैन और डिरिचलेट परिसीमा प्रतिबंधयों के विभिन्न प्रकार के संयोजन हैं।


==उदाहरण              ==
==उदाहरण              ==
Line 10: Line 10:


:<math>y'' + y = 0,</math>
:<math>y'' + y = 0,</math>
अंतराल {{math|[''a'',''b'']}} पर न्यूमैन सीमा स्थितियां रूप लेती हैं
अंतराल {{math|[''a'',''b'']}} पर न्यूमैन परिसीमा प्रतिबंधयां रूप लेती हैं


:<math>y'(a)= \alpha, \quad y'(b) = \beta,                                                                                                                                                                  </math>
:<math>y'(a)= \alpha, \quad y'(b) = \beta,                                                                                                                                                                  </math>
Line 20: Line 20:


:<math>\nabla^2 y + y = 0,</math>
:<math>\nabla^2 y + y = 0,</math>
जहां {{math|∇<sup>2</sup>                                                                                  }} [[लाप्लास ऑपरेटर|लाप्लास संचालक]], को दर्शाता है, तथा यह डोमेन पर न्यूमैन सीमा स्थितियां {{math|Ω ⊂ '''R'''<sup>''n''</sup>}} का रूप भी लेती हैं |
जहां {{math|∇<sup>2</sup>                                                                                  }} [[लाप्लास ऑपरेटर|लाप्लास संचालक]], को दर्शाता है, तथा यह डोमेन पर न्यूमैन परिसीमा प्रतिबंधयां {{math|Ω ⊂ '''R'''<sup>''n''</sup>}} का रूप भी लेती हैं |


:<math>\frac{\partial y}{\partial \mathbf{n}}(\mathbf{x}) = f(\mathbf{x}) \quad \forall \mathbf{x} \in \partial \Omega,                                                      </math>
:<math>\frac{\partial y}{\partial \mathbf{n}}(\mathbf{x}) = f(\mathbf{x}) \quad \forall \mathbf{x} \in \partial \Omega,                                                      </math>
जहां {{math|'''n'''}} सीमा (टोपोलॉजी) के लिए {{math|∂Ω}} के (सामान्यतः बाहरी) [[सामान्य वेक्टर|सामान्य सदिश]] को दर्शाता है, और {{mvar|f}} [[अदिश फलन]] दिया गया है।
जहां {{math|'''n'''}} परिसीमा (टोपोलॉजी) के लिए {{math|∂Ω}} के (सामान्यतः बाहरी) [[सामान्य वेक्टर|सामान्य सदिश]] को दर्शाता है, और {{mvar|f}} [[अदिश फलन]] दिया गया है।


[[सामान्य व्युत्पन्न]], जो बाईं ओर दिखाई देता है, तथा इसको इस प्रकार परिभाषित किया गया है           
[[सामान्य व्युत्पन्न]], जो बाईं ओर दिखाई देता है, तथा इसको इस प्रकार परिभाषित किया गया है           
Line 30: Line 30:
''''''जहाँ {{math|∇''y''('''x''')}} के [[ ग्रेडियेंट |ग्रेडियेंट]] सदिश का प्रतिनिधित्व करता है {{math|''y''('''x''')}}, {{math|'''n̂'''}} इकाई सामान्य है, और {{math|⋅}} आंतरिक उत्पाद ऑपरेटर का प्रतिनिधित्व करता है।''''''                                                       
''''''जहाँ {{math|∇''y''('''x''')}} के [[ ग्रेडियेंट |ग्रेडियेंट]] सदिश का प्रतिनिधित्व करता है {{math|''y''('''x''')}}, {{math|'''n̂'''}} इकाई सामान्य है, और {{math|⋅}} आंतरिक उत्पाद ऑपरेटर का प्रतिनिधित्व करता है।''''''                                                       


जहाँ यह स्पष्ट हो जाता है कि सीमा पर्याप्त रूप से स्मूथ होनी चाहिए जिससे सामान्य व्युत्पन्न उपस्तिथ हो सके, उदाहरण के लिए, सीमा पर कोने बिंदुओं पर सामान्य सदिश अच्छी तरह से परिभाषित नहीं होते है।
जहाँ यह स्पष्ट हो जाता है कि परिसीमा पर्याप्त रूप से स्मूथ होनी चाहिए जिससे सामान्य व्युत्पन्न उपस्तिथ हो सके, उदाहरण के लिए, परिसीमा पर कोने बिंदुओं पर सामान्य सदिश अच्छी तरह से परिभाषित नहीं होते है।


===अनुप्रयोग                                              ===
===अनुप्रयोग                                              ===


निम्नलिखित अनुप्रयोगों में न्यूमैन सीमा स्थितियों का उपयोग सम्मिलित है |     
निम्नलिखित अनुप्रयोगों में न्यूमैन परिसीमा प्रतिबंधयों का उपयोग सम्मिलित है |     
* [[ ऊष्मप्रवैगिकी | ऊष्मप्रवैगिकी]] में, किसी सतह से निर्धारित ऊष्मा प्रवाह सीमा स्थिति के रूप में कार्य करता हैं। उदाहरण के लिए, आदर्श इन्सुलेटर में कोई प्रवाह नहीं होगा जबकि विद्युत घटक ज्ञात शक्ति पर नष्ट हो सकता है।
* [[ ऊष्मप्रवैगिकी | ऊष्मप्रवैगिकी]] में, किसी सतह से निर्धारित ऊष्मा प्रवाह परिसीमा प्रतिबंध के रूप में कार्य करता हैं। उदाहरण के लिए, आदर्श इन्सुलेटर में कोई प्रवाह नहीं होगा जबकि विद्युत घटक ज्ञात शक्ति पर नष्ट हो सकता है।
* [[magnetostatics|मैग्नेटोस्टैटिक्स]] में, स्पेस चुंबक सरणी में चुंबकीय प्रवाह घनत्व वितरण को खोजने के लिए उपयोग किया जाता है तथा इसमें [[चुंबकीय क्षेत्र]] की तीव्रता को सीमा स्थिति के रूप में भी निर्धारित किया जा सकता है | उदाहरण के लिए स्थायी चुंबक मोटर में पाया जाता हैं। चूंकि मैग्नेटोस्टैटिक्स में समस्याओं में चुंबकीय अदिश क्षमता के लिए लाप्लास के समीकरण या पॉइसन के समीकरण का समाधान करना सम्मिलित होता है और सीमा स्थिति न्यूमैन स्थिति होती है।
* [[magnetostatics|मैग्नेटोस्टैटिक्स]] में, स्पेस चुंबक सरणी में चुंबकीय प्रवाह घनत्व वितरण को खोजने के लिए उपयोग किया जाता है तथा इसमें [[चुंबकीय क्षेत्र]] की तीव्रता को परिसीमा प्रतिबंध के रूप में भी निर्धारित किया जा सकता है | उदाहरण के लिए स्थायी चुंबक मोटर में पाया जाता हैं। चूंकि मैग्नेटोस्टैटिक्स में समस्याओं में चुंबकीय अदिश क्षमता के लिए लाप्लास के समीकरण या पॉइसन के समीकरण का समाधान करना सम्मिलित होता है और परिसीमा प्रतिबंध न्यूमैन प्रतिबंध होती है।
*[[स्थानिक पारिस्थितिकी]] में, प्रतिक्रिया-प्रसार प्रणाली पर न्यूमैन सीमा स्थिति होती हैं, जैसे कि फिशर समीकरण, की प्रतिबिंबित सीमा के रूप में व्याख्या की जा सकती है,और जैसे कि {{math|∂Ω                                                                                                      }} का सामना करने वाले सभी व्यक्ति {{math|Ω                                                                                                          }}पर पीछे की ओर प्रतिबिंबित होते हैं।<ref>{{cite book |first=Robert Stephen |last=Cantrell |first2=Chris |last2=Cosner |title=Spatial Ecology via Reaction–Diffusion Equations |location= |publisher=Wiley |year=2003 |isbn=0-471-49301-5 |pages=30–31 }}</ref>             
*[[स्थानिक पारिस्थितिकी|स्थानिक पारिप्रतिबंधकी]] में, प्रतिक्रिया-प्रसार प्रणाली पर न्यूमैन परिसीमा प्रतिबंध होती हैं, जैसे कि फिशर समीकरण, की प्रतिबिंबित परिसीमा के रूप में व्याख्या की जा सकती है,और जैसे कि {{math|∂Ω                                                                                                      }} का सामना करने वाले सभी व्यक्ति {{math|Ω                                                                                                          }}पर पीछे की ओर प्रतिबिंबित होते हैं।<ref>{{cite book |first=Robert Stephen |last=Cantrell |first2=Chris |last2=Cosner |title=Spatial Ecology via Reaction–Diffusion Equations |location= |publisher=Wiley |year=2003 |isbn=0-471-49301-5 |pages=30–31 }}</ref>             
==यह भी देखें                                                      ==
==यह भी देखें                                                      ==
*द्रव गतिकी में सीमा स्थितियाँ
*द्रव गतिकी में परिसीमा प्रतिबंधयाँ
*डिरिचलेट सीमा स्थिति
*डिरिचलेट परिसीमा प्रतिबंध
*रॉबिन सीमा स्थिति
*रॉबिन परिसीमा प्रतिबंध


==संदर्भ                                                                                                                        ==
==संदर्भ                                                                                                                        ==
{{Reflist}}
{{Reflist}}


{{DEFAULTSORT:Neumann Boundary Condition}}[[Category: सीमा की स्थिति]]
{{DEFAULTSORT:Neumann Boundary Condition}}


 
[[Category:Created On 23/07/2023|Neumann Boundary Condition]]
 
[[Category:Lua-based templates|Neumann Boundary Condition]]
[[Category: Machine Translated Page]]
[[Category:Machine Translated Page|Neumann Boundary Condition]]
[[Category:Created On 23/07/2023]]
[[Category:Pages with script errors|Neumann Boundary Condition]]
[[Category:Vigyan Ready]]
[[Category:Templates Vigyan Ready|Neumann Boundary Condition]]
[[Category:Templates that add a tracking category|Neumann Boundary Condition]]
[[Category:Templates that generate short descriptions|Neumann Boundary Condition]]
[[Category:Templates using TemplateData|Neumann Boundary Condition]]
[[Category:सीमा की स्थिति|Neumann Boundary Condition]]

Latest revision as of 15:00, 6 September 2023

गणित में, न्यूमैन परिसीमा प्रतिबंध प्रकार की परिसीमा प्रतिबंध है, जिसका नाम कार्ल न्यूमैन के नाम पर रखा गया है।[1] जब साधारण या आंशिक अंतर समीकरण पर लगाया जाता है, तब प्रतिबंध डोमेन (गणितीय विश्लेषण) की परिसीमा (टोपोलॉजी) पर प्रयुक्त व्युत्पन्न के मानों को निर्दिष्ट करती है।

इस प्रकार कि अन्य परिसीमाओं की प्रतिबंधयों का उपयोग करके समस्या का वर्णन करना संभव होता है | जो डिरिचलेट परिसीमा प्रतिबंध में परिसीमा पर स्वयं समाधान के मानों को निर्दिष्ट करती है (इसके व्युत्पन्न के विपरीत) हैं, जबकि कॉची परिसीमा प्रतिबंध, मिश्रित परिसीमा प्रतिबंध और रॉबिन परिसीमा प्रतिबंध सभी न्यूमैन और डिरिचलेट परिसीमा प्रतिबंधयों के विभिन्न प्रकार के संयोजन हैं।

उदाहरण

ओडीई

उदाहरण के लिए, साधारण अंतर समीकरण के लिए,

अंतराल [a,b] पर न्यूमैन परिसीमा प्रतिबंधयां रूप लेती हैं

जहां αऔर β संख्याएं दी गई हैं।

पीडीई

उदाहरण के लिए, आंशिक अंतर समीकरण के लिए,

जहां 2 लाप्लास संचालक, को दर्शाता है, तथा यह डोमेन पर न्यूमैन परिसीमा प्रतिबंधयां Ω ⊂ Rn का रूप भी लेती हैं |

जहां n परिसीमा (टोपोलॉजी) के लिए ∂Ω के (सामान्यतः बाहरी) सामान्य सदिश को दर्शाता है, और f अदिश फलन दिया गया है।

सामान्य व्युत्पन्न, जो बाईं ओर दिखाई देता है, तथा इसको इस प्रकार परिभाषित किया गया है

'जहाँ y(x) के ग्रेडियेंट सदिश का प्रतिनिधित्व करता है y(x), इकाई सामान्य है, और आंतरिक उत्पाद ऑपरेटर का प्रतिनिधित्व करता है।'

जहाँ यह स्पष्ट हो जाता है कि परिसीमा पर्याप्त रूप से स्मूथ होनी चाहिए जिससे सामान्य व्युत्पन्न उपस्तिथ हो सके, उदाहरण के लिए, परिसीमा पर कोने बिंदुओं पर सामान्य सदिश अच्छी तरह से परिभाषित नहीं होते है।

अनुप्रयोग

निम्नलिखित अनुप्रयोगों में न्यूमैन परिसीमा प्रतिबंधयों का उपयोग सम्मिलित है |

  • ऊष्मप्रवैगिकी में, किसी सतह से निर्धारित ऊष्मा प्रवाह परिसीमा प्रतिबंध के रूप में कार्य करता हैं। उदाहरण के लिए, आदर्श इन्सुलेटर में कोई प्रवाह नहीं होगा जबकि विद्युत घटक ज्ञात शक्ति पर नष्ट हो सकता है।
  • मैग्नेटोस्टैटिक्स में, स्पेस चुंबक सरणी में चुंबकीय प्रवाह घनत्व वितरण को खोजने के लिए उपयोग किया जाता है तथा इसमें चुंबकीय क्षेत्र की तीव्रता को परिसीमा प्रतिबंध के रूप में भी निर्धारित किया जा सकता है | उदाहरण के लिए स्थायी चुंबक मोटर में पाया जाता हैं। चूंकि मैग्नेटोस्टैटिक्स में समस्याओं में चुंबकीय अदिश क्षमता के लिए लाप्लास के समीकरण या पॉइसन के समीकरण का समाधान करना सम्मिलित होता है और परिसीमा प्रतिबंध न्यूमैन प्रतिबंध होती है।
  • स्थानिक पारिप्रतिबंधकी में, प्रतिक्रिया-प्रसार प्रणाली पर न्यूमैन परिसीमा प्रतिबंध होती हैं, जैसे कि फिशर समीकरण, की प्रतिबिंबित परिसीमा के रूप में व्याख्या की जा सकती है,और जैसे कि ∂Ω का सामना करने वाले सभी व्यक्ति Ω पर पीछे की ओर प्रतिबिंबित होते हैं।[2]

यह भी देखें

  • द्रव गतिकी में परिसीमा प्रतिबंधयाँ
  • डिरिचलेट परिसीमा प्रतिबंध
  • रॉबिन परिसीमा प्रतिबंध

संदर्भ

  1. Cheng, A. H.-D.; Cheng, D. T. (2005). "सीमा तत्व विधि की विरासत और प्रारंभिक इतिहास". Engineering Analysis with Boundary Elements. 29 (3): 268. doi:10.1016/j.enganabound.2004.12.001.
  2. Cantrell, Robert Stephen; Cosner, Chris (2003). Spatial Ecology via Reaction–Diffusion Equations. Wiley. pp. 30–31. ISBN 0-471-49301-5.