सामान्यीकृत न्यूनतम वर्ग: Difference between revisions
mNo edit summary |
No edit summary |
||
(9 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
आंकड़ों में, | आंकड़ों में, सामान्यीकृत न्यूनतम वर्ग (जीएलएस) एक विधि है जिसका उपयोग रैखिक प्रतिगमन में अज्ञात मापदंडों का अनुमान लगाने के लिए किया जाता है जब प्रतिगमन प्रतिरूपण में अवशेषों के बीच एक निश्चित डिग्री का सहसंबंध होता है। ऐसे स्तिथियों में, सामान्य न्यूनतम वर्ग और भारित न्यूनतम वर्ग को अधिक सांख्यिकीय रूप से कुशल होने और भ्रामक निष्कर्षों को रोकने की आवश्यकता हो सकती है। जीएलएस का वर्णन पहली बार 1935 में [[अलेक्जेंडर ऐटकेन]] द्वारा किया गया था।<ref>{{cite journal | last1 = Aitken | first1 = A. C. | year = 1935 | title = न्यूनतम वर्गों और प्रेक्षणों के रैखिक संयोजनों पर| journal = Proceedings of the Royal Society of Edinburgh | volume = 55 | pages = 42–48 | doi = 10.1017/s0370164600014346 }}</ref> | ||
'''<big><br />विधि रूपरेखा</big>''' | '''<big><br />विधि की रूपरेखा</big>''' | ||
मानक रैखिक प्रतिगमन प्रतिरूपण में कोई | मानक रैखिक प्रतिगमन प्रतिरूपण में कोई <math>\{y_i,x_{ij}\}_{i=1, \dots, n,j=2, \dots, k}</math> डेटा का n सांख्यिकीय इकाइयों पर अवलोकन करता है। प्रतिक्रिया मान एक सदिश <math>\mathbf{y} = \left( y_{1}, \dots, y_{n} \right)^{\mathsf{T}}</math>में रखे गए हैं और पूर्वानुमानित मानों को [[डिज़ाइन मैट्रिक्स|डिज़ाइन आव्यूह]] <math>\mathbf{X} = \left( \mathbf{x}_{1}^{\mathsf{T}}, \dots, \mathbf{x}_{n}^{\mathsf{T}} \right)^{\mathsf{T}}</math>में रखा गया है, जहाँ <math>\mathbf{x}_{i} = \left( 1, x_{i2}, \dots, x_{ik} \right)</math> ith इकाई k के लिए पूर्वानुमानित चर का एक सदिश है। प्रतिरूपण [[सशर्त माध्य|सप्रतिबन्ध माध्य]] <math>\mathbf{y}</math> को दिए गए <math>\mathbf{X}</math> का एक रैखिक कार्य <math>\mathbf{X}</math> होने के लिए बाध्य करता है और सशर्त विचरण मानता है की दिए गए त्रुटि पद <math>\mathbf{X}</math> एक ज्ञात गैर-एकवचन सहप्रसरण आव्यूह <math>\mathbf{\Omega}</math> है। इसे सामान्य तौर पर ऐसे लिखा जाता है | ||
: <math> | : <math> | ||
\mathbf{y} = \mathbf{X} \mathbf{\beta} + \mathbf{\varepsilon}, \qquad \operatorname{E}[\varepsilon\mid\mathbf{X}]=0,\ \operatorname{Cov}[\varepsilon\mid\mathbf{X}]= \mathbf{\Omega}. | \mathbf{y} = \mathbf{X} \mathbf{\beta} + \mathbf{\varepsilon}, \qquad \operatorname{E}[\varepsilon\mid\mathbf{X}]=0,\ \operatorname{Cov}[\varepsilon\mid\mathbf{X}]= \mathbf{\Omega}. | ||
Line 9: | Line 9: | ||
यहाँ <math>\beta \in \mathbb{R}^k</math> अज्ञात स्थिरांकों का एक सदिश है (जिसे "प्रतिगमन गुणांक" के रूप में जाना जाता है) जिसका अनुमान डेटा से लगाया जाना चाहिए। | यहाँ <math>\beta \in \mathbb{R}^k</math> अज्ञात स्थिरांकों का एक सदिश है (जिसे "प्रतिगमन गुणांक" के रूप में जाना जाता है) जिसका अनुमान डेटा से लगाया जाना चाहिए। | ||
कल्पना करना <math>\mathbf{ | कल्पना करना <math>\mathbf{\beta}</math> के लिए एक संभावित अनुमान <math>\mathbf{b}</math> है। फिर <math>\mathbf{b}</math> के लिए अवशेष सदिश <math>\mathbf{y}- \mathbf{X} \mathbf{b}</math> होगा। अवशिष्ट सदिश की वर्गाकार महालनोबिस दूरी को कम करके सामान्यीकृत न्यूनतम वर्ग विधि <math>\mathbf{\beta}</math> को इस प्रकार अनुमान करता है : | ||
: <math> | : <math> | ||
\begin{align} | \begin{align} | ||
Line 17: | Line 17: | ||
</math> | </math> | ||
जहां अंतिम दो पद अदिश | जहां अंतिम दो पद अदिश मान का मूल्यांकन करते हैं, जिसके परिणामस्वरूप | ||
: <math> | : <math> | ||
\mathbf{\hat{\beta}} = \underset{b}\operatorname{arg min}\,\mathbf{y}^{\mathsf{T}}\,\mathbf{\Omega}^{-1}\mathbf{y} + \mathbf{b}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{\Omega}^{-1} \mathbf{X} \mathbf{b} -2 \mathbf{b}^{\mathsf{T}} \mathbf{X} ^{\mathsf{T}}\mathbf{\Omega}^{-1}\mathbf{y}\, . | \mathbf{\hat{\beta}} = \underset{b}\operatorname{arg min}\,\mathbf{y}^{\mathsf{T}}\,\mathbf{\Omega}^{-1}\mathbf{y} + \mathbf{b}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{\Omega}^{-1} \mathbf{X} \mathbf{b} -2 \mathbf{b}^{\mathsf{T}} \mathbf{X} ^{\mathsf{T}}\mathbf{\Omega}^{-1}\mathbf{y}\, . | ||
</math> | </math> | ||
यह उद्देश्य | यह उद्देश्य <math>\mathbf{b}</math> के [[द्विघात रूप]] में है . | ||
<math>\mathbf{b}</math> के संबंध में इस द्विघात रूप का ग्रेडिएंट लेना और इसे शून्य के समतुल्य करना (जब <math>\mathbf{b}=\hat{\beta}</math>) होता है। | |||
: <math> | : <math> | ||
2 \mathbf{X}^{\mathsf{T}} \mathbf{\Omega}^{-1} \mathbf{X} \hat{\beta} -2 \mathbf{X} ^{\mathsf{T}}\mathbf{\Omega}^{-1}\mathbf{y} = 0 | 2 \mathbf{X}^{\mathsf{T}} \mathbf{\Omega}^{-1} \mathbf{X} \hat{\beta} -2 \mathbf{X} ^{\mathsf{T}}\mathbf{\Omega}^{-1}\mathbf{y} = 0 | ||
</math> | </math> | ||
इसलिए, स्पष्ट सूत्र के आधार पर न्यूनतम उद्देश्य | इसलिए, स्पष्ट सूत्र के आधार पर न्यूनतम उद्देश्य फलन की गणना की जा सकती है: | ||
: <math> | : <math> | ||
\mathbf{\hat{\beta}} = \left( \mathbf{X}^{\mathsf{T}} \mathbf{\Omega}^{-1} \mathbf{X} \right)^{-1} \mathbf{X}^{\mathsf{T}}\mathbf{\Omega}^{-1}\mathbf{y}. | \mathbf{\hat{\beta}} = \left( \mathbf{X}^{\mathsf{T}} \mathbf{\Omega}^{-1} \mathbf{X} \right)^{-1} \mathbf{X}^{\mathsf{T}}\mathbf{\Omega}^{-1}\mathbf{y}. | ||
</math> | </math> | ||
मात्रा <math>\mathbf{\Omega}^{-1}</math> [[परिशुद्धता मैट्रिक्स]] (या [[वजन मैट्रिक्स]]) के रूप में जाना जाता है, जो विकर्ण भार | मात्रा <math>\mathbf{\Omega}^{-1}</math> को [[परिशुद्धता मैट्रिक्स|परिशुद्धता आव्यूह]] (या [[वजन मैट्रिक्स|वजन आव्यूह]]) के रूप में जाना जाता है, जो विकर्ण भार आव्यूह का सामान्यीकरण है। | ||
=== | === विशेषतायें === | ||
जीएलएस | जीएलएस <math>\operatorname{E}[\hat\beta\mid\mathbf{X}] = \beta</math> और <math>\operatorname{Cov}[\hat{\beta}\mid\mathbf{X}] = (\mathbf{X}^{\mathsf{T}}\Omega^{-1}\mathbf{X})^{-1}</math> के साथ एक [[सुसंगत अनुमानक|निष्पक्ष]], [[दक्षता (सांख्यिकी)|अविरोधी]], दक्षता युक्त और [[स्पर्शोन्मुख वितरण|अनन्तस्पर्शीय वितरण]] अनुमानक है। जीएलएस डेटा के रैखिक रूप से रूपांतरित संस्करण में सामान्य न्यूनतम वर्ग लागू करने के समतुल्य है। उदाहरण के लिए, गुणक <math>\mathbf{\Omega} = \mathbf{C} \mathbf{C}^{\mathsf{T}}</math> देखने के लिए चोल्स्की वियोजन का उपयोग करना। यदि कोई समीकरण <math>\mathbf{y} = \mathbf{X} \mathbf{\beta} + \mathbf{\varepsilon}</math> के दोनों पक्षों को <math>\mathbf{C}^{-1}</math> द्वारा पूर्व-गुणा करता है, तो एक एक समतुल्य रैखिक प्रतिरूपण <math>\mathbf{y}^{*} = \mathbf{X}^{*} \mathbf{\beta} + \mathbf{\varepsilon}^{*}</math>प्राप्त होता है जहाँ <math>\mathbf{y}^{*} = \mathbf{C}^{-1} \mathbf{y}</math>, <math>\mathbf{X}^{*} = \mathbf{C}^{-1} \mathbf{X}</math>, और <math>\mathbf{\varepsilon}^{*} = \mathbf{C}^{-1} \mathbf{\varepsilon}</math> होता है। इस प्रतिरूपण में <math>\operatorname{Var}[\varepsilon^{*}\mid\mathbf{X}]= \mathbf{C}^{-1} \mathbf{\Omega} \left(\mathbf{C}^{-1} \right)^{\mathsf{T}} = \mathbf{I}</math>, जहाँ <math>\mathbf{I}</math> समरूपता आव्यूह है। इस प्रकार कोई भी रूपांतरित डेटा में सामान्य न्यूनतम वर्ग (ओएलएस) लागू करके <math>\mathbf{\beta}</math> का कुशलतापूर्वक अनुमान लगा सकता है जिसे न्यूनतम करने की आवश्यकता होती है: | ||
: <math> | : <math> | ||
\left(\mathbf{y}^{*} - \mathbf{X}^{*} \mathbf{\beta} \right)^{\mathsf{T}} (\mathbf{y}^{*} - \mathbf{X}^{*} \mathbf{\beta}) = (\mathbf{y}- \mathbf{X} \mathbf{b})^{\mathsf{T}}\,\mathbf{\Omega}^{-1}(\mathbf{y}- \mathbf{X} \mathbf{b}). | \left(\mathbf{y}^{*} - \mathbf{X}^{*} \mathbf{\beta} \right)^{\mathsf{T}} (\mathbf{y}^{*} - \mathbf{X}^{*} \mathbf{\beta}) = (\mathbf{y}- \mathbf{X} \mathbf{b})^{\mathsf{T}}\,\mathbf{\Omega}^{-1}(\mathbf{y}- \mathbf{X} \mathbf{b}). | ||
</math> | </math> | ||
यह त्रुटियों के मापदंड को मानकीकृत करने और उन्हें "डी-सहसंबद्ध" करने का प्रभाव है। जब ओएलएस को समविसारिता त्रुटियों वाले डेटा पर लागू किया जाता है, तो गॉस-मार्कोव प्रमेय लागू होता है, और इसलिए जीएलएस अनुमान β के लिए सर्वोत्तम रैखिक निष्पक्षीय अनुमानक है। | |||
== भारित न्यूनतम वर्ग == | == भारित न्यूनतम वर्ग == | ||
जब Ω की सभी बाहरी-विकर्ण प्रविष्टियां 0 होती हैं तब जीएलएस की एक विशेष स्थिति उत्पन्न होती है जिसे भारित न्यूनतम वर्ग (डब्ल्यूएलएस) कहा जाता है। यह स्थिति तब उत्पन्न होती है अवलोकन किये गए मानों की भिन्नताएं असमान होती हैं या जब [[विषमलैंगिकता|समविसारिता]] उपलब्ध है लेकिन अवलोकन किये गए भिन्नताओं के बीच कोई सहसंबंध नहीं है। इकाई i के भार के लिए प्रतिक्रिया के भिन्नता की इकाई i के व्युत्क्रम के समानुपाती होता है।<ref>{{cite book|author=Strutz, T.| title=डेटा फिटिंग और अनिश्चितता (भारित न्यूनतम वर्ग और उससे आगे का व्यावहारिक परिचय)|publisher=Springer Vieweg | year=2016 | isbn= 978-3-658-11455-8}}, chapter 3</ref> | |||
जीएलएस | |||
<big>सुसंगत सामान्यीकृत न्यूनतम वर्ग</big> | |||
यदि त्रुटियों का सहप्रसरण <math>\Omega </math> अज्ञात है तो जीएलएस के कार्यान्वयन संस्करण का उपयोग करके जिसे व्यवहार्य सामान्यीकृत न्यूनतम वर्ग (एफजीएलएस) अनुमानक के रूप में जाना जाता है इसका सुसंगत अनुमान <math>\Omega </math> या <math>\widehat \Omega </math> प्राप्त कर सकता है।<ref name="Baltagi2008">Baltagi, B. H. (2008). Econometrics (4th ed.). New York: Springer.</ref> | |||
एफजीएलएस में, प्रतिरूपण दो चरणों में आगे बढ़ती है: | |||
( | (1) प्रतिरूपण का अनुमान ओएलएस या किसी अन्य सुसंगत अनुमानक द्वारा लगाया जाता है और अवशेषों का उपयोग त्रुटि सहप्रसरण आव्यूह के सुसंगत अनुमानक को बनाने के लिए किया जाता है। ऐसा करने के लिए, किसी को अक्सर अतिरिक्त बाधाओं को जोड़कर प्रतिरूपण की जांच करने की आवश्यकता होती है, उदाहरण के लिए यदि त्रुटियाँ एक समय श्रृंखला प्रक्रिया का अनुसरण करती हैं, तो एक सांख्यिकीविद् को सामान्य तौर पर इस प्रक्रिया पर कुछ सैद्धांतिक धारणाओं की आवश्यकता होती है ताकि यह सुनिश्चित हो सके कि एक सुसंगत अनुमानक उपलब्ध है; और | ||
(2) त्रुटियों के सहप्रसरण आव्यूह के सुसंगत अनुमानक का उपयोग करके, कोई जीएलएस विचारों को लागू कर सकता है। | |||
लेकिन | |||
सामान्य तौर पर इस अनुमानक में जीएलएस से भिन्न गुण होते हैं। | जीएलएस विषमलैंगिकता या क्रमिक सहसंबंध के अंतर्गत ओएलएस की तुलना में अधिक कुशल है, लेकिन यह एफजीएलएस के लिए सत्य नहीं है। यदि त्रुटि सहप्रसरण आव्यूह का लगातार अनुमान लगाया जाता है तो व्यवहार्य अनुमानक ''असममित रूप से'' अधिक कुशल है, लेकिन छोटे से मध्यम आकार के प्रतिदर्श के लिए, यह वास्तव में ओएलएस की तुलना में कम कुशल हो सकता है। यही कारण है कि कुछ लेखक ओएलएस के उपयोग को प्राथमिकता देते है और विषमलैंगिकता या क्रमिक स्वसहसंबंध को सुधारने के लिए के लिए वैकल्पिक अनुमानक ठोस अनुमानक के भिन्नता पर विचार करते हैं। | ||
परिमित | |||
जब नमूने बहुत | लेकिन दीर्घ प्रतिदर्शों के लिए विषमलैंगिकता या क्रमिक सहसंबंध के अंतर्गत ओएलएस की तुलना में एफजीएलएस को प्राथमिकता दी जाती है।<ref name="Baltagi2008" /><ref name="Greene2003">Greene, W. H. (2003). Econometric Analysis (5th ed.). Upper Saddle River, NJ: Prentice Hall.</ref> एक सतर्कता का सन्दर्भ यह है कि एफजीएलएस अनुमानक सदैव सुसंगत नहीं होता है। एक स्थिति, यदि व्यक्तिगत विशिष्ट निश्चित प्रभाव हों तो एफजीएलएस असंगत हो सकता है।<ref>{{Cite journal |last=Hansen |first=Christian B. |title=सीरियल सहसंबंध और निश्चित प्रभावों के साथ पैनल और बहुस्तरीय मॉडल में सामान्यीकृत न्यूनतम वर्ग अनुमान|journal=[[Journal of Econometrics]] |year=2007 |volume=140 |issue=2 |pages=670–694 |doi=10.1016/j.jeconom.2006.07.011 }}</ref> | ||
सामान्य तौर पर इस अनुमानक में जीएलएस से भिन्न गुण होते हैं। दीर्घ प्रतिदर्शों के लिए (यानी, स्पर्शोन्मुख रूप से) सभी गुण (उचित परिस्थितियों में) जीएलएस के संबंध में सामान्य हैं, लेकिन सीमित प्रतिदर्शों के लिए एफजीएलएस अनुमानकों के गुण अज्ञात हैं: वे प्रत्येक विशेष प्रतिरूपण के साथ नाटकीय रूप से भिन्न होते हैं, और एक सामान्य नियम के रूप में उनके सटीक वितरण विश्लेषणात्मक रूप से प्राप्त नहीं किये जा सकते है। कुछ स्तिथियों में, सीमित प्रतिदर्शों के लिए एफजीएलएस ओएलएस से कम कुशल हो सकता है। इस प्रकार, जीएलएस को व्यवहार्य बनाया जा सकता है, प्रतिदर्श सूक्ष्म होने पर इस पद्धति को लागू करना उपयुक्त नहीं होता है। | |||
परिमित प्रतिदर्शों में अनुमानकों की सटीकता में सुधार करने के लिए उपयोग की जाने वाली एक विधि पुनरावृत्त करना है, यानी, त्रुटियों के सहप्रसरण अनुमानक को अद्यतन करने के लिए एफजीएलएस से अवशेषों को लेना और फिर एफजीएलएस अनुमान को अद्यतन करना, उसी विचार को पुनरावृत्त रूप से लागू करना जब तक कि अनुमानक कुछ हद तक भिन्न न हो जाएं। लेकिन यदि मूल प्रतिदर्श सूक्ष्म है तो यह विधि अनुमानक की दक्षता में बहुत अधिक सुधार नहीं करती है। | |||
जब नमूने बहुत दीर्घ न हों तो एक उचित विकल्प ओएलएस लागू करना है, किन्तु चिरप्रतिष्ठित भिन्नता अनुमानक को अमान्य कर देना है | |||
:<math> \sigma^2*(X'X)^{-1} </math> | :<math> \sigma^2*(X'X)^{-1} </math> | ||
जो इस ढांचे में असंगत है, इसके अपेक्षा एक एचएसी (हेटरोस्केडैस्टिसिटी और ऑटोकोरेलेशन कंसिस्टेंट) अनुमानक का उपयोग करें। उदाहरण के लिए, स्वसहसंबंध के संदर्भ में हम बार्टलेट अनुमानक का उपयोग कर सकते हैं। बार्टलेट अनुमानक को लेखकों ने अपने 1987 इकोनोमेट्रिका लेख में अर्थशास्त्रियों के बीच इसके उपयोग को लोकप्रिय बनाया था और इसे न्यूए-वेस्ट अनुमानक के रूप में जाना जाता है और विषमलैंगिक के संदर्भों में हम ईकर-व्हाइट अनुमानक का उपयोग कर सकते हैं।यदि प्रतिदर्श दीर्घ न हो तो यह दृष्टिकोण अधिक सुरक्षित है इसे अपनाना उचित मार्ग है, जहां दीर्घ होना कभी-कभी एक अस्थिर परिणाम होता है। उदाहरण के लिए यदि त्रुटियों का वितरण असममित है तो आवश्यक प्रतिदर्श बहुत दीर्घ होगा। | |||
साधारण न्यूनतम वर्ग (ओएलएस) अनुमानक की गणना हमेशा की तरह की जाती है | साधारण न्यूनतम वर्ग (ओएलएस) अनुमानक की गणना हमेशा की तरह की जाती है | ||
Line 71: | Line 74: | ||
और अवशेषों का अनुमान <math>\widehat{u}_j= (Y-X\widehat\beta_\text{OLS})_j</math> का निर्माण किया जाता है. | और अवशेषों का अनुमान <math>\widehat{u}_j= (Y-X\widehat\beta_\text{OLS})_j</math> का निर्माण किया जाता है. | ||
सरलता के लिए विषमलैंगिक और गैर-स्वतःसहसंबद्ध त्रुटियों के प्रतिरूपण पर विचार करें। मान लें कि विचरण-सहप्रसरण | सरलता के लिए विषमलैंगिक और गैर-स्वतःसहसंबद्ध त्रुटियों के प्रतिरूपण पर विचार करें। मान लें कि विचरण-सहप्रसरण आव्यूह <math> \Omega </math> त्रुटि सदिश का विकर्ण है, या समकक्ष है कि अलग-अलग अवलोकनों से त्रुटियां असंबंधित हैं। फिर प्रत्येक विकर्ण प्रविष्टि का अनुमान उपयुक्त किए गए अवशेषों <math>\widehat{u}_j</math> द्वारा लगाया जा सकता है इसलिए <math>\widehat{\Omega}_{OLS}</math> द्वारा निर्मित किया जा सकता है; | ||
:<math> | :<math> | ||
\widehat{\Omega}_\text{OLS} = \operatorname{diag}(\widehat{\sigma}^2_1, \widehat{\sigma}^2_2, \dots , \widehat{\sigma}^2_n). | \widehat{\Omega}_\text{OLS} = \operatorname{diag}(\widehat{\sigma}^2_1, \widehat{\sigma}^2_2, \dots , \widehat{\sigma}^2_n). | ||
</math> | </math> | ||
यह ध्यान रखना महत्वपूर्ण है कि वर्गाकार अवशेषों का उपयोग | यह ध्यान रखना महत्वपूर्ण है कि वर्गाकार अवशेषों का उपयोग पूर्व अभिव्यक्ति में नहीं किया जा सकता है; हमें त्रुटियों के भिन्नता के अनुमानक की आवश्यकता होती है। ऐसा करने के लिए, हम एक प्राचलिक विषमलैंगिकता प्रतिरूपण या एक गैर-प्राचलिक अनुमानक का उपयोग कर सकते हैं। एक बार यह चरण पूरा हो जाने पर, हम आगे बढ़ सकते हैं: | ||
[[भारित न्यूनतम वर्ग]] का उपयोग करते हुए <math> \widehat{\Omega}_\text{OLS}</math> का उपयोग करके <math> \beta_{FGLS1}</math>का अनुमान लगाना<ref name="Greene2003" /> | |||
:<math> | :<math> | ||
Line 95: | Line 98: | ||
यह अनुमान <math>\widehat{\Omega}</math> अभिसरण के लिए पुनरावृत्त किया जा सकता है। | यह अनुमान <math>\widehat{\Omega}</math> अभिसरण के लिए पुनरावृत्त किया जा सकता है। | ||
नियमितता शर्तों के | नियमितता शर्तों के अंतर्गत एफजीएलएस अनुमानक (या इसके पुनरावृत्तियों का अनुमानक, यदि हम सीमित संख्या में पुनरावृत्त करते हैं) को असम्बद्ध रूप से वितरित किया जाता है | ||
: <math> | : <math> | ||
\sqrt{n}(\hat\beta_{FGLS} - \beta)\ \xrightarrow{d}\ \mathcal{N}\!\left(0,\,V\right), | \sqrt{n}(\hat\beta_{FGLS} - \beta)\ \xrightarrow{d}\ \mathcal{N}\!\left(0,\,V\right), | ||
</math> | </math> | ||
जहां n | जहां n प्रतिदर्श आकार है और | ||
:<math> | :<math> | ||
V = \operatorname{p-lim}(X'\Omega^{-1}X/n) | V = \operatorname{p-lim}(X'\Omega^{-1}X/n) | ||
</math> | </math> | ||
यहां | यहां p-lim का अर्थ संभाव्यता की सीमा है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 121: | Line 124: | ||
* {{Cite journal |last1=Beck |first1=Nathaniel |last2=Katz |first2=Jonathan N. |date=September 1995 |title=What To Do (and Not to Do) with Time-Series Cross-Section Data |url=https://www.cambridge.org/core/journals/american-political-science-review/article/abs/what-to-do-and-not-to-do-with-timeseries-crosssection-data/0E778B85AB008DAF8D13E0AC63505E37 |journal=American Political Science Review |language=en |volume=89 |issue=3 |pages=634–647 |doi=10.2307/2082979 |jstor=2082979 |s2cid=63222945 |issn=1537-5943}} | * {{Cite journal |last1=Beck |first1=Nathaniel |last2=Katz |first2=Jonathan N. |date=September 1995 |title=What To Do (and Not to Do) with Time-Series Cross-Section Data |url=https://www.cambridge.org/core/journals/american-political-science-review/article/abs/what-to-do-and-not-to-do-with-timeseries-crosssection-data/0E778B85AB008DAF8D13E0AC63505E37 |journal=American Political Science Review |language=en |volume=89 |issue=3 |pages=634–647 |doi=10.2307/2082979 |jstor=2082979 |s2cid=63222945 |issn=1537-5943}} | ||
{{DEFAULTSORT:Generalized Least Squares}} | {{DEFAULTSORT:Generalized Least Squares}} | ||
[[Category: | [[Category:CS1 English-language sources (en)|Generalized Least Squares]] | ||
[[Category:Created On 07/07/2023]] | [[Category:Created On 07/07/2023|Generalized Least Squares]] | ||
[[Category:Machine Translated Page|Generalized Least Squares]] | |||
[[Category:Pages with script errors|Generalized Least Squares]] | |||
[[Category:Templates Vigyan Ready|Generalized Least Squares]] | |||
[[Category:अनुमान के तरीके|Generalized Least Squares]] | |||
[[Category:कम से कम वर्गों|Generalized Least Squares]] | |||
[[Category:समय श्रृंखला संरचना के साथ प्रतिगमन|Generalized Least Squares]] |
Latest revision as of 13:37, 2 August 2023
आंकड़ों में, सामान्यीकृत न्यूनतम वर्ग (जीएलएस) एक विधि है जिसका उपयोग रैखिक प्रतिगमन में अज्ञात मापदंडों का अनुमान लगाने के लिए किया जाता है जब प्रतिगमन प्रतिरूपण में अवशेषों के बीच एक निश्चित डिग्री का सहसंबंध होता है। ऐसे स्तिथियों में, सामान्य न्यूनतम वर्ग और भारित न्यूनतम वर्ग को अधिक सांख्यिकीय रूप से कुशल होने और भ्रामक निष्कर्षों को रोकने की आवश्यकता हो सकती है। जीएलएस का वर्णन पहली बार 1935 में अलेक्जेंडर ऐटकेन द्वारा किया गया था।[1]
विधि की रूपरेखा
मानक रैखिक प्रतिगमन प्रतिरूपण में कोई डेटा का n सांख्यिकीय इकाइयों पर अवलोकन करता है। प्रतिक्रिया मान एक सदिश में रखे गए हैं और पूर्वानुमानित मानों को डिज़ाइन आव्यूह में रखा गया है, जहाँ ith इकाई k के लिए पूर्वानुमानित चर का एक सदिश है। प्रतिरूपण सप्रतिबन्ध माध्य को दिए गए का एक रैखिक कार्य होने के लिए बाध्य करता है और सशर्त विचरण मानता है की दिए गए त्रुटि पद एक ज्ञात गैर-एकवचन सहप्रसरण आव्यूह है। इसे सामान्य तौर पर ऐसे लिखा जाता है
यहाँ अज्ञात स्थिरांकों का एक सदिश है (जिसे "प्रतिगमन गुणांक" के रूप में जाना जाता है) जिसका अनुमान डेटा से लगाया जाना चाहिए।
कल्पना करना के लिए एक संभावित अनुमान है। फिर के लिए अवशेष सदिश होगा। अवशिष्ट सदिश की वर्गाकार महालनोबिस दूरी को कम करके सामान्यीकृत न्यूनतम वर्ग विधि को इस प्रकार अनुमान करता है :
जहां अंतिम दो पद अदिश मान का मूल्यांकन करते हैं, जिसके परिणामस्वरूप
यह उद्देश्य के द्विघात रूप में है .
के संबंध में इस द्विघात रूप का ग्रेडिएंट लेना और इसे शून्य के समतुल्य करना (जब ) होता है।
इसलिए, स्पष्ट सूत्र के आधार पर न्यूनतम उद्देश्य फलन की गणना की जा सकती है:
मात्रा को परिशुद्धता आव्यूह (या वजन आव्यूह) के रूप में जाना जाता है, जो विकर्ण भार आव्यूह का सामान्यीकरण है।
विशेषतायें
जीएलएस और के साथ एक निष्पक्ष, अविरोधी, दक्षता युक्त और अनन्तस्पर्शीय वितरण अनुमानक है। जीएलएस डेटा के रैखिक रूप से रूपांतरित संस्करण में सामान्य न्यूनतम वर्ग लागू करने के समतुल्य है। उदाहरण के लिए, गुणक देखने के लिए चोल्स्की वियोजन का उपयोग करना। यदि कोई समीकरण के दोनों पक्षों को द्वारा पूर्व-गुणा करता है, तो एक एक समतुल्य रैखिक प्रतिरूपण प्राप्त होता है जहाँ , , और होता है। इस प्रतिरूपण में , जहाँ समरूपता आव्यूह है। इस प्रकार कोई भी रूपांतरित डेटा में सामान्य न्यूनतम वर्ग (ओएलएस) लागू करके का कुशलतापूर्वक अनुमान लगा सकता है जिसे न्यूनतम करने की आवश्यकता होती है:
यह त्रुटियों के मापदंड को मानकीकृत करने और उन्हें "डी-सहसंबद्ध" करने का प्रभाव है। जब ओएलएस को समविसारिता त्रुटियों वाले डेटा पर लागू किया जाता है, तो गॉस-मार्कोव प्रमेय लागू होता है, और इसलिए जीएलएस अनुमान β के लिए सर्वोत्तम रैखिक निष्पक्षीय अनुमानक है।
भारित न्यूनतम वर्ग
जब Ω की सभी बाहरी-विकर्ण प्रविष्टियां 0 होती हैं तब जीएलएस की एक विशेष स्थिति उत्पन्न होती है जिसे भारित न्यूनतम वर्ग (डब्ल्यूएलएस) कहा जाता है। यह स्थिति तब उत्पन्न होती है अवलोकन किये गए मानों की भिन्नताएं असमान होती हैं या जब समविसारिता उपलब्ध है लेकिन अवलोकन किये गए भिन्नताओं के बीच कोई सहसंबंध नहीं है। इकाई i के भार के लिए प्रतिक्रिया के भिन्नता की इकाई i के व्युत्क्रम के समानुपाती होता है।[2]
सुसंगत सामान्यीकृत न्यूनतम वर्ग
यदि त्रुटियों का सहप्रसरण अज्ञात है तो जीएलएस के कार्यान्वयन संस्करण का उपयोग करके जिसे व्यवहार्य सामान्यीकृत न्यूनतम वर्ग (एफजीएलएस) अनुमानक के रूप में जाना जाता है इसका सुसंगत अनुमान या प्राप्त कर सकता है।[3]
एफजीएलएस में, प्रतिरूपण दो चरणों में आगे बढ़ती है:
(1) प्रतिरूपण का अनुमान ओएलएस या किसी अन्य सुसंगत अनुमानक द्वारा लगाया जाता है और अवशेषों का उपयोग त्रुटि सहप्रसरण आव्यूह के सुसंगत अनुमानक को बनाने के लिए किया जाता है। ऐसा करने के लिए, किसी को अक्सर अतिरिक्त बाधाओं को जोड़कर प्रतिरूपण की जांच करने की आवश्यकता होती है, उदाहरण के लिए यदि त्रुटियाँ एक समय श्रृंखला प्रक्रिया का अनुसरण करती हैं, तो एक सांख्यिकीविद् को सामान्य तौर पर इस प्रक्रिया पर कुछ सैद्धांतिक धारणाओं की आवश्यकता होती है ताकि यह सुनिश्चित हो सके कि एक सुसंगत अनुमानक उपलब्ध है; और
(2) त्रुटियों के सहप्रसरण आव्यूह के सुसंगत अनुमानक का उपयोग करके, कोई जीएलएस विचारों को लागू कर सकता है।
जीएलएस विषमलैंगिकता या क्रमिक सहसंबंध के अंतर्गत ओएलएस की तुलना में अधिक कुशल है, लेकिन यह एफजीएलएस के लिए सत्य नहीं है। यदि त्रुटि सहप्रसरण आव्यूह का लगातार अनुमान लगाया जाता है तो व्यवहार्य अनुमानक असममित रूप से अधिक कुशल है, लेकिन छोटे से मध्यम आकार के प्रतिदर्श के लिए, यह वास्तव में ओएलएस की तुलना में कम कुशल हो सकता है। यही कारण है कि कुछ लेखक ओएलएस के उपयोग को प्राथमिकता देते है और विषमलैंगिकता या क्रमिक स्वसहसंबंध को सुधारने के लिए के लिए वैकल्पिक अनुमानक ठोस अनुमानक के भिन्नता पर विचार करते हैं।
लेकिन दीर्घ प्रतिदर्शों के लिए विषमलैंगिकता या क्रमिक सहसंबंध के अंतर्गत ओएलएस की तुलना में एफजीएलएस को प्राथमिकता दी जाती है।[3][4] एक सतर्कता का सन्दर्भ यह है कि एफजीएलएस अनुमानक सदैव सुसंगत नहीं होता है। एक स्थिति, यदि व्यक्तिगत विशिष्ट निश्चित प्रभाव हों तो एफजीएलएस असंगत हो सकता है।[5]
सामान्य तौर पर इस अनुमानक में जीएलएस से भिन्न गुण होते हैं। दीर्घ प्रतिदर्शों के लिए (यानी, स्पर्शोन्मुख रूप से) सभी गुण (उचित परिस्थितियों में) जीएलएस के संबंध में सामान्य हैं, लेकिन सीमित प्रतिदर्शों के लिए एफजीएलएस अनुमानकों के गुण अज्ञात हैं: वे प्रत्येक विशेष प्रतिरूपण के साथ नाटकीय रूप से भिन्न होते हैं, और एक सामान्य नियम के रूप में उनके सटीक वितरण विश्लेषणात्मक रूप से प्राप्त नहीं किये जा सकते है। कुछ स्तिथियों में, सीमित प्रतिदर्शों के लिए एफजीएलएस ओएलएस से कम कुशल हो सकता है। इस प्रकार, जीएलएस को व्यवहार्य बनाया जा सकता है, प्रतिदर्श सूक्ष्म होने पर इस पद्धति को लागू करना उपयुक्त नहीं होता है।
परिमित प्रतिदर्शों में अनुमानकों की सटीकता में सुधार करने के लिए उपयोग की जाने वाली एक विधि पुनरावृत्त करना है, यानी, त्रुटियों के सहप्रसरण अनुमानक को अद्यतन करने के लिए एफजीएलएस से अवशेषों को लेना और फिर एफजीएलएस अनुमान को अद्यतन करना, उसी विचार को पुनरावृत्त रूप से लागू करना जब तक कि अनुमानक कुछ हद तक भिन्न न हो जाएं। लेकिन यदि मूल प्रतिदर्श सूक्ष्म है तो यह विधि अनुमानक की दक्षता में बहुत अधिक सुधार नहीं करती है। जब नमूने बहुत दीर्घ न हों तो एक उचित विकल्प ओएलएस लागू करना है, किन्तु चिरप्रतिष्ठित भिन्नता अनुमानक को अमान्य कर देना है
जो इस ढांचे में असंगत है, इसके अपेक्षा एक एचएसी (हेटरोस्केडैस्टिसिटी और ऑटोकोरेलेशन कंसिस्टेंट) अनुमानक का उपयोग करें। उदाहरण के लिए, स्वसहसंबंध के संदर्भ में हम बार्टलेट अनुमानक का उपयोग कर सकते हैं। बार्टलेट अनुमानक को लेखकों ने अपने 1987 इकोनोमेट्रिका लेख में अर्थशास्त्रियों के बीच इसके उपयोग को लोकप्रिय बनाया था और इसे न्यूए-वेस्ट अनुमानक के रूप में जाना जाता है और विषमलैंगिक के संदर्भों में हम ईकर-व्हाइट अनुमानक का उपयोग कर सकते हैं।यदि प्रतिदर्श दीर्घ न हो तो यह दृष्टिकोण अधिक सुरक्षित है इसे अपनाना उचित मार्ग है, जहां दीर्घ होना कभी-कभी एक अस्थिर परिणाम होता है। उदाहरण के लिए यदि त्रुटियों का वितरण असममित है तो आवश्यक प्रतिदर्श बहुत दीर्घ होगा।
साधारण न्यूनतम वर्ग (ओएलएस) अनुमानक की गणना हमेशा की तरह की जाती है
और अवशेषों का अनुमान का निर्माण किया जाता है.
सरलता के लिए विषमलैंगिक और गैर-स्वतःसहसंबद्ध त्रुटियों के प्रतिरूपण पर विचार करें। मान लें कि विचरण-सहप्रसरण आव्यूह त्रुटि सदिश का विकर्ण है, या समकक्ष है कि अलग-अलग अवलोकनों से त्रुटियां असंबंधित हैं। फिर प्रत्येक विकर्ण प्रविष्टि का अनुमान उपयुक्त किए गए अवशेषों द्वारा लगाया जा सकता है इसलिए द्वारा निर्मित किया जा सकता है;
यह ध्यान रखना महत्वपूर्ण है कि वर्गाकार अवशेषों का उपयोग पूर्व अभिव्यक्ति में नहीं किया जा सकता है; हमें त्रुटियों के भिन्नता के अनुमानक की आवश्यकता होती है। ऐसा करने के लिए, हम एक प्राचलिक विषमलैंगिकता प्रतिरूपण या एक गैर-प्राचलिक अनुमानक का उपयोग कर सकते हैं। एक बार यह चरण पूरा हो जाने पर, हम आगे बढ़ सकते हैं:
भारित न्यूनतम वर्ग का उपयोग करते हुए का उपयोग करके का अनुमान लगाना[4]
प्रक्रिया को दोहराया जा सकता है. पहला पुनरावृत्ति द्वारा दिया गया है
यह अनुमान अभिसरण के लिए पुनरावृत्त किया जा सकता है।
नियमितता शर्तों के अंतर्गत एफजीएलएस अनुमानक (या इसके पुनरावृत्तियों का अनुमानक, यदि हम सीमित संख्या में पुनरावृत्त करते हैं) को असम्बद्ध रूप से वितरित किया जाता है
जहां n प्रतिदर्श आकार है और
यहां p-lim का अर्थ संभाव्यता की सीमा है।
यह भी देखें
- आत्मविश्वास क्षेत्र
- स्वतंत्रता की डिग्री (सांख्यिकी)#स्वतंत्रता की प्रभावी डिग्री
- स्तुति-विंस्टन अनुमान
संदर्भ
- ↑ Aitken, A. C. (1935). "न्यूनतम वर्गों और प्रेक्षणों के रैखिक संयोजनों पर". Proceedings of the Royal Society of Edinburgh. 55: 42–48. doi:10.1017/s0370164600014346.
- ↑ Strutz, T. (2016). डेटा फिटिंग और अनिश्चितता (भारित न्यूनतम वर्ग और उससे आगे का व्यावहारिक परिचय). Springer Vieweg. ISBN 978-3-658-11455-8., chapter 3
- ↑ 3.0 3.1 Baltagi, B. H. (2008). Econometrics (4th ed.). New York: Springer.
- ↑ 4.0 4.1 Greene, W. H. (2003). Econometric Analysis (5th ed.). Upper Saddle River, NJ: Prentice Hall.
- ↑ Hansen, Christian B. (2007). "सीरियल सहसंबंध और निश्चित प्रभावों के साथ पैनल और बहुस्तरीय मॉडल में सामान्यीकृत न्यूनतम वर्ग अनुमान". Journal of Econometrics. 140 (2): 670–694. doi:10.1016/j.jeconom.2006.07.011.
अग्रिम पठन
- Amemiya, Takeshi (1985). "Generalized Least Squares Theory". Advanced Econometrics. Harvard University Press. ISBN 0-674-00560-0.
- Johnston, John (1972). "Generalized Least-squares:". Econometric Methods (Second ed.). New York: McGraw-Hill. pp. 208–242.
- Kmenta, Jan (1986). "Generalized Linear Regression Model and Its Applications". Elements of Econometrics (Second ed.). New York: Macmillan. pp. 607–650. ISBN 0-472-10886-7.
- Beck, Nathaniel; Katz, Jonathan N. (September 1995). "What To Do (and Not to Do) with Time-Series Cross-Section Data". American Political Science Review (in English). 89 (3): 634–647. doi:10.2307/2082979. ISSN 1537-5943. JSTOR 2082979. S2CID 63222945.