सामान्य निर्देशांक: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 70: Line 70:
*सिंज का विश्व कार्य
*सिंज का विश्व कार्य


श्रेणी:रिमानियन ज्यामिति श्रेणी:विभेदक ज्यामिति में समन्वय प्रणालियाँ
 


[[Category:Created On 21/07/2023]]
[[Category:Created On 21/07/2023]]

Latest revision as of 13:48, 8 September 2023

विभेदक ज्यामिति में, बिंदु p पर सामान्य निर्देशांक मरोड़ टेंसर एफ़िन संपर्क से सुसज्जित भिन्न मैनिफोल्ड में स्थानीय समन्वय प्रणाली है जो p के निकटतम (गणित) में स्थानीय समन्वय प्रणाली है जो p पर स्पर्शरेखा स्थान पर घातीय मानचित्र (रिमैनियन) को क्रियान्वित करके प्राप्त की जाती है। (ज्यामिति) तथा सामान्य समन्वय प्रणाली में, संपर्क के क्रिस्टोफ़ेल प्रतीक बिंदु p पर विलुप्त हो जाते हैं, इस प्रकार अधिकांशतः स्थानीय गणना सरल हो जाती है। रीमैनियन मैनिफोल्ड के लेवी-सिविटा संपर्क से जुड़े सामान्य निर्देशांक में, को E अतिरिक्त रूप से व्यवस्था कर सकता है जैसे कि मीट्रिक टेंसर बिंदु p पर क्रोनकर डेल्टा है, और p पर मीट्रिक का पहला आंशिक व्युत्पन्न विलुप्त होना होता है। '

विभेदक ज्यामिति का मूल परिणाम बताता है कि बिंदु पर सामान्य निर्देशांक सदैव सममित एफ़िन संपर्क के साथ अनेक गुना पर उपस्तिथ होते हैं। ऐसे निर्देशांक में सहसंयोजक व्युत्पन्न आंशिक व्युत्पन्न (केवल p पर) तक कम हो जाता है, और p के माध्यम से जियोडेसिक्स t (एफ़िन मापदंड ) के स्थानीय रूप से रैखिक कार्य हैं। इस विचार को सापेक्षता के सामान्य सिद्धांत में अल्बर्ट आइंस्टीन द्वारा मौलिक विधियों से क्रियान्वित किया गया था अर्थात तुल्यता सिद्धांत जड़त्वीय फ्रेम के माध्यम से सामान्य निर्देशांक का उपयोग करता है। रीमैनियन या छद्म-रिमानियन मैनिफोल्ड के लेवी-सिविटा संयोजन के लिए सामान्य निर्देशांक सदैव उपस्तिथ होते हैं। इसके विपरीत, सामान्यतः फिन्सलर मैनिफोल्ड के लिए सामान्य निर्देशांक को इस तरह से परिभाषित करने की कोE भी विधि नहीं है जो कि ये दर्शा सके कि घातीय मानचित्र दो बार भिन्न हो सकता है । (बुसेमन 1955).

जियोडेसिक सामान्य निर्देशांक

जियोडेसिक सामान्य निर्देशांक घातीय मानचित्र (रिमानियन ज्यामिति) के माध्यम से परिभाषित एफ़िन संपर्क के साथ मैनिफोल्ड पर स्थानीय निर्देशांक हैं।

और समरूपता

निश्चित आधार बिंदु पर स्पर्शरेखा स्थान के सदिश स्थान के किसी भी आधार द्वारा दिया गया है. यदि रीमैनियन मीट्रिक की अतिरिक्त संरचना E लगा दी जाती है, तो ऑर्थोनॉर्मल आधार के अतिरिक्त E द्वारा परिभाषित आधार की आवश्यकता हो सकती है, और परिणामी समन्वय प्रणाली को 'रीमैनियन सामान्य समन्वय प्रणाली' के रूप में जाना जाता है।

M में बिंदु p के सामान्य निकटतम पर सामान्य निर्देशांक उपस्तिथ होते हैं। 'सामान्य निकटतम ' U, M का विवृत उपसमुच्चय है जैसे कि स्पर्शरेखा स्थान TpM में मूल बिंदु का उचित निकटतम V है।, और expp U के बीच भिन्नता के रूप में कार्य करता है। और V, M में p के सामान्य निकटतम U पर, चार्ट इस प्रकार दिया गया है:

समरूपता E, और इसलिए चार्ट, किसी भी तरह से अद्वितीय नहीं है। एक 'उत्तल सामान्य निकटतम ' U, U में प्रत्येक p का सामान्य निकटतम है। इस प्रकार के विवृत निकटतम का अस्तित्व (वे टोपोलॉजिकल आधार बनाते हैं) जे.एच.सी. द्वारा स्थापित किया गया है। तथा सममित एफ़िन संपर्क के लिए व्हाइटहेड उपयोग किया जाता है ।

गुण

सामान्य निर्देशांक के गुण अधिकांशतः गणनाओं को सरल बनाते हैं। निम्नलिखित में, मान लीजिए , में बिंदु पर केन्द्रित सामान्य निकटतम है और सामान्य निर्देशांक चालू हैं .

  • मान लीजिये कि से कुछ स्थानीय निर्देशांक में घटकों के साथ से कुछ सदिश बनें हुए है, और के साथ जियोडेसिक बनें है और . फिर सामान्य निर्देशांक में, जब तक यह में अंदर है. इस प्रकार सामान्य निर्देशांक में रेडियल पथ बिल्कुल के माध्यम से जियोडेसिक्स होते हैं .
  • बिंदु के निर्देशांक हैं
  • रीमैनियन सामान्य निर्देशांक में एक बिंदु p पर रीमैनियन मीट्रिक के घटकों को , अर्थात, में सरलीकृत किया जाता है।
  • क्रिस्टोफ़ेल प्रतीक अर्थात।, विलुप्त हो जाते हैं, रीमैनियन स्तिथियों में, का पहला आंशिक व्युत्पन्न होता है अर्थात।, भी ऐसा ही होता है, .

स्पष्ट सूत्र

स्थानीय रूप से ऑर्थोनॉर्मल समन्वय प्रणाली से सुसज्जित किसी भी बिंदु के निकटतम में जिसमें और पर रीमैन टेंसर पर मूल्य लेता है हम निर्देशांक को समायोजित कर सकते हैं ताकि मीट्रिक टेंसर p से दूरके घटक बन जाते हैं

 बनना                                      

संबंधित लेवी-सिविटा कनेक्शन क्रिस्टोफेल प्रतीक हैं

इसी प्रकार हम स्थानीय कोफ्रेम का निर्माण कर सकते हैं

और स्पिन-संपर्क गुणांक मान लेते हैं


ध्रुवीय निर्देशांक

रीमैनियन मैनिफोल्ड पर, p पर सामान्य समन्वय प्रणाली गोलाकार निर्देशांक की प्रणाली को प्रारंभिक सुविधा प्रदान करती है, जिसको 'ध्रुवीय निर्देशांक' के रूप में जाना जाता है। ये M पर निर्देशांक हैं जो U क्लिडियन स्पेस TpM पर मानक गोलाकार समन्वय प्रणाली प्रारंभ करके प्राप्त किए गए हैं. अर्थात TpM पर मानक गोलाकार समन्वय प्रणाली (r, φ) का परिचय कराता है जहां r ≥ 0 रेडियल मापदंड है और φ = (φ)1,...,φn−1) |(n−1)- का मानकीकरण है। तथा जहाँ p पर घातीय मानचित्र के व्युत्क्रम के साथ (r,φ) की संरचना ध्रुवीय समन्वय प्रणाली है।

ध्रुवीय निर्देशांक रीमैनियन ज्यामिति में अनेक मूलभूत उपकरण प्रदान करते हैं। जिसमे से रेडियल समन्वय सबसे महत्वपूर्ण है:क्योंकि यह ज्यामितीय रूप से यह निकटवर्ती बिंदुओं के p से जियोडेसिक दूरी का प्रतिनिधित्व करता है। गॉस की लेम्मा (रीमैनियन ज्यामिति) होती है | गॉस की लेम्मा का प्रमाणित है कि r का ग्रेडियेंट केवल आंशिक व्युत्पन्न है. वह यह है,

किसी भी सुचारु कार्य के लिए। परिणामस्वरूप, ध्रुवीय निर्देशांक में मीट्रिक ब्लॉक विकर्ण रूप ग्रहण करता है


संदर्भ

  • Busemann, Herbert (1955), "On normal coordinates in Finsler spaces", Mathematische Annalen, 129: 417–423, doi:10.1007/BF01362381, ISSN 0025-5831, MR 0071075.
  • Kobayashi, Shoshichi; Nomizu, Katsumi (1996), Foundations of Differential Geometry, vol. 1 (New ed.), Wiley Interscience, ISBN 0-471-15733-3.
  • Chern, S. S.; Chen, W. H.; Lam, K. S.; Lectures on Differential Geometry, World Scientific, 2000


यह भी देखें