भिन्न-भिन्नता (डिफरिन्टिग्रल): Difference between revisions
No edit summary |
No edit summary |
||
(6 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
{{redirect-distinguish|भिन्नात्मक एकीकरण|ऑटोरेग्रेसिव फ्रैक्शनली इंटीग्रेटेड मूविंग एवरेज}} | {{redirect-distinguish|भिन्नात्मक एकीकरण|ऑटोरेग्रेसिव फ्रैक्शनली इंटीग्रेटेड मूविंग एवरेज}}[[ भिन्नात्मक कलन |भिन्नात्मक गणना]] में, [[गणितीय विश्लेषण]] का क्षेत्र, '''डिफरिइंटीग्रल''' (कभी-कभी डेरिविग्रल भी कहा जाता है) संयुक्त [[ विभेदक संचालिका |अवकल संचालिका]] /[[ अभिन्न ऑपरेटर | अभिन्न ऑपरेटर]] है। [[फ़ंक्शन (गणित)|फलन (गणित)]] पर प्रयुक्त था, यहाँ f का q-डिफ़रइंटीग्रल द्वारा दर्शाया गया है | ||
[[ भिन्नात्मक कलन |भिन्नात्मक गणना]] में, [[गणितीय विश्लेषण]] का क्षेत्र, '''डिफरिइंटीग्रल''' (कभी-कभी डेरिविग्रल भी कहा जाता है) संयुक्त [[ विभेदक संचालिका | | |||
:<math>\mathbb{D}^q f</math> | :<math>\mathbb{D}^q f</math> | ||
भिन्नात्मक व्युत्पन्न है (यदि q > 0) या भिन्नात्मक समाकलन (यदि q < 0) है। यदि q = 0 है, तो किसी फलन का q-वां | भिन्नात्मक व्युत्पन्न है (यदि q > 0) या भिन्नात्मक समाकलन (यदि q < 0) है। यदि q = 0 है, तो किसी फलन का q-वां अवकल फलन ही होता है। भिन्नात्मक एकीकरण और विभेदीकरण के संदर्भ में अवकल एकीकरण की कई वैध परिभाषाएँ हैं। | ||
==मानक परिभाषाएँ== | ==मानक परिभाषाएँ == | ||
चार सर्वाधिक सामान्य रूप हैं: | चार सर्वाधिक सामान्य रूप हैं: | ||
Line 19: | Line 16: | ||
\end{align}</math> | \end{align}</math> | ||
*[[वेइल डिफ़रइंटीग्रल]] यह औपचारिक रूप से रीमैन-लिउविल डिफ्रिइंटीग्रल के समान है, किन्तु अवधि में अभिन्न शून्य के साथ, [[आवधिक कार्य|पीरिऑडिक फलन]] पर प्रयुक्त होता है। | *[[वेइल डिफ़रइंटीग्रल]] यह औपचारिक रूप से रीमैन-लिउविल डिफ्रिइंटीग्रल के समान है, किन्तु अवधि में अभिन्न शून्य के साथ, [[आवधिक कार्य|पीरिऑडिक फलन]] पर प्रयुक्त होता है। | ||
*[[कैपुटो डिफ़रइंटीग्रल]] रीमैन-लिउविल डिफ़रिन्टिग्रल के विपरीत, कैपुटो स्थिरांक <math>f(t)</math> का व्युत्पन्न शून्य के बराबर है | *[[कैपुटो डिफ़रइंटीग्रल]] रीमैन-लिउविल डिफ़रिन्टिग्रल के विपरीत, कैपुटो स्थिरांक <math>f(t)</math> का व्युत्पन्न शून्य के बराबर है . इसके अतिरिक्त, लाप्लास ट्रांसफॉर्म का रूप बिंदु <math>a</math> पर परिमित, पूर्णांक-क्रम डेरिवेटिव की गणना करके प्रारंभिक स्थितियों का सरलता से मूल्यांकन करने की अनुमति देता है . <math display="block">\begin{align} | ||
{}^{C}_a\mathbb{D}^q_tf(t) & = \frac{d^qf(t)}{d(t-a)^q} \\ | {}^{C}_a\mathbb{D}^q_tf(t) & = \frac{d^qf(t)}{d(t-a)^q} \\ | ||
& =\frac{1}{\Gamma(n-q)} \int_{a}^t \frac{f^{(n)}(\tau)}{(t-\tau)^{q-n+1}}d\tau | & =\frac{1}{\Gamma(n-q)} \int_{a}^t \frac{f^{(n)}(\tau)}{(t-\tau)^{q-n+1}}d\tau | ||
\end{align}</math> | \end{align}</math> | ||
==परिवर्तन के माध्यम से परिभाषाएँ== | ==परिवर्तन के माध्यम से परिभाषाएँ== | ||
Line 38: | Line 33: | ||
जो सामान्यीकरण करता है | जो सामान्यीकरण करता है | ||
<math display="block">\mathbb{D}^qf(t) = \mathcal{F}^{-1}\left\{(i \omega)^q\mathcal{F}[f(t)]\right\}.</math> | <math display="block">\mathbb{D}^qf(t) = \mathcal{F}^{-1}\left\{(i \omega)^q\mathcal{F}[f(t)]\right\}.</math> | ||
[[द्विपक्षीय लाप्लास परिवर्तन]] के अंतर्गत, यहाँ <math> \mathcal{L}</math> द्वारा दर्शाया गया है | [[द्विपक्षीय लाप्लास परिवर्तन]] के अंतर्गत, यहाँ <math> \mathcal{L}</math> द्वारा दर्शाया गया है और <math display="inline"> \mathcal{L}[f(t)] =\int_{-\infty}^\infty e^{-st} f(t)\, dt</math> के रूप में परिभाषित किया गया है विभेदीकरण गुणन में बदल जाता है | ||
<math display="block">\mathcal{L}\left[\frac{df(t)}{dt}\right] = s\mathcal{L}[f(t)].</math> | <math display="block">\mathcal{L}\left[\frac{df(t)}{dt}\right] = s\mathcal{L}[f(t)].</math> | ||
Line 51: | Line 46: | ||
:<math>\mathbb{D}^q(\sin(t))=\sin \left( t+\frac{q\pi}{2} \right) </math> | :<math>\mathbb{D}^q(\sin(t))=\sin \left( t+\frac{q\pi}{2} \right) </math> | ||
:<math>\mathbb{D}^q(e^{at})=a^q e^{at}</math><ref>See {{cite book |page=16 |url=https://books.google.com/books?id=mPXzp1f7ycMC&pg=PA11 |first=Richard |last=Herrmann|title=Fractional Calculus: An Introduction for Physicists | year=2011 |isbn=9789814551076 }}</ref> | :<math>\mathbb{D}^q(e^{at})=a^q e^{at}</math><ref>See {{cite book |page=16 |url=https://books.google.com/books?id=mPXzp1f7ycMC&pg=PA11 |first=Richard |last=Herrmann|title=Fractional Calculus: An Introduction for Physicists | year=2011 |isbn=9789814551076 }}</ref> | ||
==मूल औपचारिक गुण== | |||
*रैखिक ऑपरेटर नियम <math display="block">\mathbb{D}^q(f+g) = \mathbb{D}^q(f)+\mathbb{D}^q(g)</math><math display="block">\mathbb{D}^q(af) = a\mathbb{D}^q(f)</math> | |||
*शून्य नियम <math display="block">\mathbb{D}^0 f = f </math> | *शून्य नियम <math display="block">\mathbb{D}^0 f = f </math> | ||
*प्रॉडक्ट नियम <math display="block">\mathbb{D}^q_t(fg) = \sum_{j=0}^{\infty} {q \choose j}\mathbb{D}^j_t(f)\mathbb{D}^{q-j}_t(g)</math> | *प्रॉडक्ट नियम <math display="block">\mathbb{D}^q_t(fg) = \sum_{j=0}^{\infty} {q \choose j}\mathbb{D}^j_t(f)\mathbb{D}^{q-j}_t(g)</math> | ||
Line 67: | Line 60: | ||
* [[फ्रैक्शनल-ऑर्डर इंटीग्रेटर]] | * [[फ्रैक्शनल-ऑर्डर इंटीग्रेटर]] | ||
==संदर्भ | ==संदर्भ == | ||
{{Reflist}} | {{Reflist}} | ||
{{refbegin}} | {{refbegin}} | ||
Line 79: | Line 72: | ||
*{{cite book |first1=Bruce J. |last1=West |first2=Mauro |last2=Bologna |first3=Paolo |last3=Grigolini |title=Physics of Fractal Operators |publisher=Springer Verlag |year=2003 |isbn=0-387-95554-2 |url=https://books.google.com/books?id=EgyTpQZOga0C&pg=PR7}} | *{{cite book |first1=Bruce J. |last1=West |first2=Mauro |last2=Bologna |first3=Paolo |last3=Grigolini |title=Physics of Fractal Operators |publisher=Springer Verlag |year=2003 |isbn=0-387-95554-2 |url=https://books.google.com/books?id=EgyTpQZOga0C&pg=PR7}} | ||
{{refend}} | {{refend}} | ||
==बाहरी संबंध == | |||
==बाहरी संबंध | |||
* [http://mathworld.wolfram.com/FractionalCalculus.html MathWorld – Fractional calculus] | * [http://mathworld.wolfram.com/FractionalCalculus.html MathWorld – Fractional calculus] | ||
*[http://mathworld.wolfram.com/FractionalDerivative.html MathWorld – Fractional derivative] | *[http://mathworld.wolfram.com/FractionalDerivative.html MathWorld – Fractional derivative] | ||
Line 93: | Line 84: | ||
*{{cite journal |first=I. |last=Podlubny |title=Geometric and physical interpretation of fractional integration and fractional differentiation |journal=Fractional Calculus and Applied Analysis |volume=5 |issue=4 |pages=367–386 |year=2002 |url=http://www.tuke.sk/podlubny/pspdf/pifcaa_r.pdf |arxiv=math.CA/0110241|bibcode=2001math.....10241P }} | *{{cite journal |first=I. |last=Podlubny |title=Geometric and physical interpretation of fractional integration and fractional differentiation |journal=Fractional Calculus and Applied Analysis |volume=5 |issue=4 |pages=367–386 |year=2002 |url=http://www.tuke.sk/podlubny/pspdf/pifcaa_r.pdf |arxiv=math.CA/0110241|bibcode=2001math.....10241P }} | ||
*{{cite journal |first=P. |last=Zavada |title=Operator of fractional derivative in the complex plane |journal= Communications in Mathematical Physics|volume=192 |issue= 2|pages=261–285 |year=1998 |doi=10.1007/s002200050299 |arxiv=funct-an/9608002|bibcode=1998CMaPh.192..261Z |s2cid=1201395 }} | *{{cite journal |first=P. |last=Zavada |title=Operator of fractional derivative in the complex plane |journal= Communications in Mathematical Physics|volume=192 |issue= 2|pages=261–285 |year=1998 |doi=10.1007/s002200050299 |arxiv=funct-an/9608002|bibcode=1998CMaPh.192..261Z |s2cid=1201395 }} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:Created On 21/07/2023]] | [[Category:Created On 21/07/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Missing redirects]] | |||
[[Category:Pages using sidebar with the child parameter]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:कैलकुलस में रैखिक ऑपरेटर]] | |||
[[Category:भिन्नात्मक कलन]] | |||
[[Category:व्युत्पन्न का सामान्यीकरण]] |
Latest revision as of 15:26, 8 September 2023
भिन्नात्मक गणना में, गणितीय विश्लेषण का क्षेत्र, डिफरिइंटीग्रल (कभी-कभी डेरिविग्रल भी कहा जाता है) संयुक्त अवकल संचालिका / अभिन्न ऑपरेटर है। फलन (गणित) पर प्रयुक्त था, यहाँ f का q-डिफ़रइंटीग्रल द्वारा दर्शाया गया है
भिन्नात्मक व्युत्पन्न है (यदि q > 0) या भिन्नात्मक समाकलन (यदि q < 0) है। यदि q = 0 है, तो किसी फलन का q-वां अवकल फलन ही होता है। भिन्नात्मक एकीकरण और विभेदीकरण के संदर्भ में अवकल एकीकरण की कई वैध परिभाषाएँ हैं।
मानक परिभाषाएँ
चार सर्वाधिक सामान्य रूप हैं:
- रीमैन-लिउविल डिफ्रिइंटीग्रल यह उपयोग करने में सबसे सरल है, और परिणामस्वरूप इसका उपयोग सबसे अधिक बार किया जाता है। यह अनैतिक रूप से क्रम में निरंतर एकीकरण के लिए कॉची सूत्र का सामान्यीकरण है। यहाँ,
- ग्रुनवाल्ड-लेटनिकोव भिन्न अभिन्न ग्रुनवाल्ड-लेटनिकोव डिफ़रिन्टिग्रल व्युत्पन्न की परिभाषा का प्रत्यक्ष सामान्यीकरण है। रीमैन-लिउविल डिफ्रिइंटीग्रल की तुलना में इसका उपयोग करना अधिक कठिन है, किन्तु कभी-कभी इसका उपयोग उन समस्याओं को हल करने के लिए किया जा सकता है जो रीमैन-लिउविल नहीं कर सकता है।
- वेइल डिफ़रइंटीग्रल यह औपचारिक रूप से रीमैन-लिउविल डिफ्रिइंटीग्रल के समान है, किन्तु अवधि में अभिन्न शून्य के साथ, पीरिऑडिक फलन पर प्रयुक्त होता है।
- कैपुटो डिफ़रइंटीग्रल रीमैन-लिउविल डिफ़रिन्टिग्रल के विपरीत, कैपुटो स्थिरांक का व्युत्पन्न शून्य के बराबर है . इसके अतिरिक्त, लाप्लास ट्रांसफॉर्म का रूप बिंदु पर परिमित, पूर्णांक-क्रम डेरिवेटिव की गणना करके प्रारंभिक स्थितियों का सरलता से मूल्यांकन करने की अनुमति देता है .
परिवर्तन के माध्यम से परिभाषाएँ
लिउविले, फूरियर, और ग्रुनवाल्ड और लेटनिकोव द्वारा दी गई भिन्नात्मक व्युत्पन्न की परिभाषाएँ मेल खाती हैं।[1] उन्हें लाप्लास, फूरियर रूपांतरण या न्यूटन श्रृंखला विस्तार के माध्यम से दर्शाया जा सकता है।
निरंतर फूरियर रूपांतरण को याद करें, जिसे यहां द्वारा दर्शाया गया है :
मूल औपचारिक गुण
- रैखिक ऑपरेटर नियम
- शून्य नियम
- प्रॉडक्ट नियम
सामान्यतः, रचना (या अर्धसमूह) नियम अभीष्ट प्रोपर्टी है, किन्तु गणितीय रूप से इसे प्राप्त करना कठिन है और इसलिए प्रत्येक प्रस्तावित ऑपरेटर द्वारा 'सदैव पुर्णतः संतुष्ट नहीं' होता है;[3] यह निर्णय लेने की प्रक्रिया का भाग है कि किसे चुनना है:
- (आदर्श रूप से)
- (अभ्यास में)
यह भी देखें
संदर्भ
- ↑ Herrmann, Richard (2011). Fractional Calculus: An Introduction for Physicists. ISBN 9789814551076.
- ↑ See Herrmann, Richard (2011). Fractional Calculus: An Introduction for Physicists. p. 16. ISBN 9789814551076.
- ↑ See Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. (2006). "2. Fractional Integrals and Fractional Derivatives §2.1 Property 2.4". Theory and Applications of Fractional Differential Equations. Elsevier. p. 75. ISBN 9780444518323.
- Miller, Kenneth S. (1993). Ross, Bertram (ed.). An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley. ISBN 0-471-58884-9.
- Oldham, Keith B.; Spanier, Jerome (1974). The Fractional Calculus; Theory and Applications of Differentiation and Integration to Arbitrary Order. Mathematics in Science and Engineering. Vol. V. Academic Press. ISBN 0-12-525550-0.
- Podlubny, Igor (1998). Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering. Vol. 198. Academic Press. ISBN 0-12-558840-2.
- Carpinteri, A.; Mainardi, F., eds. (1998). Fractals and Fractional Calculus in Continuum Mechanics. Springer-Verlag. ISBN 3-211-82913-X.
- Mainardi, F. (2010). Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press. ISBN 978-1-84816-329-4. Archived from the original on 2012-05-19.
- Tarasov, V.E. (2010). Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Nonlinear Physical Science. Springer. ISBN 978-3-642-14003-7.
- Uchaikin, V.V. (2012). Fractional Derivatives for Physicists and Engineers. Nonlinear Physical Science. Springer. Bibcode:2013fdpe.book.....U. ISBN 978-3-642-33910-3.
- West, Bruce J.; Bologna, Mauro; Grigolini, Paolo (2003). Physics of Fractal Operators. Springer Verlag. ISBN 0-387-95554-2.
बाहरी संबंध
- MathWorld – Fractional calculus
- MathWorld – Fractional derivative
- Specialized journal: Fractional Calculus and Applied Analysis (1998-2014) and Fractional Calculus and Applied Analysis (from 2015)
- Specialized journal: Fractional Differential Equations (FDE)
- Specialized journal: Communications in Fractional Calculus (ISSN 2218-3892)
- Specialized journal: Journal of Fractional Calculus and Applications (JFCA)
- Lorenzo, Carl F.; Hartley, Tom T. (2002). "Initialized Fractional Calculus". Information Technology. Tech Briefs Media Group.
- https://web.archive.org/web/20040502170831/http://unr.edu/homepage/mcubed/FRG.html
- Igor Podlubny's collection of related books, articles, links, software, etc.
- Podlubny, I. (2002). "Geometric and physical interpretation of fractional integration and fractional differentiation" (PDF). Fractional Calculus and Applied Analysis. 5 (4): 367–386. arXiv:math.CA/0110241. Bibcode:2001math.....10241P.
- Zavada, P. (1998). "Operator of fractional derivative in the complex plane". Communications in Mathematical Physics. 192 (2): 261–285. arXiv:funct-an/9608002. Bibcode:1998CMaPh.192..261Z. doi:10.1007/s002200050299. S2CID 1201395.