काल्पनिक रेखा (गणित): Difference between revisions
From Vigyanwiki
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 45: | Line 45: | ||
{{DEFAULTSORT:Imaginary Line (Mathematics)}} | {{DEFAULTSORT:Imaginary Line (Mathematics)}} | ||
[[Category:Created On 13/07/2023|Imaginary Line (Mathematics)]] | |||
[[Category:Lua-based templates|Imaginary Line (Mathematics)]] | |||
[[Category: Machine Translated Page]] | [[Category:Machine Translated Page|Imaginary Line (Mathematics)]] | ||
[[Category: | [[Category:Pages with script errors|Imaginary Line (Mathematics)]] | ||
[[Category:Vigyan Ready]] | [[Category:Short description with empty Wikidata description|Imaginary Line (Mathematics)]] | ||
[[Category:Templates Vigyan Ready|Imaginary Line (Mathematics)]] | |||
[[Category:Templates that add a tracking category|Imaginary Line (Mathematics)]] | |||
[[Category:Templates that generate short descriptions|Imaginary Line (Mathematics)]] | |||
[[Category:Templates using TemplateData|Imaginary Line (Mathematics)]] | |||
[[Category:बीजगणितीय ज्यामिति|Imaginary Line (Mathematics)]] |
Latest revision as of 13:45, 2 August 2023
समिष्ट ज्यामिति में, काल्पनिक रेखा एक सीधी रेखा (ज्यामिति) होती है जिसमें केवल वास्तविक बिंदु होती है। यह सिद्ध किया जा सकता है कि यह बिंदु समिष्ट संयुग्म रेखा के साथ प्रतिच्छेदन बिंदु है।[1]
यह काल्पनिक वक्र की विशेष स्तिथि है।
समिष्ट प्रक्षेप्य तल P2(C) में काल्पनिक रेखा पाई जाती है जहां बिंदुओं को तीन सजातीय निर्देशांकों द्वारा दर्शाया जाता है:
बॉयड पैटरसन ने इस विमान में रेखाओं का वर्णन किया:[2]
- उन बिंदुओं का समिष्ट जिनके निर्देशांक समिष्ट गुणांक वाले सजातीय रैखिक समीकरण को संतुष्ट करते हैं:
- एक सीधी रेखा है और यह रेखा वास्तविक या काल्पनिक है क्योंकि इसके समीकरण के गुणांक तीन वास्तविक संख्याओं के समानुपाती होते हैं या नहीं।
फ़ेलिक्स क्लेन ने काल्पनिक ज्यामितीय संरचनाओं का वर्णन किया: हम ज्यामितीय संरचना को काल्पनिक मानेंगे यदि उसके सभी निर्देशांक वास्तविक नहीं हैं।[3]
हैटन के अनुसार:[4]
- अतिव्यापी इंवोलुशन (गणित) के निश्चित बिंदु (गणित) (काल्पनिक) का समिष्ट जिसमें ओवरलैपिंग इंवोलुशन पेंसिल (वास्तविक) को वास्तविक ट्रांसवर्सल द्वारा विभक्त किया जाता है, काल्पनिक सीधी रेखाओं की एक जोड़ी है।
हैटन प्रारंभ है,
- इससे यह निष्कर्ष निकलता है कि काल्पनिक सीधी रेखा एक काल्पनिक बिंदु से निर्धारित होती है, जो कि इनवोलुशन की ड्यूल बिंदु है, और वास्तविक बिंदु, इनवोलुशन पेंसिल का शीर्ष है।
यह भी देखें
- शंक्वाकार खंड
- काल्पनिक संख्या
- काल्पनिक बिंदु
- बीजगणितीय वक्र
संदर्भ
- ↑ Patterson, B. C. (1941), "The inversive plane", The American Mathematical Monthly, 48: 589–599, doi:10.2307/2303867, MR 0006034.
- ↑ Patterson 590
- ↑ Klein 1928 p 46
- ↑ Hatton 1929 page 13, Definition 4
उद्धरण
- J.L.S. Hatton (1920) The Theory of the Imaginary in Geometry together with the Trigonometry of the Imaginary, Cambridge University Press via Internet Archive
- Felix Klein (1928) Vorlesungen über nicht-euklischen Geometrie, Julius Springer.