कैंटर बीजगणित: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{for|बीजगणित एक अनंत सेट ''X'' से उत्पाद ''X''×''X'' पर एक आक्षेप को कूटबद्ध करता है, जिसे कभी-कभी कैंटर बीजगणित भी कहा जाता है।|जोंसन-टार्स्की बीजगणित}}
{{for|बीजगणित एक अनंत समुच्चय  ''X'' से उत्पाद ''X''×''X'' पर एक आक्षेप को कूटबद्ध करता है, जिसे कभी-कभी कैंटर बीजगणित भी कहा जाता है।|जोंसन-टार्स्की बीजगणित}}
गणित में, एक कैंटर बीजगणित, जिसका नाम [[जॉर्ज कैंटर]] के नाम पर रखा गया है, दो निकट से संबंधित [[बूलियन बीजगणित (संरचना)]], एक [[गणनीय]] और एक [[पूर्ण बूलियन बीजगणित]] में से एक है।


गणनीय कैंटर बीजगणित [[कैंटर सेट]] के सभी [[क्लोपेन]] उपसमुच्चय का बूलियन बीजगणित है। यह जनरेटरों की गणनीय संख्या पर निःशुल्क बूलियन बीजगणित है। इस प्रकार समरूपता तक यह एकमात्र गैर-तुच्छ बूलियन बीजगणित है जो गणनीय और परमाणु रहित दोनों है।
गणित में, एक '''कैंटर बीजगणित''' होता हैं, जिसका नाम [[जॉर्ज कैंटर]] के नाम पर रखा गया है, यह दो निकट से संबंधित [[बूलियन बीजगणित (संरचना)]]<nowiki/>n होती हैं | यह [[गणनीय]] और एक [[पूर्ण बूलियन बीजगणित]] में से एक होती है।


संपूर्ण कैंटोर बीजगणित वास्तविक मॉड्यूलो [[अल्प सेट]] के [[बोरेल उपसमुच्चय]] का पूर्ण बूलियन बीजगणित है {{harv|Balcar|Jech|2006}}. यह गणनीय कैंटर बीजगणित को पूरा करने के लिए समरूपी है। (संपूर्ण कैंटर बीजगणित को कभी-कभी [[कोहेन बीजगणित]] कहा जाता है, चूँकि कोहेन बीजगणित सामान्यतः एक अलग प्रकार के बूलियन बीजगणित को संदर्भित करता है।) संपूर्ण कैंटर बीजगणित का अध्ययन वॉन न्यूमैन द्वारा 1935 में किया गया था (बाद में इसे प्रकाशित किया गया था) {{harv|von Neumann|1998}}), जिन्होंने दिखाया कि यह बोरेल उपसमुच्चय मॉड्यूलो के [[यादृच्छिक बीजगणित]] के लिए आइसोमॉर्फिक नहीं है, जो की शून्य सेट मापता है।
गणनीय कैंटर बीजगणित [[कैंटर सेट|कैंटर समुच्चय]] के सभी [[क्लोपेन]] उपसमुच्चय का बूलियन बीजगणित है। यह जनरेटरों की गणनीय संख्या पर निःशुल्क बूलियन बीजगणित होता है। इस प्रकार समरूपता तक यह एकमात्र गैर-तुच्छ बूलियन बीजगणित है जो गणनीय और परमाणु रहित दोनों है।
 
संपूर्ण कैंटोर बीजगणित वास्तविक मॉड्यूलो [[अल्प सेट|अल्प समुच्चय]] के [[बोरेल उपसमुच्चय]] का पूर्ण बूलियन बीजगणित है | यह {{harv|बाल्कर|जेच|2006}} हैं | यह गणनीय कैंटर बीजगणित को पूर्ण करने के लिए समरूपी है। (संपूर्ण कैंटर बीजगणित को कभी-कभी [[कोहेन बीजगणित]] कहा जाता है, चूँकि कोहेन बीजगणित सामान्यतः एक अलग प्रकार के बूलियन बीजगणित को संदर्भित करता है।) यह संपूर्ण कैंटर बीजगणित का अध्ययन वॉन न्यूमैन द्वारा 1935 में किया गया था | इसके (पश्चात् इसे प्रकाशित किया गया था) | {{harv|वॉन न्यूमैन|1998}}), जिन्होंने दिखाया कि यह बोरेल उपसमुच्चय मॉड्यूलो के [[यादृच्छिक बीजगणित]] के लिए आइसोमॉर्फिक नहीं है, जो की शून्य समुच्चय को मापता है।
==संदर्भ                                                            ==
==संदर्भ                                                            ==
*{{citation
*{{citation
Line 18: Line 19:
  | year = 2006}}
  | year = 2006}}
*{{Citation | last1=von Neumann | first1=John | author1-link=John von Neumann | title=Continuous geometry | origyear=1960 | url=https://books.google.com/books?id=onE5HncE-HgC | publisher=[[Princeton University Press]] | series=Princeton Landmarks in Mathematics | isbn=978-0-691-05893-1 | mr=0120174 | year=1998}}
*{{Citation | last1=von Neumann | first1=John | author1-link=John von Neumann | title=Continuous geometry | origyear=1960 | url=https://books.google.com/books?id=onE5HncE-HgC | publisher=[[Princeton University Press]] | series=Princeton Landmarks in Mathematics | isbn=978-0-691-05893-1 | mr=0120174 | year=1998}}
[[Category: मजबूरन (गणित)]] [[Category: बूलियन बीजगणित]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 25/06/2023]]
[[Category:Created On 25/06/2023]]
[[Category:Machine Translated Page]]
[[Category:Templates Vigyan Ready]]
[[Category:बूलियन बीजगणित]]
[[Category:मजबूरन (गणित)]]

Latest revision as of 14:09, 3 August 2023

गणित में, एक कैंटर बीजगणित होता हैं, जिसका नाम जॉर्ज कैंटर के नाम पर रखा गया है, यह दो निकट से संबंधित बूलियन बीजगणित (संरचना)n होती हैं | यह गणनीय और एक पूर्ण बूलियन बीजगणित में से एक होती है।

गणनीय कैंटर बीजगणित कैंटर समुच्चय के सभी क्लोपेन उपसमुच्चय का बूलियन बीजगणित है। यह जनरेटरों की गणनीय संख्या पर निःशुल्क बूलियन बीजगणित होता है। इस प्रकार समरूपता तक यह एकमात्र गैर-तुच्छ बूलियन बीजगणित है जो गणनीय और परमाणु रहित दोनों है।

संपूर्ण कैंटोर बीजगणित वास्तविक मॉड्यूलो अल्प समुच्चय के बोरेल उपसमुच्चय का पूर्ण बूलियन बीजगणित है | यह (बाल्कर & जेच 2006) हैं | यह गणनीय कैंटर बीजगणित को पूर्ण करने के लिए समरूपी है। (संपूर्ण कैंटर बीजगणित को कभी-कभी कोहेन बीजगणित कहा जाता है, चूँकि कोहेन बीजगणित सामान्यतः एक अलग प्रकार के बूलियन बीजगणित को संदर्भित करता है।) यह संपूर्ण कैंटर बीजगणित का अध्ययन वॉन न्यूमैन द्वारा 1935 में किया गया था | इसके (पश्चात् इसे प्रकाशित किया गया था) | (वॉन न्यूमैन 1998)), जिन्होंने दिखाया कि यह बोरेल उपसमुच्चय मॉड्यूलो के यादृच्छिक बीजगणित के लिए आइसोमॉर्फिक नहीं है, जो की शून्य समुच्चय को मापता है।

संदर्भ

  • Balcar, Bohuslav; Jech, Thomas (2006), "Weak distributivity, a problem of von Neumann and the mystery of measurability", Bulletin of Symbolic Logic, 12 (2): 241–266, MR 2223923
  • von Neumann, John (1998) [1960], Continuous geometry, Princeton Landmarks in Mathematics, Princeton University Press, ISBN 978-0-691-05893-1, MR 0120174