अनंतिमल परिवर्तन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Limiting form of small transformation}}गणित में, अतिसूक्ष्म परिवर्तन ''छोटे''  [[परिवर्तन (ज्यामिति)]] का [[सीमा (गणित)]] रूप है। उदाहरण के लिए, कोई त्रि-आयामी अंतरिक्ष में किसी कठोर पिंड के [[अतिसूक्ष्म घूर्णन]] के विषय में बात कर सकता है। इसे पारंपरिक रूप से 3×3 [[तिरछा-सममित मैट्रिक्स|तिरछा-सममित आव्यूह]] ''A'' द्वारा दर्शाया जाता है। यह अंतरिक्ष में वास्तविक घूर्णन का आव्यूह नहीं है; परन्तु पैरामीटर ε के छोटे वास्तविक मानों के लिए परिवर्तन
{{Short description|Limiting form of small transformation}}गणित में, '''अनंतिम परिवर्तन''' अल्प [[परिवर्तन (ज्यामिति)]] का [[सीमा (गणित)|सीमित]] रूप है। उदाहरण के लिए, कोई त्रि-आयामी अंतरिक्ष में किसी कठोर पिंड के [[अतिसूक्ष्म घूर्णन|अनंतिम घूर्णन]] के विषय में वार्तालाप कर सकता है। इसे पारंपरिक रूप से 3×3 [[तिरछा-सममित मैट्रिक्स|तिरछा-सममित आव्यूह]] ''A'' द्वारा प्रदर्शित किया जाता है। यह अंतरिक्ष में वास्तविक घूर्णन का आव्यूह नहीं है; किन्तु पैरामीटर ε के अल्प वास्तविक मानों के लिए परिवर्तन,


:<math>T=I+\varepsilon A</math>
:<math>T=I+\varepsilon A</math>
क्रम ε<sup>2</sup> की मात्रा तक छोटा घूर्णन है।
क्रम ε<sup>2</sup> की मात्रा तक अल्प घूर्णन है।


==इतिहास==
==इतिहास==
अतिसूक्ष्म परिवर्तनों का व्यापक सिद्धांत सबसे पूर्व [[सोफस झूठ|सोफस ली]] द्वारा दिया गया था। यह उनके काम के केंद्र में था, जिसे अब लाई समूह एवं उनके साथ आने वाले लाई बीजगणित कहा जाता है; एवं [[ज्यामिति]] एवं विशेषकर विभेदक समीकरणों के सिद्धांत में उनकी भूमिका की पहचान है। अमूर्त बीजगणित के गुण वास्तव में अनंतिम परिवर्तनों के निश्चित गुण हैं, जैसे कि [[समूह सिद्धांत]] के स्वयंसिद्ध [[समरूपता]] का प्रतीक हैं। ली बीजगणित शब्द की प्रारम्भ 1934 में [[हरमन वेइल]] द्वारा की गई थी, जिसे तब तक लाई समूह के अतिसूक्ष्म परिवर्तनों के बीजगणित के रूप में जाना जाता था।
अनंतिम परिवर्तनों का व्यापक सिद्धांत सबसे पूर्व [[सोफस झूठ|सोफस ली]] द्वारा दिया गया था। यह उनके कार्य के केंद्र में था, जिसे अब लाई समूह एवं उनके साथ आने वाले लाई बीजगणित कहा जाता है; एवं [[ज्यामिति]] एवं विशेषकर विभेदक समीकरणों के सिद्धांत में उनकी भूमिका की पहचान है। अमूर्त बीजगणित के गुण वास्तव में अनंतिम परिवर्तनों के निश्चित गुण हैं, जैसे कि [[समूह सिद्धांत]] के स्वयंसिद्ध [[समरूपता]] का प्रतीक हैं। ली बीजगणित शब्द का प्रारम्भ 1934 में [[हरमन वेइल]] द्वारा की गई थी, जिसे तब तक लाई समूह के अनंतिम परिवर्तनों के बीजगणित के रूप में जाना जाता था।


==उदाहरण==
==उदाहरण==
उदाहरण के लिए, अनंतिम घुमावों के मामले में, लाई बीजगणित संरचना वह है जो क्रॉस उत्पाद द्वारा प्रदान की जाती है, तिरछा-सममित आव्यूह को 3-[[वेक्टर (ज्यामितीय)|सदीश]] के साथ पहचाना जाता है। यह घूर्णन के लिए अक्ष सदीश के चयन के समान है; परिभाषित [[जैकोबी पहचान]] क्रॉस उत्पादों की प्रसिद्ध संपत्ति है।
उदाहरण के लिए, अनंतिम घुमावों के विषयों में, लाई बीजगणित संरचना वह है जो क्रॉस उत्पाद द्वारा प्रदान की जाती है, तिरछा-सममित आव्यूह को 3-[[वेक्टर (ज्यामितीय)|सदीश]] के साथ पहचाना जाता है। यह घूर्णन के लिए अक्ष सदीश के चयन के समान है; परिभाषित [[जैकोबी पहचान]] क्रॉस उत्पादों की प्रसिद्ध संपत्ति है।


अतिसूक्ष्म परिवर्तन का सबसे प्रथम उदाहरण जिसे इस रूप में पहचाना जा सकता है वह सजातीय कार्यों पर यूलर के प्रमेय में था। यहां बताया गया है कि n चर  ''x''<sub>1</sub>, ..., ''x<sub>n</sub>'' का फलन F जो कि घात r का सजातीय है,  
अनंतिम परिवर्तन का सबसे प्रथम उदाहरण जिसे इस रूप में पहचाना जा सकता है, वह सजातीय कार्यों पर यूलर के प्रमेय में था। यहां बताया गया है कि n चर  ''x''<sub>1</sub>, ..., ''x<sub>n</sub>'' का फलन F जो कि घात r का सजातीय है,  


:<math>\Theta F=rF \, </math>,
:<math>\Theta F=rF \, </math>,
Line 16: Line 16:


:<math>\Theta=\sum_i x_i{\partial\over\partial x_i},</math>
:<math>\Theta=\sum_i x_i{\partial\over\partial x_i},</math>
[[थीटा ऑपरेटर]] को संतुष्ट करता है। यानी संपत्ति से
[[थीटा ऑपरेटर]] को संतुष्ट करता है। अर्थात् संपत्ति से


:<math>F(\lambda x_1,\dots, \lambda x_n)=\lambda^r F(x_1,\dots,x_n)\,</math>
:<math>F(\lambda x_1,\dots, \lambda x_n)=\lambda^r F(x_1,\dots,x_n)\,</math>
λ के संबंध में अंतर करना एवं फिर λ को 1 के समान निर्धारित करना संभव है। यह तब समरूपता गुण रखने के लिए सुचारू फलन F पर [[आवश्यक शर्त|आवश्यक प्रतिबंध]] बन जाता है; यह भी पर्याप्त है ([[श्वार्ट्ज वितरण]] का उपयोग करके कोई यहां [[गणितीय विश्लेषण]] संबंधी विचारों को कम कर सकता है)। यह सेटिंग विशिष्ट है, इसमें [[स्केलिंग (गणित)]] का [[एक-पैरामीटर समूह|-पैरामीटर समूह]] संचालित होता है; एवं जानकारी को अतिसूक्ष्म परिवर्तन में कोडित किया गया है जो कि [[प्रथम-क्रम विभेदक ऑपरेटर]] है।
λ के संबंध में अंतर करना एवं तत्पश्चात λ को 1 के समान निर्धारित करना संभव है। यह तब समरूपता गुण रखने के लिए सुचारू फलन F पर [[आवश्यक शर्त|आवश्यक प्रतिबंध]] बन जाता है; यह भी पर्याप्त है ([[श्वार्ट्ज वितरण]] का उपयोग करके कोई यहां [[गणितीय विश्लेषण]] संबंधी विचारों को अर्घ्य कर सकता है)। यह नियतन विशिष्ट है, इसमें [[स्केलिंग (गणित)]] का [[एक-पैरामीटर समूह|-पैरामीटर समूह]] संचालित होता है; एवं जानकारी को अनंतिम परिवर्तन में कोडित किया गया है जो कि [[प्रथम-क्रम विभेदक ऑपरेटर]] है।


==टेलर के प्रमेय का संचालिका संस्करण==
==टेलर के प्रमेय का संचालिका संस्करण==
Line 25: Line 25:


:<math>e^{tD}f(x)=f(x+t)\,</math>
:<math>e^{tD}f(x)=f(x+t)\,</math>
कहाँ
जहाँ


:<math>D={d\over dx}</math>
:<math>D={d\over dx}</math>
टेलर के प्रमेय का [[ऑपरेटर (गणित)]] संस्करण है - एवं इसलिए यह केवल विश्लेषणात्मक फलन होने के विषय में चेतावनियों के अंतर्गत मान्य है। ऑपरेटर भाग पर ध्यान केंद्रित करने से पता चलता है कि डी अत्यंत छोटा परिवर्तन है, जो घातीय फलन के माध्यम से वास्तविक रेखा का अनुवाद उत्पन्न करता है। ली के सिद्धांत में, इसे काफी हद तक सामान्यीकृत किया गया है। किसी भी जुड़े हुए स्थान लाई समूह का निर्माण उसके इनफिनिटसिमल जेनरेटर (समूह के लाई बीजगणित के लिए आधार); बेकर-कैंपबेल-हॉसडॉर्फ़ सूत्र में दी गई स्पष्ट, (यदि हमेशा उपयोगी जानकारी नहीं) है।
टेलर के प्रमेय का [[ऑपरेटर (गणित)]] संस्करण है, एवं इसलिए यह केवल विश्लेषणात्मक फलन होने के विषय में चेतावनियों के अंतर्गत मान्य है। ऑपरेटर भाग पर ध्यान केंद्रित करने से ज्ञात होता है, कि D अत्यंत अल्प परिवर्तन है, जो घातीय फलन के माध्यम से वास्तविक रेखा का अनुवाद उत्पन्न करता है। ली के सिद्धांत में, इसे अधिक सीमा तक सामान्यीकृत किया गया है। किसी भी जुड़े हुए स्थान लाई समूह का निर्माण उसके इनफिनिटसिमल जेनरेटर (समूह के लाई बीजगणित के लिए आधार); बेकर-कैंपबेल-हॉसडॉर्फ़ सूत्र में दी गई स्पष्ट (यदि सदैव उपयोगी नहीं) जानकारी है।


== संदर्भ ==
== संदर्भ ==
*{{Springer|id=L/l058370|title=Lie algebra}}
*{{Springer|id=L/l058370|title=Lie algebra}}
*[[Sophus Lie]] (1893) [http://neo-classical-physics.info/uploads/3/0/6/5/3065888/lie-_infinite_continuous_groups_-_i.pdf Vorlesungen über Continuierliche Gruppen], English translation by D.H. Delphenich, §8, link from Neo-classical Physics.
*[[Sophus Lie]] (1893) [http://neo-classical-physics.info/uploads/3/0/6/5/3065888/lie-_infinite_continuous_groups_-_i.pdf Vorlesungen über Continuierliche Gruppen], English translation by D.H. Delphenich, §8, link from Neo-classical Physics.
[[Category: झूठ समूह]] [[Category: परिवर्तन (कार्य)]] [[Category: अनन्तसूक्ष्मों का गणित]]


[[Category: Machine Translated Page]]
[[Category:Created On 23/07/2023]]
[[Category:Created On 23/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:अनन्तसूक्ष्मों का गणित]]
[[Category:झूठ समूह]]
[[Category:परिवर्तन (कार्य)]]

Latest revision as of 16:43, 1 August 2023

गणित में, अनंतिम परिवर्तन अल्प परिवर्तन (ज्यामिति) का सीमित रूप है। उदाहरण के लिए, कोई त्रि-आयामी अंतरिक्ष में किसी कठोर पिंड के अनंतिम घूर्णन के विषय में वार्तालाप कर सकता है। इसे पारंपरिक रूप से 3×3 तिरछा-सममित आव्यूह A द्वारा प्रदर्शित किया जाता है। यह अंतरिक्ष में वास्तविक घूर्णन का आव्यूह नहीं है; किन्तु पैरामीटर ε के अल्प वास्तविक मानों के लिए परिवर्तन,

क्रम ε2 की मात्रा तक अल्प घूर्णन है।

इतिहास

अनंतिम परिवर्तनों का व्यापक सिद्धांत सबसे पूर्व सोफस ली द्वारा दिया गया था। यह उनके कार्य के केंद्र में था, जिसे अब लाई समूह एवं उनके साथ आने वाले लाई बीजगणित कहा जाता है; एवं ज्यामिति एवं विशेषकर विभेदक समीकरणों के सिद्धांत में उनकी भूमिका की पहचान है। अमूर्त बीजगणित के गुण वास्तव में अनंतिम परिवर्तनों के निश्चित गुण हैं, जैसे कि समूह सिद्धांत के स्वयंसिद्ध समरूपता का प्रतीक हैं। ली बीजगणित शब्द का प्रारम्भ 1934 में हरमन वेइल द्वारा की गई थी, जिसे तब तक लाई समूह के अनंतिम परिवर्तनों के बीजगणित के रूप में जाना जाता था।

उदाहरण

उदाहरण के लिए, अनंतिम घुमावों के विषयों में, लाई बीजगणित संरचना वह है जो क्रॉस उत्पाद द्वारा प्रदान की जाती है, तिरछा-सममित आव्यूह को 3-सदीश के साथ पहचाना जाता है। यह घूर्णन के लिए अक्ष सदीश के चयन के समान है; परिभाषित जैकोबी पहचान क्रॉस उत्पादों की प्रसिद्ध संपत्ति है।

अनंतिम परिवर्तन का सबसे प्रथम उदाहरण जिसे इस रूप में पहचाना जा सकता है, वह सजातीय कार्यों पर यूलर के प्रमेय में था। यहां बताया गया है कि n चर x1, ..., xn का फलन F जो कि घात r का सजातीय है,

,

साथ

थीटा ऑपरेटर को संतुष्ट करता है। अर्थात् संपत्ति से

λ के संबंध में अंतर करना एवं तत्पश्चात λ को 1 के समान निर्धारित करना संभव है। यह तब समरूपता गुण रखने के लिए सुचारू फलन F पर आवश्यक प्रतिबंध बन जाता है; यह भी पर्याप्त है (श्वार्ट्ज वितरण का उपयोग करके कोई यहां गणितीय विश्लेषण संबंधी विचारों को अर्घ्य कर सकता है)। यह नियतन विशिष्ट है, इसमें स्केलिंग (गणित) का -पैरामीटर समूह संचालित होता है; एवं जानकारी को अनंतिम परिवर्तन में कोडित किया गया है जो कि प्रथम-क्रम विभेदक ऑपरेटर है।

टेलर के प्रमेय का संचालिका संस्करण

संचालिका समीकरण

जहाँ

टेलर के प्रमेय का ऑपरेटर (गणित) संस्करण है, एवं इसलिए यह केवल विश्लेषणात्मक फलन होने के विषय में चेतावनियों के अंतर्गत मान्य है। ऑपरेटर भाग पर ध्यान केंद्रित करने से ज्ञात होता है, कि D अत्यंत अल्प परिवर्तन है, जो घातीय फलन के माध्यम से वास्तविक रेखा का अनुवाद उत्पन्न करता है। ली के सिद्धांत में, इसे अधिक सीमा तक सामान्यीकृत किया गया है। किसी भी जुड़े हुए स्थान लाई समूह का निर्माण उसके इनफिनिटसिमल जेनरेटर (समूह के लाई बीजगणित के लिए आधार); बेकर-कैंपबेल-हॉसडॉर्फ़ सूत्र में दी गई स्पष्ट (यदि सदैव उपयोगी नहीं) जानकारी है।

संदर्भ

  • "Lie algebra", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • Sophus Lie (1893) Vorlesungen über Continuierliche Gruppen, English translation by D.H. Delphenich, §8, link from Neo-classical Physics.