यूक्लिडियन समष्टि पर फलन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
गणित में, [[ यूक्लिडियन स्थान |यूक्लिडियन समष्टि]] पर गणना, '''यूक्लिडियन समष्टि पर कार्यों''' के गणना के लिए एक या अनेक चर में कार्यों के गणना का एक सामान्यीकरण है। <math>\mathbb{R}^n</math> साथ ही एक [[परिमित-आयामी वास्तविक वेक्टर स्थान|परिमित-आयामी वास्तविक सदिश समष्टि]] है। इस गणना को विशेष रूप से संयुक्त राज्य अमेरिका में '''उन्नत गणना''' के रूप में भी जाना जाता है। यह बहुपरिवर्तनीय गणना के समान है, किन्तु किसी भी तरह से अधिक परिष्कृत है क्योंकि यह रैखिक बीजगणित (या कुछ कार्यात्मक विश्लेषण) का अधिक व्यापक रूप से उपयोग करता है और अंतर ज्यामिति से कुछ अवधारणाओं को सम्मिलित करता है जैसे कि अंतर रूपों और अंतर रूपों के संदर्भ में स्टोक्स का सूत्र। रैखिक बीजगणित का यह व्यापक उपयोग बानाच रिक्त समष्टि या टोपोलॉजिकल सदिश रिक्त समष्टि पर गणना के लिए बहुपरिवर्तनीय गणना के प्राकृतिक सामान्यीकरण की भी अनुमति देता है।
[[गणित]] में, [[ यूक्लिडियन स्थान |यूक्लिडियन समष्टि]] पर गणना, '''यूक्लिडियन समष्टि पर फलनों''' के गणना के लिए एक या अनेक चर में फलनों के गणना का एक सामान्यीकरण है। <math>\mathbb{R}^n</math> साथ ही एक परिमित-आयामी वास्तविक सदिश समष्टि है। इस गणना को विशेष रूप से संयुक्त राज्य अमेरिका में '''उन्नत गणना''' के रूप में भी जाना जाता है। यह बहुपरिवर्तनीय गणना के समान है, किन्तु किसी भी तरह से अधिक परिष्कृत है क्योंकि यह रैखिक बीजगणित (या कुछ कार्यात्मक विश्लेषण) का अधिक व्यापक रूप से उपयोग करता है और अंतर ज्यामिति से कुछ अवधारणाओं को सम्मिलित करता है जैसे कि अंतर रूपों और अंतर रूपों के संदर्भ में स्टोक्स का सूत्र। रैखिक बीजगणित का यह व्यापक उपयोग बानाच रिक्त समष्टि या टोपोलॉजिकल सदिश रिक्त समष्टि पर गणना के लिए बहुपरिवर्तनीय गणना के प्राकृतिक सामान्यीकरण की भी अनुमति देता है।


यूक्लिडियन समष्टि पर गणना भी '''मैनिफोल्ड्स पर गणना''' का एक समष्टिीय मॉडल है, जो मैनिफोल्ड्स पर कार्यों का एक सिद्धांत है।
यूक्लिडियन समष्टि पर गणना भी '''मैनिफोल्ड्स पर गणना''' का एक समष्टिीय मॉडल है, जो मैनिफोल्ड्स पर फलनों का एक सिद्धांत है।


== मूलभूतधारणाएँ ==
== मूलभूतधारणाएँ ==
Line 9: Line 9:
यह खंड एक-चर कलन में फलन सिद्धांत की एक संक्षिप्त समीक्षा है।
यह खंड एक-चर कलन में फलन सिद्धांत की एक संक्षिप्त समीक्षा है।


एक वास्तविक-मूल्यवान कार्य <math>f : \mathbb{R} \to \mathbb{R}</math> पर निरंतर है <math>a</math> यदि यह लगभग स्थिर है <math>a</math>; अर्थात।,
एक वास्तविक-मूल्यवान कार्य <math>f : \mathbb{R} \to \mathbb{R}</math> पर निरंतर है <math>a</math> यदि यह लगभग स्थिर है <math>a</math>; अर्थात:
:<math>\lim_{h \to 0} (f(a + h) - f(a)) = 0.</math>
:<math>\lim_{h \to 0} (f(a + h) - f(a)) = 0.</math>
इसके विपरीत, फलन <math>f</math> पर भिन्न है <math>a</math> यदि यह लगभग रैखिक है <math>a</math>; अर्थात, कुछ वास्तविक संख्या है <math>\lambda</math> ऐसा है कि
इसके विपरीत, फलन <math>f</math> पर भिन्न है <math>a</math> यदि यह लगभग रैखिक है <math>a</math>; अर्थात, कुछ वास्तविक संख्या है <math>\lambda</math> ऐसा है कि
Line 15: Line 15:
(सरलता के लिए, मान लीजिए <math>f(a) = 0</math>. तब फिर उपरोक्त का कारणयही है <math>f(a + h) = \lambda h + g(a, h)</math> कहाँ <math>g(a, h)</math> h, 0 पर जाने की तुलना में तेजी से 0 पर जाता है और, इस अर्थ में, <math>f(a + h)</math> जैसा व्यवहार करता है <math>\lambda h</math>.)
(सरलता के लिए, मान लीजिए <math>f(a) = 0</math>. तब फिर उपरोक्त का कारणयही है <math>f(a + h) = \lambda h + g(a, h)</math> कहाँ <math>g(a, h)</math> h, 0 पर जाने की तुलना में तेजी से 0 पर जाता है और, इस अर्थ में, <math>f(a + h)</math> जैसा व्यवहार करता है <math>\lambda h</math>.)


जो नंबर <math>\lambda</math> पर निर्भर करता है <math>a</math> और इस प्रकार दर्शाया गया है <math>f'(a)</math>. यदि <math>f</math> खुले अंतराल पर अवकलनीय है <math>U</math> और यदि <math>f'</math> पर एक सतत कार्य है <math>U</math>, तब <math>f</math> सी कहा जाता है<sup>1</sup>फलन. सामान्यतः अधिक, <math>f</math> सी कहा जाता है<sup>k</sup> फलन यदि यह व्युत्पन्न है <math>f'</math> सी है<sup>k-1</sup>फलन। टेलर के प्रमेय में कहा गया है कि एक सी<sup>k</sup> फलन वास्तव में एक फलन है जिसे डिग्री k के बहुपद द्वारा अनुमानित किया जा सकता है।<!-- निश्चित नहीं कि क्या हम प्रमेय को दोबारा बताना चाहते हैं:
जो नंबर <math>\lambda</math> पर निर्भर करता है <math>a</math> और इस प्रकार दर्शाया गया है <math>f'(a)</math>. यदि <math>f</math> विवृत अंतराल पर अवकलनीय है <math>U</math> और यदि <math>f'</math> पर एक सतत कार्य है <math>U</math>, तब <math>f</math> सी कहा जाता है<sup>1</sup>फलन. सामान्यतः अधिक, <math>f</math> सी कहा जाता है<sup>k</sup> फलन यदि यह व्युत्पन्न है <math>f'</math> सी है<sup>k-1</sup>फलन। टेलर के प्रमेय में कहा गया है कि एक सी<sup>k</sup> फलन वास्तव में एक फलन है जिसे डिग्री k के बहुपद द्वारा अनुमानित किया जा सकता है।<!-- निश्चित नहीं कि क्या हम प्रमेय को दोबारा बताना चाहते हैं:
:<math> f(x+h) =\sum_{n=0}^{k-1} f^{(n)}(x) {h^n\over n!} + \int_0^1 (1-t)^{k-1} {h^k \over k!} f^{(k)}(x+th)\, dt.</math>-->
:<math> f(x+h) =\sum_{n=0}^{k-1} f^{(n)}(x) {h^n\over n!} + \int_0^1 (1-t)^{k-1} {h^k \over k!} f^{(k)}(x+th)\, dt.</math>-->


यदि <math>f : \mathbb{R} \to \mathbb{R}</math> एक सी है<sup>1</sup>कार्य और <math>f'(a) \ne 0</math> कुछ के लिए <math>a</math>, तब कोई <math>f'(a) > 0</math> या <math>f'(a) < 0</math>; अर्थात, या तब <math>f</math> किसी खुले अंतराल में सख्ती से बढ़ रहा है या सख्ती से घट रहा है। विशेष रूप से, <math>f : f^{-1}(U) \to U</math> कुछ खुले अंतराल के लिए विशेषण है <math>U</math> युक्त <math>f(a)</math>. [[व्युत्क्रम फलन प्रमेय]] तब कहता है कि व्युत्क्रम फलन <math>f^{-1}</math> यू पर डेरिवेटिव के साथ अवकलनीय है: के लिए <math>y \in U</math>
यदि <math>f : \mathbb{R} \to \mathbb{R}</math> एक सी है<sup>1</sup>कार्य और <math>f'(a) \ne 0</math> कुछ के लिए <math>a</math>, तब कोई <math>f'(a) > 0</math> या <math>f'(a) < 0</math>; अर्थात, या तब <math>f</math> किसी विवृत अंतराल में सख्ती से बढ़ रहा है या सख्ती से घट रहा है। विशेष रूप से, <math>f : f^{-1}(U) \to U</math> कुछ विवृत अंतराल के लिए विशेषण है <math>U</math> युक्त <math>f(a)</math>. [[व्युत्क्रम फलन प्रमेय]] तब कहता है कि व्युत्क्रम फलन <math>f^{-1}</math> यू पर डेरिवेटिव के साथ अवकलनीय है: के लिए <math>y \in U</math>
:<math>(f^{-1})'(y) = {1 \over f'(f^{-1}(y))}.</math>
:<math>(f^{-1})'(y) = {1 \over f'(f^{-1}(y))}.</math>
=== मानचित्र और श्रृंखला नियम का व्युत्पन्न ===
=== मानचित्र और श्रृंखला नियम का व्युत्पन्न ===
कार्यों के लिए <math>f</math> समतल में या अधिक सामान्यतः यूक्लिडियन समष्टि पर परिभाषित <math>\mathbb{R}^n</math>, उन कार्यों पर विचार करना आवश्यक है जो सदिश-मूल्यवान या आव्युह-मूल्यवान हैं। इसे अपरिवर्तनीय तरीके से (अर्थात, समन्वय-मुक्त तरीके से) करना वैचारिक रूप से भी सहायक है। किसी बिंदु पर ऐसे मानचित्रों के व्युत्पन्न तब सदिश या रैखिक मानचित्र होते हैं, वास्तविक संख्याएँ नहीं।
फलनों के लिए <math>f</math> समतल में या अधिक सामान्यतः यूक्लिडियन समष्टि पर परिभाषित <math>\mathbb{R}^n</math>, उन फलनों पर विचार करना आवश्यक है जो सदिश-मूल्यवान या आव्युह-मूल्यवान हैं। इसे अपरिवर्तनीय तरीके से (अर्थात, समन्वय-मुक्त तरीके से) करना वैचारिक रूप से भी सहायक है। किसी बिंदु पर ऐसे मानचित्रों के व्युत्पन्न तब सदिश या रैखिक मानचित्र होते हैं, वास्तविक संख्याएँ नहीं।


होने देना <math>f : X \to Y</math> एक खुले उपसमुच्चय से एक मानचित्र बनें <math>X</math> का <math>\mathbb{R}^n</math> एक खुले उपसमुच्चय के लिए <math>Y</math> का <math>\mathbb{R}^m</math>. फिर नक्शा <math>f</math> एक बिंदु पर अवकलनीय फलन कहा जाता है <math>x</math> में <math>X</math> यदि कोई (आवश्यक रूप से अद्वितीय) रैखिक परिवर्तन उपस्तिथ है <math>f'(x) : \mathbb{R}^n \to \mathbb{R}^m</math>, का व्युत्पन्न कहा जाता है <math>f</math> पर <math>x</math>, ऐसा है कि
होने देना <math>f : X \to Y</math> एक विवृत उपसमुच्चय से एक मानचित्र बनें <math>X</math> का <math>\mathbb{R}^n</math> एक विवृत उपसमुच्चय के लिए <math>Y</math> का <math>\mathbb{R}^m</math>. फिर नक्शा <math>f</math> एक बिंदु पर अवकलनीय फलन कहा जाता है <math>x</math> में <math>X</math> यदि कोई (आवश्यक रूप से अद्वितीय) रैखिक परिवर्तन उपस्तिथ है <math>f'(x) : \mathbb{R}^n \to \mathbb{R}^m</math>, का व्युत्पन्न कहा जाता है <math>f</math> पर <math>x</math>, ऐसा है कि
:<math>\lim_{ h \to 0 } \frac{1}{|h|} |f(x + h) - f(x) - f'(x)h| = 0</math>
:<math>\lim_{ h \to 0 } \frac{1}{|h|} |f(x + h) - f(x) - f'(x)h| = 0</math>
कहाँ <math>f'(x)h</math> रैखिक परिवर्तन का अनुप्रयोग है <math>f'(x)</math> को <math>h</math>.<ref>{{harvnb|Hörmander|2015|loc=Definition 1.1.4.}}</ref> यदि <math>f</math> पर भिन्न है <math>x</math>, तब यह निरंतर है <math>x</math> तब से
कहाँ <math>f'(x)h</math> रैखिक परिवर्तन का अनुप्रयोग है <math>f'(x)</math> को <math>h</math>.<ref>{{harvnb|Hörmander|2015|loc=Definition 1.1.4.}}</ref> यदि <math>f</math> पर भिन्न है <math>x</math>, तब यह निरंतर है <math>x</math> तब से
Line 33: Line 33:
:<math>(g \circ f)'(x) = g'(y) \circ f'(x).</math>}}
:<math>(g \circ f)'(x) = g'(y) \circ f'(x).</math>}}


यह बिल्कुल एक चर में कार्यों के लिए सिद्ध होता है। मुख्य रूप से, संकेतन के साथ <math>\widetilde{h} = f(x + h) - f(x)</math>, अपने पास:
यह बिल्कुल एक चर में फलनों के लिए सिद्ध होता है। मुख्य रूप से, संकेतन के साथ <math>\widetilde{h} = f(x + h) - f(x)</math>, अपने पास:
:<math>\begin{align}
:<math>\begin{align}
& \frac{1}{|h|} |g(f(x + h)) - g(y) - g'(y) f'(x) h| \\
& \frac{1}{|h|} |g(f(x + h)) - g(y) - g'(y) f'(x) h| \\
Line 79: Line 79:
जो यह दर्शाता हे <math>|\Delta_y f (x) - g(x)y|/|y| \to 0</math> आवश्यकता अनुसार। <math>\square</math>
जो यह दर्शाता हे <math>|\Delta_y f (x) - g(x)y|/|y| \to 0</math> आवश्यकता अनुसार। <math>\square</math>


उदाहरण: चलो <math>U</math> आकार n के सभी व्युत्क्रमणीय वास्तविक वर्ग आव्यूहों का समुच्चय बनें। टिप्पणी <math>U</math> के एक खुले उपसमुच्चय के रूप में पहचाना जा सकता है <math>\mathbb{R}^{n^2}</math> निर्देशांक के साथ <math>x_{ij}, 0 \le i, j \ne n</math>. फलन पर विचार करें <math>f(g) = g^{-1}</math> = का व्युत्क्रम आव्युह <math>g</math> पर परिभाषित <math>U</math>. इसके व्युत्पन्न का अनुमान लगाने के लिए, मान लें <math>f</math> अवकलनीय है और वक्र पर विचार करें <math>c(t) = ge^{tg^{-1}h}</math> कहाँ <math>e^A</math> का कारण[[मैट्रिक्स घातांक|आव्युह घातांक]] है <math>A</math>. श्रृंखला नियम द्वारा क्रियान्वित किया गया <math>f(c(t)) = e^{-t g^{-1}h} g^{-1} </math>, अपने पास:
उदाहरण: चलो <math>U</math> आकार n के सभी व्युत्क्रमणीय वास्तविक वर्ग आव्यूहों का समुच्चय बनें। टिप्पणी <math>U</math> के एक विवृत उपसमुच्चय के रूप में पहचाना जा सकता है <math>\mathbb{R}^{n^2}</math> निर्देशांक के साथ <math>x_{ij}, 0 \le i, j \ne n</math>. फलन पर विचार करें <math>f(g) = g^{-1}</math> = का व्युत्क्रम आव्युह <math>g</math> पर परिभाषित <math>U</math>. इसके व्युत्पन्न का अनुमान लगाने के लिए, मान लें <math>f</math> अवकलनीय है और वक्र पर विचार करें <math>c(t) = ge^{tg^{-1}h}</math> कहाँ <math>e^A</math> का कारण[[मैट्रिक्स घातांक|आव्युह घातांक]] है <math>A</math>. श्रृंखला नियम द्वारा क्रियान्वित किया गया <math>f(c(t)) = e^{-t g^{-1}h} g^{-1} </math>, अपने पास:
:<math>f'(c(t)) \circ c'(t) = -g^{-1}h e^{-t g^{-1}h} g^{-1}</math>.
:<math>f'(c(t)) \circ c'(t) = -g^{-1}h e^{-t g^{-1}h} g^{-1}</math>.
ले रहा <math>t = 0</math>, हम पाते हैं:
ले रहा <math>t = 0</math>, हम पाते हैं:
Line 104: Line 104:
टेलर के सूत्र में किसी फलन को चर द्वारा विभाजित करने का प्रभाव होता है, जिसे सूत्र के अगले विशिष्ट सैद्धांतिक उपयोग द्वारा चित्रित किया जा सकता है।
टेलर के सूत्र में किसी फलन को चर द्वारा विभाजित करने का प्रभाव होता है, जिसे सूत्र के अगले विशिष्ट सैद्धांतिक उपयोग द्वारा चित्रित किया जा सकता है।


उदाहरण:<ref>{{harvnb|Hörmander|2015|loc=Lemma 7.1.4.}}</ref> होने देना <math>T : \mathcal{S} \to \mathcal{S}</math> सदिश समष्टि के मध्य एक रेखीय मानचित्र बनें <math>\mathcal{S}</math> सुचारू कार्यों पर <math>\mathbb{R}^n</math> तेजी से घटते डेरिवेटिव के साथ; अर्थात।, <math>\sup |x^{\beta} \partial^{\alpha} \varphi| < \infty</math> किसी भी मल्टी-इंडेक्स के लिए <math>\alpha, \beta</math>. (अंतरिक्ष <math>\mathcal{S}</math> [[ श्वार्ट्ज स्थान |श्वार्ट्ज समष्टि]] कहा जाता है।) प्रत्येक के लिए <math>\varphi</math> में <math>\mathcal{S}</math>, टेलर का सूत्र बताता है कि हम लिख सकते हैं:
उदाहरण:<ref>{{harvnb|Hörmander|2015|loc=Lemma 7.1.4.}}</ref> होने देना <math>T : \mathcal{S} \to \mathcal{S}</math> सदिश समष्टि के मध्य एक रेखीय मानचित्र बनें <math>\mathcal{S}</math> सुचारू फलनों पर <math>\mathbb{R}^n</math> तेजी से घटते डेरिवेटिव के साथ; अर्थात।, <math>\sup |x^{\beta} \partial^{\alpha} \varphi| < \infty</math> किसी भी मल्टी-इंडेक्स के लिए <math>\alpha, \beta</math>. (अंतरिक्ष <math>\mathcal{S}</math> [[ श्वार्ट्ज स्थान |श्वार्ट्ज समष्टि]] कहा जाता है।) प्रत्येक के लिए <math>\varphi</math> में <math>\mathcal{S}</math>, टेलर का सूत्र बताता है कि हम लिख सकते हैं:
:<math>\varphi - \psi \varphi(y) = \sum_{j=1}^n (x_j - y_j) \varphi_j</math>
:<math>\varphi - \psi \varphi(y) = \sum_{j=1}^n (x_j - y_j) \varphi_j</math>
साथ <math>\varphi_j \in \mathcal{S}</math>, कहाँ <math>\psi</math> कॉम्पैक्ट समर्थन के साथ एक सुचारू कार्य है और <math>\psi(y) = 1</math>. अभी, मान लीजिए <math>T</math> निर्देशांक के साथ आवागमन; अर्थात।, <math>T (x_j \varphi) = x_j T\varphi</math>. तब
साथ <math>\varphi_j \in \mathcal{S}</math>, कहाँ <math>\psi</math> कॉम्पैक्ट समर्थन के साथ एक सुचारू कार्य है और <math>\psi(y) = 1</math>. अभी, मान लीजिए <math>T</math> निर्देशांक के साथ आवागमन; अर्थात।, <math>T (x_j \varphi) = x_j T\varphi</math>. तब
Line 170: Line 170:
कहाँ <math>v(f)</math> के [[दिशात्मक व्युत्पन्न]] को दर्शाता है <math>f</math> दिशा में <math>v</math> पर <math>p</math>.<ref name="k-form">{{harvnb|Spivak|1965|p=89}}</ref> उदाहरण के लिए, यदि <math>x_i</math> है <math>i</math>-th समन्वय फलन , तब <math>dx_{i, p}(v) = v_i</math>; अर्थात।, <math>dx_{i,p}</math> मानक आधार पर दोहरे आधार हैं <math>T_p M</math>. फिर प्रत्येक अंतर 1-रूप <math>\omega</math> के रूप में विशिष्ट रूप से लिखा जा सकता है
कहाँ <math>v(f)</math> के [[दिशात्मक व्युत्पन्न]] को दर्शाता है <math>f</math> दिशा में <math>v</math> पर <math>p</math>.<ref name="k-form">{{harvnb|Spivak|1965|p=89}}</ref> उदाहरण के लिए, यदि <math>x_i</math> है <math>i</math>-th समन्वय फलन , तब <math>dx_{i, p}(v) = v_i</math>; अर्थात।, <math>dx_{i,p}</math> मानक आधार पर दोहरे आधार हैं <math>T_p M</math>. फिर प्रत्येक अंतर 1-रूप <math>\omega</math> के रूप में विशिष्ट रूप से लिखा जा सकता है
:<math>\omega = f_1 \, dx_1 + \cdots + f_n \, dx_n</math>
:<math>\omega = f_1 \, dx_1 + \cdots + f_n \, dx_n</math>
कुछ सुचारु कार्यों के लिए <math>f_1, \dots, f_n</math> पर <math>M</math> (चूँकि, हर बिंदु के लिए <math>p</math>, रैखिक कार्यात्मक <math>\omega_p</math> का एक अनोखा रैखिक संयोजन है <math>dx_i</math> वास्तविक संख्या से अधिक)। अधिक सामान्यतः, एक अंतर k-फॉर्म एक बिंदु के लिए एक असाइनमेंट है <math>p</math> में <math>M</math> एक सदिश <math>\omega_p</math> में <math>k</math>-वीं [[बाहरी शक्ति]] <math>\bigwedge^k T^*_p M</math> दोहरे समष्टि का <math>T^*_p M</math> का <math>T_p M</math> जिससे कि असाइनमेंट सुचारू रूप से बदलता रहे।<ref name="k-form"/>विशेष रूप से, 0-फ़ॉर्म एक सुचारु फलन के समान है। इसके अतिरिक्त, कोई भी <math>k</math>-प्रपत्र <math>\omega</math> विशिष्ट रूप से इस प्रकार लिखा जा सकता है:
कुछ सुचारु फलनों के लिए <math>f_1, \dots, f_n</math> पर <math>M</math> (चूँकि, हर बिंदु के लिए <math>p</math>, रैखिक कार्यात्मक <math>\omega_p</math> का एक अनोखा रैखिक संयोजन है <math>dx_i</math> वास्तविक संख्या से अधिक)। अधिक सामान्यतः, एक अंतर k-फॉर्म एक बिंदु के लिए एक असाइनमेंट है <math>p</math> में <math>M</math> एक सदिश <math>\omega_p</math> में <math>k</math>-वीं [[बाहरी शक्ति]] <math>\bigwedge^k T^*_p M</math> दोहरे समष्टि का <math>T^*_p M</math> का <math>T_p M</math> जिससे कि असाइनमेंट सुचारू रूप से बदलता रहे।<ref name="k-form"/>विशेष रूप से, 0-फ़ॉर्म एक सुचारु फलन के समान है। इसके अतिरिक्त, कोई भी <math>k</math>-प्रपत्र <math>\omega</math> विशिष्ट रूप से इस प्रकार लिखा जा सकता है:
:<math>\omega = \sum_{i_1 < \cdots < i_k} f_{i_1 \dots i_k} \, dx_{i_1} \wedge \cdots \wedge dx_{i_k}</math>
:<math>\omega = \sum_{i_1 < \cdots < i_k} f_{i_1 \dots i_k} \, dx_{i_1} \wedge \cdots \wedge dx_{i_k}</math>
कुछ सुचारु कार्यों के लिए <math>f_{i_1 \dots i_k}</math>.<ref name="k-form"/>
कुछ सुचारु फलनों के लिए <math>f_{i_1 \dots i_k}</math>.<ref name="k-form"/>


एक सुचारु कार्य की तरह, हम विभेदक रूपों को भिन्न और एकीकृत कर सकते हैं। यदि <math>f</math> तब फिर यह एक सुचारु कार्य है <math>df</math> इस प्रकार लिखा जा सकता है:<ref>{{harvnb|Spivak|1965|loc=Theorem 4-7.}}</ref>
एक सुचारु कार्य की तरह, हम विभेदक रूपों को भिन्न और एकीकृत कर सकते हैं। यदि <math>f</math> तब फिर यह एक सुचारु कार्य है <math>df</math> इस प्रकार लिखा जा सकता है:<ref>{{harvnb|Spivak|1965|loc=Theorem 4-7.}}</ref>
Line 193: Line 193:


=== विभेदक रूपों का एकीकरण ===
=== विभेदक रूपों का एकीकरण ===
यदि <math>\omega = f \, dx_1 \wedge \cdots \wedge dx_n</math> एक खुले उपसमुच्चय M पर एक विभेदक n-रूप है <math>\mathbb{R}^n</math> (कोई भी एन-फॉर्म वह फॉर्म है), फिर इसका एकीकरण खत्म हो गया <math>M</math> मानक अभिविन्यास के साथ इसे इस प्रकार परिभाषित किया गया है:
यदि <math>\omega = f \, dx_1 \wedge \cdots \wedge dx_n</math> एक विवृत उपसमुच्चय M पर एक विभेदक n-रूप है <math>\mathbb{R}^n</math> (कोई भी एन-फॉर्म वह फॉर्म है), फिर इसका एकीकरण खत्म हो गया <math>M</math> मानक अभिविन्यास के साथ इसे इस प्रकार परिभाषित किया गया है:
:<math>\int_M \omega = \int_M f \, dx_1 \cdots dx_n.</math>
:<math>\int_M \omega = \int_M f \, dx_1 \cdots dx_n.</math>
यदि एम को मानक एक के विपरीत अभिविन्यास दिया गया है, तब <math>\int_M \omega</math> दाहिनी ओर के ऋणात्मक के रूप में परिभाषित किया गया है।
यदि एम को मानक एक के विपरीत अभिविन्यास दिया गया है, तब <math>\int_M \omega</math> दाहिनी ओर के ऋणात्मक के रूप में परिभाषित किया गया है।
Line 264: Line 264:
{{math_theorem|name=[[लैग्रेंज गुणक]]|math_statement=<ref>{{harvnb|Spivak|1965|loc=Exercise 5-16.}}</ref> Let <math>g : U \to \mathbb{R}^r</math> के खुले उपसमुच्चय से एक अवकलनीय फलन बनें <math>\mathbb{R}^n</math> such that <math>g'</math> has rank <math>r</math> at every point in <math>g^{-1}(0)</math>. For a differentiable function <math>f : \mathbb{R}^n \to \mathbb{R}</math>, if <math>f</math> एक बिंदु पर अधिकतम या न्यूनतम प्राप्त करता है <math>p</math> in <math>g^{-1}(0)</math>, तब वास्तविक संख्याएँ मौजूद होती हैं <math>\lambda_1, \dots, \lambda_r</math> such that
{{math_theorem|name=[[लैग्रेंज गुणक]]|math_statement=<ref>{{harvnb|Spivak|1965|loc=Exercise 5-16.}}</ref> Let <math>g : U \to \mathbb{R}^r</math> के खुले उपसमुच्चय से एक अवकलनीय फलन बनें <math>\mathbb{R}^n</math> such that <math>g'</math> has rank <math>r</math> at every point in <math>g^{-1}(0)</math>. For a differentiable function <math>f : \mathbb{R}^n \to \mathbb{R}</math>, if <math>f</math> एक बिंदु पर अधिकतम या न्यूनतम प्राप्त करता है <math>p</math> in <math>g^{-1}(0)</math>, तब वास्तविक संख्याएँ मौजूद होती हैं <math>\lambda_1, \dots, \lambda_r</math> such that
:<math>\nabla f(p) = \lambda_i \sum_{i=1}^r \nabla g_i(p)</math>.
:<math>\nabla f(p) = \lambda_i \sum_{i=1}^r \nabla g_i(p)</math>.
दूसरे शब्दों में, <math>p</math> is a [[stationary point]] of <math>f - \sum_1^r \lambda_i g_i</math>.}}
दूसरे शब्दों में, <math>p</math> is a [[स्थिर बिंदु]] of <math>f - \sum_1^r \lambda_i g_i</math>.}}


समुच्चय <math>g^{-1}(0)</math> सामान्यतः इसे बाधा कहा जाता है।
समुच्चय <math>g^{-1}(0)</math> सामान्यतः इसे बाधा कहा जाता है।


उदाहरण:<ref>{{harvnb|Edwards|1994|loc=Ch. II, $ 5. Example 9.}}</ref> मान लीजिए हम वृत्त के मध्य न्यूनतम दूरी ज्ञात करना चाहते हैं <math>x^2 + y^2 = 1</math> और रेखा <math>x + y = 4</math>. इसका कारणहै कि हम फलन को छोटा करना चाहते हैं <math>f(x, y, u, v) = (x - u)^2 + (y - v)^2</math>, एक बिंदु के मध्य की वर्ग दूरी <math>(x, y)</math> वृत्त और एक बिंदु पर <math>(u, v)</math> लाइन पर, बाधा के अनुसार <math>g = (x^2 + y^2 - 1, u + v - 4)</math>. अपने पास:
उदाहरण:<ref>{{harvnb|Edwards|1994|loc=Ch. II, $ 5. Example 9.}}</ref> मान लीजिए हम वृत्त के मध्य न्यूनतम दूरी ज्ञात करना चाहते हैं <math>x^2 + y^2 = 1</math> और रेखा <math>x + y = 4</math>. इसका कारण है कि हम फलन को छोटा करना चाहते हैं <math>f(x, y, u, v) = (x - u)^2 + (y - v)^2</math>, एक बिंदु के मध्य की वर्ग दूरी <math>(x, y)</math> वृत्त और एक बिंदु पर <math>(u, v)</math> लाइन पर, बाधा के अनुसार <math>g = (x^2 + y^2 - 1, u + v - 4)</math>. अपने पास:
:<math>\nabla f = (2(x - u), 2(y - v), -2(x - u), -2(y - v)).</math>
:<math>\nabla f = (2(x - u), 2(y - v), -2(x - u), -2(y - v)).</math>
:<math>\nabla g_1 = (2x, 2y, 0, 0), \nabla g_2 = (0, 0, 1, 1).</math>
:<math>\nabla g_1 = (2x, 2y, 0, 0), \nabla g_2 = (0, 0, 1, 1).</math>
Line 277: Line 277:
इससे यह बात आसानी से समझ में आ जाती है <math>x = y = 1/\sqrt{2}</math> और <math>u = v = 2</math>. अत: न्यूनतम दूरी है <math>2\sqrt{2} - 1</math> (न्यूनतम दूरी स्पष्ट रूप से उपस्तिथ है)।
इससे यह बात आसानी से समझ में आ जाती है <math>x = y = 1/\sqrt{2}</math> और <math>u = v = 2</math>. अत: न्यूनतम दूरी है <math>2\sqrt{2} - 1</math> (न्यूनतम दूरी स्पष्ट रूप से उपस्तिथ है)।


यहां रैखिक बीजगणित का एक अनुप्रयोग है।<ref>{{harvnb|Spivak|1965|loc=Exercise 5-17.}}</ref> होने देना <math>V</math> एक परिमित-आयामी वास्तविक सदिश समष्टि बनें और <math>T : V \to V</math> एक स्व-सहायक ऑपरेटर। हम दिखाएंगे <math>V</math> के eigenvectors से युक्त एक आधार है <math>T</math> (अर्थात।, <math>T</math> विकर्णीय है) के आयाम पर प्रेरण द्वारा <math>V</math>. आधार का चयन करना <math>V</math> हम पहचान सकते हैं <math>V = \mathbb{R}^n</math> और <math>T</math> आव्युह द्वारा दर्शाया गया है <math>[a_{ij}]</math>. फलन पर विचार करें <math>f(x) = (Tx, x)</math>, जहां ब्रैकेट का कारणआंतरिक उत्पाद है। तब <math>\nabla f = 2(\sum a_{1i} x_i, \dots, \sum a_{ni} x_i)</math>. दूसरी ओर, के लिए <math>g = \sum x_i^2 - 1</math>, तब से <math>g^{-1}(0)</math> सघन है, <math>f</math> एक बिंदु पर अधिकतम या न्यूनतम प्राप्त करता है <math>u</math> में <math>g^{-1}(0)</math>. तब से <math>\nabla g = 2(x_1, \dots, x_n)</math>, लैग्रेंज गुणक द्वारा, हम एक वास्तविक संख्या पाते हैं <math>\lambda</math> ऐसा है कि <math>2 \sum_i a_{ji} u_i = 2 \lambda u_j, 1 \le j \le n.</math> किन्तु इसका कारणहै <math>Tu = \lambda u</math>. आगमनात्मक परिकल्पना द्वारा, स्व-सहायक संचालिका <math>T : W \to W</math>, <math>W</math> ओर्थोगोनल पूरक <math>u</math>, eigenvectors से युक्त एक आधार है। इसलिए, हमारा काम हो गया। <math>\square</math>.
यहां रैखिक बीजगणित का एक अनुप्रयोग है।<ref>{{harvnb|Spivak|1965|loc=Exercise 5-17.}}</ref> होने देना <math>V</math> एक परिमित-आयामी वास्तविक सदिश समष्टि बनें और <math>T : V \to V</math> एक स्व-सहायक ऑपरेटर है। हम दिखाएंगे <math>V</math> के eigenvectors से युक्त एक आधार है <math>T</math> (अर्थात, <math>T</math> विकर्णीय है) के आयाम पर प्रेरण द्वारा <math>V</math>. आधार का चयन करना <math>V</math> हम पहचान सकते हैं <math>V = \mathbb{R}^n</math> और <math>T</math> आव्युह द्वारा दर्शाया गया है <math>[a_{ij}]</math>. फलन पर विचार करें <math>f(x) = (Tx, x)</math>, जहां ब्रैकेट का कारणआंतरिक उत्पाद है। तब <math>\nabla f = 2(\sum a_{1i} x_i, \dots, \sum a_{ni} x_i)</math>. दूसरी ओर, के लिए <math>g = \sum x_i^2 - 1</math>, तब से <math>g^{-1}(0)</math> सघन है, <math>f</math> एक बिंदु पर अधिकतम या न्यूनतम प्राप्त करता है <math>u</math> में <math>g^{-1}(0)</math>. तब से <math>\nabla g = 2(x_1, \dots, x_n)</math>, लैग्रेंज गुणक द्वारा, हम एक वास्तविक संख्या पाते हैं <math>\lambda</math> ऐसा है कि <math>2 \sum_i a_{ji} u_i = 2 \lambda u_j, 1 \le j \le n.</math> किन्तु इसका कारणहै <math>Tu = \lambda u</math>. आगमनात्मक परिकल्पना द्वारा, स्व-सहायक संचालिका <math>T : W \to W</math>, <math>W</math> ओर्थोगोनल पूरक <math>u</math>, eigenvectors से युक्त एक आधार है।


=== अशक्त व्युत्पन्न ===
=== अशक्त व्युत्पन्न ===
माप-शून्य समुच्चय तक, दो कार्यों को अन्य कार्यों (जिन्हें परीक्षण फलन कहा जाता है) के विरुद्ध एकीकरण के माध्यम से सामान्तर या नहीं निर्धारित किया जा सकता है। अर्थात्, निम्नलिखित को कभी-कभी विविधताओं के कलन की मौलिक प्रमेयिका कहा जाता है:
माप-शून्य समुच्चय तक, दो फलनों को अन्य फलनों (जिन्हें परीक्षण फलन कहा जाता है) के विरुद्ध एकीकरण के माध्यम से सामान्तर या नहीं निर्धारित किया जा सकता है। अर्थात्, निम्नलिखित को कभी-कभी विविधताओं के कलन की मौलिक प्रमेयिका कहा जाता है:


{{math_theorem|name=लेम्मा<ref>{{harvnb|Hörmander|2015|loc=Theorem 1.2.5.}}</ref>|math_statement=If <math>f, g</math> एक खुले उपसमुच्चय पर स्थानीय रूप से एकीकृत कार्य हैं <math>M \subset \mathbb{R}^n</math> such that
{{math_theorem|name=लेम्मा<ref>{{harvnb|Hörmander|2015|loc=Theorem 1.2.5.}}</ref>|math_statement=If <math>f, g</math> एक खुले उपसमुच्चय पर स्थानीय रूप से एकीकृत कार्य हैं <math>M \subset \mathbb{R}^n</math> such that
Line 294: Line 294:
प्रत्येक समष्टिीय रूप से एकीकृत फलन पर ध्यान दें <math>u</math> रैखिक कार्यात्मकता को परिभाषित करता है <math>\varphi \mapsto \int u \varphi \, dx</math> पर <math>C_c^{\infty}(M)</math> और, इसके अतिरिक्त, प्रारंभिक लेम्मा के कारण, प्रत्येक समष्टिीय रूप से एकीकृत फलन को ऐसे रैखिक फलनल के साथ पहचाना जा सकता है। इसलिए, सामान्यतः, यदि <math>u</math> पर एक रैखिक कार्यात्मक है <math>C_c^{\infty}(M)</math>, फिर हम परिभाषित करते हैं <math>\frac{\partial u}{\partial x_i}</math> रैखिक कार्यात्मक होना <math>\varphi \mapsto -\left \langle u, \frac{\partial \varphi}{\partial x_i} \right\rangle</math> जहां ब्रैकेट का कारणहै <math>\langle \alpha, \varphi \rangle = \alpha(\varphi)</math>. तब इसे इसका [[कमजोर व्युत्पन्न|अशक्त व्युत्पन्न]] कहा जाता है <math>u</math> इसके संबंध में <math>x_i</math>. यदि <math>u</math> निरंतर अवकलनीय है, तब इसका अशक्त व्युत्पन्न सामान्य के साथ मेल खाता है; अर्थात, रैखिक कार्यात्मक <math>\frac{\partial u}{\partial x_i}</math> के सामान्य आंशिक व्युत्पन्न द्वारा निर्धारित रैखिक कार्यात्मक के समान है <math>u</math> इसके संबंध में <math>x_i</math>. एक सामान्य व्युत्पन्न को अधिकांशतः मौलिक व्युत्पन्न कहा जाता है। जब एक रैखिक कार्यात्मक पर <math>C_c^{\infty}(M)</math> एक निश्चित टोपोलॉजी के संबंध में निरंतर है <math>C_c^{\infty}(M)</math>, ऐसे रैखिक कार्यात्मक को [[वितरण (गणित)]] कहा जाता है, जो एक सामान्यीकृत फलन का एक उदाहरण है।
प्रत्येक समष्टिीय रूप से एकीकृत फलन पर ध्यान दें <math>u</math> रैखिक कार्यात्मकता को परिभाषित करता है <math>\varphi \mapsto \int u \varphi \, dx</math> पर <math>C_c^{\infty}(M)</math> और, इसके अतिरिक्त, प्रारंभिक लेम्मा के कारण, प्रत्येक समष्टिीय रूप से एकीकृत फलन को ऐसे रैखिक फलनल के साथ पहचाना जा सकता है। इसलिए, सामान्यतः, यदि <math>u</math> पर एक रैखिक कार्यात्मक है <math>C_c^{\infty}(M)</math>, फिर हम परिभाषित करते हैं <math>\frac{\partial u}{\partial x_i}</math> रैखिक कार्यात्मक होना <math>\varphi \mapsto -\left \langle u, \frac{\partial \varphi}{\partial x_i} \right\rangle</math> जहां ब्रैकेट का कारणहै <math>\langle \alpha, \varphi \rangle = \alpha(\varphi)</math>. तब इसे इसका [[कमजोर व्युत्पन्न|अशक्त व्युत्पन्न]] कहा जाता है <math>u</math> इसके संबंध में <math>x_i</math>. यदि <math>u</math> निरंतर अवकलनीय है, तब इसका अशक्त व्युत्पन्न सामान्य के साथ मेल खाता है; अर्थात, रैखिक कार्यात्मक <math>\frac{\partial u}{\partial x_i}</math> के सामान्य आंशिक व्युत्पन्न द्वारा निर्धारित रैखिक कार्यात्मक के समान है <math>u</math> इसके संबंध में <math>x_i</math>. एक सामान्य व्युत्पन्न को अधिकांशतः मौलिक व्युत्पन्न कहा जाता है। जब एक रैखिक कार्यात्मक पर <math>C_c^{\infty}(M)</math> एक निश्चित टोपोलॉजी के संबंध में निरंतर है <math>C_c^{\infty}(M)</math>, ऐसे रैखिक कार्यात्मक को [[वितरण (गणित)]] कहा जाता है, जो एक सामान्यीकृत फलन का एक उदाहरण है।


अशक्त व्युत्पन्न का एक उत्कृष्ट उदाहरण [[हेविसाइड फ़ंक्शन|हेविसाइड फलन]] है <math>H</math>, अंतराल पर विशेषता कार्य <math>(0, \infty)</math>.<ref>{{harvnb|Hörmander|2015|loc=Example 3.1.2.}}</ref> प्रत्येक परीक्षण फलन के लिए <math>\varphi</math>, अपने पास:
अशक्त व्युत्पन्न का एक उत्कृष्ट उदाहरण हेविसाइड फलन है <math>H</math>, अंतराल पर विशेषता कार्य <math>(0, \infty)</math>.<ref>{{harvnb|Hörmander|2015|loc=Example 3.1.2.}}</ref> प्रत्येक परीक्षण फलन के लिए <math>\varphi</math>, अपने पास:
:<math>\langle H', \varphi \rangle = -\int_0^{\infty} \varphi' \, dx = \varphi(0).</math>
:<math>\langle H', \varphi \rangle = -\int_0^{\infty} \varphi' \, dx = \varphi(0).</math>
होने देना <math>\delta_a</math> रैखिक कार्यात्मक को निरूपित करें <math>\varphi \mapsto \varphi(a)</math>, जिसे [[डिराक डेल्टा फ़ंक्शन|डिराक डेल्टा फलन]] कहा जाता है (चूँकि यह वास्तव में एक फलन नहीं है)। फिर उपरोक्त को इस प्रकार लिखा जा सकता है:
होने देना <math>\delta_a</math> रैखिक कार्यात्मक को निरूपित करें <math>\varphi \mapsto \varphi(a)</math>, जिसे [[डिराक डेल्टा फ़ंक्शन|डिराक डेल्टा फलन]] कहा जाता है (चूँकि यह वास्तव में एक फलन नहीं है)। फिर उपरोक्त को इस प्रकार लिखा जा सकता है:
Line 317: Line 317:
*<math>U_i</math> का एक खुला आवरण हैं <math>M</math>; अर्थात, प्रत्येक <math>U_i</math> खुला है और <math>M = \cup_i U_i</math>,
*<math>U_i</math> का एक खुला आवरण हैं <math>M</math>; अर्थात, प्रत्येक <math>U_i</math> खुला है और <math>M = \cup_i U_i</math>,
*<math>\varphi_i : U_i \to \varphi_i(U_i)</math> एक समरूपता है और
*<math>\varphi_i : U_i \to \varphi_i(U_i)</math> एक समरूपता है और
*<math>\varphi_j \circ \varphi_i^{-1} : \varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j)</math> चिकना है; इस प्रकार एक भिन्नतावाद।
*<math>\varphi_j \circ \varphi_i^{-1} : \varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j)</math> चिकना है; इस प्रकार एक भिन्नतावाद है।
परिभाषा के अनुसार, मैनिफोल्ड एक अधिकतम एटलस (जिसे एक [[भिन्न संरचना]] कहा जाता है) के साथ एक दूसरी-गणनीय हॉसडॉर्फ टोपोलॉजिकल समष्टि है; मैक्सिमम का कारण है कि यह सख्ती से बड़े एटलस में सम्मिलित नहीं है। अनेक गुना का आयाम <math>M</math> मॉडल यूक्लिडियन समष्टि का आयाम है <math>\mathbb{R}^n</math>; अर्थात्, <math>n</math> और मैनिफोल्ड को एन-मैनिफोल्ड कहा जाता है जब इसका आयाम एन होता है। मैनिफ़ोल्ड पर एक फलन <math>M</math> यदि चिकनी कहा जाता है <math>f|_U \circ \varphi^{-1}</math> चिकनी है <math>\varphi(U)</math> प्रत्येक चार्ट के लिए <math>\varphi : U \to \mathbb{R}^n</math> भिन्न संरचना में.
परिभाषा के अनुसार, मैनिफोल्ड एक अधिकतम एटलस (जिसे एक [[भिन्न संरचना]] कहा जाता है) के साथ एक दूसरी-गणनीय हॉसडॉर्फ टोपोलॉजिकल समष्टि है; मैक्सिमम का कारण है कि यह सख्ती से बड़े एटलस में सम्मिलित नहीं है। अनेक गुना का आयाम <math>M</math> मॉडल यूक्लिडियन समष्टि का आयाम है <math>\mathbb{R}^n</math>; अर्थात्, <math>n</math> और मैनिफोल्ड को एन-मैनिफोल्ड कहा जाता है जब इसका आयाम एन होता है। मैनिफ़ोल्ड पर एक फलन <math>M</math> यदि चिकनी कहा जाता है <math>f|_U \circ \varphi^{-1}</math> चिकनी है <math>\varphi(U)</math> प्रत्येक चार्ट के लिए <math>\varphi : U \to \mathbb{R}^n</math> भिन्न संरचना में.


मैनिफोल्ड [[पैराकॉम्पैक्ट स्पेस|पैराकॉम्पैक्ट समष्टि]] है; इसका निहितार्थ यह है कि यह किसी दिए गए खुले आवरण के अधीन एकता के विभाजन को स्वीकार करता है।
मैनिफोल्ड [[पैराकॉम्पैक्ट स्पेस|पैराकॉम्पैक्ट समष्टि]] है; इसका निहितार्थ यह है कि यह किसी दिए गए विवृत आवरण के अधीन एकता के विभाजन को स्वीकार करता है।


यदि <math>\mathbb{R}^n</math> ऊपरी आधे समष्टि द्वारा प्रतिस्थापित किया जाता है <math>\mathbb{H}^n</math>, तब हमें सीमा के साथ अनेक गुना की धारणा प्राप्त होती है। बिंदुओं का समूह जो की सीमा को दर्शाता है <math>\mathbb{H}^n</math> चार्ट के अंतर्गत इसे दर्शाया गया है <math>\partial M</math> और की सीमा कहलाती है <math>M</math>. यह सीमा टोपोलॉजिकल सीमा नहीं हो सकती है <math>M</math>. के आंतरिक भाग के पश्चात् से <math>\mathbb{H}^n</math> से भिन्न है <math>\mathbb{R}^n</math>, मैनिफोल्ड खाली सीमा के साथ एक मैनिफोल्ड-विथ-बाउंड्री है।
यदि <math>\mathbb{R}^n</math> ऊपरी आधे समष्टि द्वारा प्रतिस्थापित किया जाता है <math>\mathbb{H}^n</math>, तब हमें सीमा के साथ अनेक गुना की धारणा प्राप्त होती है। बिंदुओं का समूह जो की सीमा को दर्शाता है <math>\mathbb{H}^n</math> चार्ट के अंतर्गत इसे दर्शाया गया है <math>\partial M</math> और की सीमा कहलाती है <math>M</math>. यह सीमा टोपोलॉजिकल सीमा नहीं हो सकती है <math>M</math>. के आंतरिक भाग के पश्चात् से <math>\mathbb{H}^n</math> से भिन्न है <math>\mathbb{R}^n</math>, मैनिफोल्ड खाली सीमा के साथ एक मैनिफोल्ड-विथ-बाउंड्री है।
Line 353: Line 353:
'''अनेक गुना और वितरण घनत्व पर एकीकरण'''
'''अनेक गुना और वितरण घनत्व पर एकीकरण'''


मैनिफोल्ड्स पर एकीकरण के विषय का प्रारंभिक बिंदु यह है कि मैनिफोल्ड्स पर कार्यों को एकीकृत करने का कोई अपरिवर्तनीय विधि नहीं है। यह स्पष्ट हो सकता है यदि हमने पूछा: एक परिमित-आयामी वास्तविक सदिश समष्टि पर कार्यों का एकीकरण क्या है? (इसके विपरीत, विभेदीकरण करने का एक अपरिवर्तनीय विधि है, क्योंकि परिभाषा के अनुसार, मैनिफोल्ड एक विभेदक संरचना के साथ आता है)। एकीकरण सिद्धांत को अनेक गुना प्रस्तुतकरने के अनेक तरीके हैं:
मैनिफोल्ड्स पर एकीकरण के विषय का प्रारंभिक बिंदु यह है कि मैनिफोल्ड्स पर फलनों को एकीकृत करने का कोई अपरिवर्तनीय विधि नहीं है। यह स्पष्ट हो सकता है यदि हमने पूछा: एक परिमित-आयामी वास्तविक सदिश समष्टि पर फलनों का एकीकरण क्या है? (इसके विपरीत, विभेदीकरण करने का एक अपरिवर्तनीय विधि है, क्योंकि परिभाषा के अनुसार, मैनिफोल्ड एक विभेदक संरचना के साथ आता है)। एकीकरण सिद्धांत को अनेक गुना प्रस्तुतकरने के अनेक तरीके हैं:
*विभेदक रूपों को एकीकृत करें।
*विभेदक रूपों को एकीकृत करें।
*किसी उपाय के विरुद्ध एकीकरण करें।
*किसी उपाय के विरुद्ध एकीकरण करें।
Line 390: Line 390:
*{{Citation|url =https://archive.org/details/1979RudinW|title =गणितीय विश्लेषण के सिद्धांत|last =रूडिन|first =वाल्टर|publisher =मैकग्रा हिल|year=1976|isbn =978-0-07-054235-8|edition=3rd|location =न्यूयॉर्क|pages=204–299|doi =|author-link =वाल्टर रुडिन|orig-year=1953}}
*{{Citation|url =https://archive.org/details/1979RudinW|title =गणितीय विश्लेषण के सिद्धांत|last =रूडिन|first =वाल्टर|publisher =मैकग्रा हिल|year=1976|isbn =978-0-07-054235-8|edition=3rd|location =न्यूयॉर्क|pages=204–299|doi =|author-link =वाल्टर रुडिन|orig-year=1953}}
* {{cite book |title=मैनिफोल्ड्स पर कैलकुलस: उन्नत कैलकुलस के शास्त्रीय प्रमेयों के लिए एक आधुनिक दृष्टिकोण |last1=स्पिवक|first1=माइकल|title-link=मैनिफोल्ड्स पर कैलकुलस (पुस्तक)|publisher= बेंजामिन कमिंग्स |year=1965 |isbn=0-8053-9021-9 |location=सैन फ्रांसिस्को |pages= |author1-link=माइकल स्पिवक }}
* {{cite book |title=मैनिफोल्ड्स पर कैलकुलस: उन्नत कैलकुलस के शास्त्रीय प्रमेयों के लिए एक आधुनिक दृष्टिकोण |last1=स्पिवक|first1=माइकल|title-link=मैनिफोल्ड्स पर कैलकुलस (पुस्तक)|publisher= बेंजामिन कमिंग्स |year=1965 |isbn=0-8053-9021-9 |location=सैन फ्रांसिस्को |pages= |author1-link=माइकल स्पिवक }}
[[Category: गणना]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category:CS1 français-language sources (fr)]]
[[Category: Machine Translated Page]]
[[Category:Created On 24/07/2023]]
[[Category:Created On 24/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with maths render errors]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:गणना]]

Latest revision as of 13:45, 3 August 2023

गणित में, यूक्लिडियन समष्टि पर गणना, यूक्लिडियन समष्टि पर फलनों के गणना के लिए एक या अनेक चर में फलनों के गणना का एक सामान्यीकरण है। साथ ही एक परिमित-आयामी वास्तविक सदिश समष्टि है। इस गणना को विशेष रूप से संयुक्त राज्य अमेरिका में उन्नत गणना के रूप में भी जाना जाता है। यह बहुपरिवर्तनीय गणना के समान है, किन्तु किसी भी तरह से अधिक परिष्कृत है क्योंकि यह रैखिक बीजगणित (या कुछ कार्यात्मक विश्लेषण) का अधिक व्यापक रूप से उपयोग करता है और अंतर ज्यामिति से कुछ अवधारणाओं को सम्मिलित करता है जैसे कि अंतर रूपों और अंतर रूपों के संदर्भ में स्टोक्स का सूत्र। रैखिक बीजगणित का यह व्यापक उपयोग बानाच रिक्त समष्टि या टोपोलॉजिकल सदिश रिक्त समष्टि पर गणना के लिए बहुपरिवर्तनीय गणना के प्राकृतिक सामान्यीकरण की भी अनुमति देता है।

यूक्लिडियन समष्टि पर गणना भी मैनिफोल्ड्स पर गणना का एक समष्टिीय मॉडल है, जो मैनिफोल्ड्स पर फलनों का एक सिद्धांत है।

मूलभूतधारणाएँ

एक वास्तविक चर में कार्य

यह खंड एक-चर कलन में फलन सिद्धांत की एक संक्षिप्त समीक्षा है।

एक वास्तविक-मूल्यवान कार्य पर निरंतर है यदि यह लगभग स्थिर है ; अर्थात:

इसके विपरीत, फलन पर भिन्न है यदि यह लगभग रैखिक है ; अर्थात, कुछ वास्तविक संख्या है ऐसा है कि

[1]

(सरलता के लिए, मान लीजिए . तब फिर उपरोक्त का कारणयही है कहाँ h, 0 पर जाने की तुलना में तेजी से 0 पर जाता है और, इस अर्थ में, जैसा व्यवहार करता है .)

जो नंबर पर निर्भर करता है और इस प्रकार दर्शाया गया है . यदि विवृत अंतराल पर अवकलनीय है और यदि पर एक सतत कार्य है , तब सी कहा जाता है1फलन. सामान्यतः अधिक, सी कहा जाता हैk फलन यदि यह व्युत्पन्न है सी हैk-1फलन। टेलर के प्रमेय में कहा गया है कि एक सीk फलन वास्तव में एक फलन है जिसे डिग्री k के बहुपद द्वारा अनुमानित किया जा सकता है।

यदि एक सी है1कार्य और कुछ के लिए , तब कोई या ; अर्थात, या तब किसी विवृत अंतराल में सख्ती से बढ़ रहा है या सख्ती से घट रहा है। विशेष रूप से, कुछ विवृत अंतराल के लिए विशेषण है युक्त . व्युत्क्रम फलन प्रमेय तब कहता है कि व्युत्क्रम फलन यू पर डेरिवेटिव के साथ अवकलनीय है: के लिए

मानचित्र और श्रृंखला नियम का व्युत्पन्न

फलनों के लिए समतल में या अधिक सामान्यतः यूक्लिडियन समष्टि पर परिभाषित , उन फलनों पर विचार करना आवश्यक है जो सदिश-मूल्यवान या आव्युह-मूल्यवान हैं। इसे अपरिवर्तनीय तरीके से (अर्थात, समन्वय-मुक्त तरीके से) करना वैचारिक रूप से भी सहायक है। किसी बिंदु पर ऐसे मानचित्रों के व्युत्पन्न तब सदिश या रैखिक मानचित्र होते हैं, वास्तविक संख्याएँ नहीं।

होने देना एक विवृत उपसमुच्चय से एक मानचित्र बनें का एक विवृत उपसमुच्चय के लिए का . फिर नक्शा एक बिंदु पर अवकलनीय फलन कहा जाता है में यदि कोई (आवश्यक रूप से अद्वितीय) रैखिक परिवर्तन उपस्तिथ है , का व्युत्पन्न कहा जाता है पर , ऐसा है कि

कहाँ रैखिक परिवर्तन का अनुप्रयोग है को .[2] यदि पर भिन्न है , तब यह निरंतर है तब से

जैसा .

जैसा कि एक-चर चूँकिमें है, वहाँ है

श्रृंखला नियम — [3] Let ऊपर जैसा हो और कुछ खुले उपसमुच्चय के लिए एक मानचित्र of . If पर भिन्न है and पर भिन्न , फिर रचना पर भिन्न है व्युत्पन्न के साथ

यह बिल्कुल एक चर में फलनों के लिए सिद्ध होता है। मुख्य रूप से, संकेतन के साथ , अपने पास:

यहाँ, तब से पर भिन्न है , दाईं ओर दूसरा पद शून्य हो जाता है . जहाँ तक पहले पद की बात है, इसे इस प्रकार लिखा जा सकता है:

अभी, निरंतरता दर्शाने वाले तर्क से पर , हम देखते हैं घिरा है। भी, जैसा तब से पर निरंतर है . इसलिए, पहला पद भी शून्य हो जाता है की भिन्नता से पर . वो नक्शा जैसा कि ऊपर कहा गया है निरंतर अवकलनीय या यदि यह डोमेन पर भिन्न है और डेरिवेटिव भी लगातार भिन्न होते हैं; अर्थात।, सतत है.

उपप्रमेय — If फिर, लगातार भिन्न होते हैं निरंतर भिन्न है।

एक रैखिक परिवर्तन के रूप में, एक द्वारा दर्शाया गया है -आव्युह, जिसे जैकोबियन आव्युह कहा जाता है का पर और हम इसे इस प्रकार लिखते हैं:

ले रहा होना , एक वास्तविक संख्या और जे-वें मानक आधार तत्व, हम देखते हैं कि भिन्नता पर तात्पर्य:

कहाँ के i-वें घटक को दर्शाता है . अर्थात प्रत्येक घटक पर भिन्न है व्युत्पन्न के साथ प्रत्येक चर में . जैकोबियन आव्युह के संदर्भ में, श्रृंखला नियम कहता है ; अर्थात, जैसे ,

जो शृंखला नियम का वह रूप है जो अधिकांशतः बताया जाता है।

उपरोक्त का आंशिक उलटा ही सही है। अर्थात्, यदि आंशिक व्युत्पन्न तब, सभी परिभाषित और निरंतर हैं निरंतर भिन्न है।[4] यह माध्य मूल्य असमानता का परिणाम है:

Mean value inequality — [5] Given the map as above and points in such that the line segment between lies in , if is continuous on and is differentiable on the interior, then, for any vector ,

where

(माध्य मूल्य असमानता का यह संस्करण माध्य मूल्य असमानता से अनुसरण करता है माध्य मान प्रमेय वेक्टर-मूल्यवान कार्यों के लिए माध्य मान प्रमेय § Notes फलन पर क्रियान्वित किया गया , जहां माध्य मूल्य असमानता पर प्रमाण दिया गया है।)

वास्तव में, चलो . हम ध्यान दें कि, यदि , तब

सरलता के लिए, मान लीजिए (सामान्य चूँकिके लिए तर्क समान है)। फिर, औसत मूल्य असमानता से, ऑपरेटर मानदंड के साथ ,

जो यह दर्शाता हे आवश्यकता अनुसार।

उदाहरण: चलो आकार n के सभी व्युत्क्रमणीय वास्तविक वर्ग आव्यूहों का समुच्चय बनें। टिप्पणी के एक विवृत उपसमुच्चय के रूप में पहचाना जा सकता है निर्देशांक के साथ . फलन पर विचार करें = का व्युत्क्रम आव्युह पर परिभाषित . इसके व्युत्पन्न का अनुमान लगाने के लिए, मान लें अवकलनीय है और वक्र पर विचार करें कहाँ का कारणआव्युह घातांक है . श्रृंखला नियम द्वारा क्रियान्वित किया गया , अपने पास:

.

ले रहा , हम पाते हैं:

.

अभी, हमारे पास है:[6]

चूंकि ऑपरेटर मानदंड यूक्लिडियन मानदंड के सामान्तर है (कोई भी मानदंड एक दूसरे के समतुल्य हैं), इसका तात्पर्य है विभेदनीय है. अंत में, सूत्र से , हम इसका आंशिक व्युत्पन्न देखते हैं चिकने हैं (असीम रूप से भिन्न); कहाँ से, चिकना भी है.

उच्च डेरिवेटिव और टेलर सूत्र

यदि जहाँ भिन्न है एक खुला उपसमुच्चय है, तब व्युत्पन्न मानचित्र निर्धारित करते हैं , कहाँ सदिश समष्टिों के मध्य समरूपता को दर्शाता है; अर्थात, रैखिक मानचित्र। यदि तब फिर, भिन्न-भिन्न है . यहाँ, का कोडोमेन द्विरेखीय मानचित्रों के समष्टि से इसकी पहचान निम्न द्वारा की जा सकती है:

कहाँ और व्युत्क्रम के साथ विशेषण है द्वारा दिए गए .[lower-alpha 1] सामान्य रूप में, से एक नक्शा है के समष्टि पर -बहुरेखीय मानचित्र .

जिस प्रकार एक आव्युह (जैकोबियन आव्युह) द्वारा दर्शाया जाता है, जब (एक द्विरेखीय मानचित्र एक द्विरेखीय रूप है), द्विरेखीय रूप एक आव्युह द्वारा दर्शाया जाता है जिसे हेस्सियन आव्युह कहा जाता है पर ; अर्थात्, वर्ग आव्युह आकार का ऐसा है कि , जहां परिंग का तात्पर्य किसी आंतरिक उत्पाद से है , और जैकोबियन आव्युह के अतिरिक्त और कोई नहीं है . वें>-वें की प्रविष्टि इस प्रकार स्पष्ट रूप से दिया गया है .

इसके अतिरिक्त, यदि अस्तित्व में है और निरंतर है, फिर आव्युह सममित आव्युह है, इस तथ्य को दूसरे डेरिवेटिव की समरूपता के रूप में जाना जाता है।[7] इसे औसत मूल्य असमानता का उपयोग करके देखा जाता है। वैक्टर के लिए में , औसत मूल्य असमानता का दो बार उपयोग करने पर, हमारे पास है:

जो कहते हैं

चूँकि दाहिना भाग सममित है , बाईं ओर भी ऐसा ही है: . प्रेरण द्वारा, यदि है , फिर k-बहुरेखीय मानचित्र सममित है; अर्थात, आंशिक व्युत्पन्न लेने का क्रम कोई मायने नहीं रखता।[7]

जैसा कि एक चर के चूँकिमें, टेलर श्रृंखला विस्तार को भागों द्वारा एकीकरण द्वारा सिद्ध किया जा सकता है:

टेलर के सूत्र में किसी फलन को चर द्वारा विभाजित करने का प्रभाव होता है, जिसे सूत्र के अगले विशिष्ट सैद्धांतिक उपयोग द्वारा चित्रित किया जा सकता है।

उदाहरण:[8] होने देना सदिश समष्टि के मध्य एक रेखीय मानचित्र बनें सुचारू फलनों पर तेजी से घटते डेरिवेटिव के साथ; अर्थात।, किसी भी मल्टी-इंडेक्स के लिए . (अंतरिक्ष श्वार्ट्ज समष्टि कहा जाता है।) प्रत्येक के लिए में , टेलर का सूत्र बताता है कि हम लिख सकते हैं:

साथ , कहाँ कॉम्पैक्ट समर्थन के साथ एक सुचारू कार्य है और . अभी, मान लीजिए निर्देशांक के साथ आवागमन; अर्थात।, . तब

.

उपरोक्त का मूल्यांकन करते हुए , हम पाते हैं दूसरे शब्दों में, किसी फलन द्वारा गुणन है ; अर्थात।, . अभी आगे मान लीजिये आंशिक भिन्नता के साथ आवागमन करता है। फिर हम उसे आसानी से देख पाते हैं एक स्थिरांक है; एक स्थिरांक से गुणा है.

(एक तरफ: उपरोक्त चर्चा फूरियर व्युत्क्रम सूत्र को लगभग सिद्ध करती है। वास्तव में, चलो फूरियर रूपांतरण और प्रतिबिंब बनें; अर्थात।, . फिर, इसमें सम्मिलित अभिन्न अंग से सीधे निपटते हुए, कोई भी देख सकता है निर्देशांक और आंशिक विभेदन के साथ आवागमन; इस तरह, एक स्थिरांक से गुणा है. यह लगभग एक प्रमाण है क्योंकि किसी को अभी भी इस स्थिरांक की गणना करनी है।)

टेलर सूत्र का आंशिक विपरीत भी है; बोरेल की लेम्मा और व्हिटनी विस्तार प्रमेय देखें।

व्युत्क्रम फलन प्रमेय और निमज्जन प्रमेय

व्युत्क्रम फलन प्रमेय — Let खुले उपसमुच्चय के बीच एक मानचित्र बनें in . If निरंतर भिन्न है (या अधिक सामान्यतः ) and विशेषण है, पड़ोस मौजूद हैं of और उलटा वह लगातार भिन्न होता है (या क्रमशः) ).

-मानचित्र के साथ - व्युत्क्रम को a कहा जाता है -विभिन्नरूपता. इस प्रकार, प्रमेय कहता है कि, एक मानचित्र के लिए एक बिंदु पर परिकल्पना को संतुष्ट करना , निकट एक भिन्नरूपता है प्रमाण के लिए देखें व्युत्क्रम फलन प्रमेय क्रमिक सन्निकटन का उपयोग करते हुए एक प्रमाण § Notes.

अंतर्निहित कार्य प्रमेय कहता है:[9] एक नक्शा दिया , यदि , है के एक पड़ोस में और का व्युत्पन्न पर उलटा है, तब एक भिन्न मानचित्र उपस्तिथ है कुछ पड़ोस के लिए का ऐसा है कि . प्रमेय व्युत्क्रम फलन प्रमेय से अनुसरण करता है; देखना व्युत्क्रम फलन प्रमेय निहित फलन प्रमेय § Notes.

एक अन्य परिणाम विसर्जन प्रमेय है।

यूक्लिडियन समष्टि पर इंटीग्रेबल फ़ंक्शंस

एक अंतराल का विभाजन एक सीमित क्रम है . एक विभाजन एक आयत का (अंतराल का उत्पाद) में फिर इसके किनारों के विभाजन सम्मिलित हैं ; अर्थात, यदि , तब के होते हैं ऐसा है कि का एक विभाजन है .[10] एक फलन दिया गया पर , फिर हम इसके ऊपरी रीमैन योग को इस प्रकार परिभाषित करते हैं:

कहाँ

  • का एक विभाजन तत्व है ; अर्थात।, कब का एक विभाजन है .[11]
  • आयतन का सामान्य यूक्लिडियन आयतन है; अर्थात।, .

निचला रीमैन योग का फिर प्रतिस्थापित करके परिभाषित किया जाता है द्वारा . अंत में, फलन यदि यह परिबद्ध है तब इसे पूर्णांकीय फलन कहा जाता है . उस स्थिति में, सामान्य मान को इस प्रकार दर्शाया जाता है .[12]

का एक उपसमुच्चय कहा जाता है कि प्रत्येक के लिए माप शून्य है , कुछ संभवतः अपरिमित रूप से अनेक आयतें हैं जिसके संघ में समुच्चय और सम्मिलित है [13]

एक प्रमुख प्रमेय है

प्रमेय — [14] एक बंधा हुआ कार्य एक बंद आयत पर पूर्णांक है यदि और केवल यदि सेट हो माप शून्य है.

अगला प्रमेय हमें एक फलन के इंटीग्रल की गणना एक-चर में फलन के इंटीग्रल्स की पुनरावृत्ति के रूप में करने की अनुमति देता है:

फ़ुबिनी का प्रमेय — If एक बंद आयत पर एक सतत फलन है (वास्तव में, यह धारणा बहुत मजबूत है), तो

विशेष रूप से, एकीकरण का क्रम बदला जा सकता है।

अंततः, यदि एक परिबद्ध खुला उपसमुच्चय है और एक फलन चालू , फिर हम परिभाषित करते हैं कहाँ एक बंद आयत है जिसमें और पर विशेषता कार्य है ; अर्थात।, यदि और यदि परंतु अभिन्न है.[15]

सतह अभिन्न

यदि एक घिरी हुई सतह में द्वारा पैरामीट्रिज्ड किया गया है डोमेन के साथ , फिर एक मापने योग्य फलन का सतह अभिन्न अंग पर परिभाषित और निरूपित किया गया है:

यदि सदिश-मूल्यवान है, तब हम परिभाषित करते हैं

कहाँ के लिए एक बाहरी इकाई सामान्य सदिश है . तब से , अपने पास:

सदिश विश्लेषण

स्पर्शरेखा सदिश और सदिश क्षेत्र

होने देना एक अवकलनीय वक्र बनें। फिर वक्र का स्पर्शरेखा सदिश पर एक सदिश है बिंदु पर जिसके घटक इस प्रकार दिए गए हैं:

.[16]

उदाहरण के लिए, यदि एक हेलिक्स है, तब t पर स्पर्शरेखा सदिश है:

यह इस अंतर्ज्ञान से मेल खाता है कि हेलिक्स पर एक बिंदु एक स्थिर गति से ऊपर बढ़ता है।

यदि एक अवकलनीय वक्र या सतह है, फिर स्पर्शरेखा समष्टि एक बिंदु पर p अवकलनीय वक्रों के सभी स्पर्शरेखा सदिशों का समुच्चय है साथ .

एक सदिश क्षेत्र X, M में प्रत्येक बिंदु p के लिए एक स्पर्शरेखा सदिश है पी पर एम से इस तरह कि असाइनमेंट सुचारू रूप से बदलता रहे।

विभेदक रूप

सदिश क्षेत्र की दोहरी धारणा एक विभेदक रूप है। एक खुला उपसमुच्चय दिया गया में , परिभाषा के अनुसार, एक विभेदक रूप|अंतर 1-रूप (अधिकांशतः केवल 1-रूप) एक बिंदु के लिए एक असाइनमेंट है में एक रैखिक कार्यात्मक स्पर्शरेखा समष्टि पर को पर जिससे कि असाइनमेंट सुचारू रूप से बदलता रहे। एक (वास्तविक या समष्टि-मूल्यवान) सुचारू कार्य के लिए , 1-फॉर्म को परिभाषित करें द्वारा: एक स्पर्शरेखा सदिश के लिए पर ,

कहाँ के दिशात्मक व्युत्पन्न को दर्शाता है दिशा में पर .[17] उदाहरण के लिए, यदि है -th समन्वय फलन , तब ; अर्थात।, मानक आधार पर दोहरे आधार हैं . फिर प्रत्येक अंतर 1-रूप के रूप में विशिष्ट रूप से लिखा जा सकता है

कुछ सुचारु फलनों के लिए पर (चूँकि, हर बिंदु के लिए , रैखिक कार्यात्मक का एक अनोखा रैखिक संयोजन है वास्तविक संख्या से अधिक)। अधिक सामान्यतः, एक अंतर k-फॉर्म एक बिंदु के लिए एक असाइनमेंट है में एक सदिश में -वीं बाहरी शक्ति दोहरे समष्टि का का जिससे कि असाइनमेंट सुचारू रूप से बदलता रहे।[17]विशेष रूप से, 0-फ़ॉर्म एक सुचारु फलन के समान है। इसके अतिरिक्त, कोई भी -प्रपत्र विशिष्ट रूप से इस प्रकार लिखा जा सकता है:

कुछ सुचारु फलनों के लिए .[17]

एक सुचारु कार्य की तरह, हम विभेदक रूपों को भिन्न और एकीकृत कर सकते हैं। यदि तब फिर यह एक सुचारु कार्य है इस प्रकार लिखा जा सकता है:[18]

तब से , अपने पास: . ध्यान दें कि, उपरोक्त अभिव्यक्ति में, बाईं ओर (जहां से दाईं ओर) निर्देशांक से स्वतंत्र है ; इस गुण को अंतर का अपरिवर्तनशीलता कहा जाता है।

संचालन इसे बाह्य व्युत्पन्न कहा जाता है और यह आवश्यकता के अनुसार आगमनात्मक रूप से किसी भी भिन्न रूप तक विस्तारित होता है (उत्पाद नियम)

कहाँ एक पी-फॉर्म और एक क्यू-फॉर्म हैं।

बाहरी व्युत्पन्न में वह महत्वपूर्ण गुण होता है ; वह है, बाहरी व्युत्पन्न एक भिन्न रूप का शून्य है. यह संपत्ति दूसरे डेरिवेटिव की समरूपता का परिणाम है (मिश्रित आंशिक सामान्तर हैं)।

सीमा और अभिविन्यास

एक वृत्त को दक्षिणावर्त या वामावर्त दिशा में उन्मुख किया जा सकता है। गणितीय रूप से, हम कहते हैं कि एक उपसमुच्चय का यदि सामान्य सदिशों का एक सुसंगत विकल्प हो तब उन्मुख होता है जो लगातार बदलता रहता है. उदाहरण के लिए, एक वृत्त या, अधिक सामान्यतः, एक n-गोले को उन्मुख किया जा सकता है; अर्थात, ओरिएंटेबल. दूसरी ओर, एक मोबियस पट्टी (आयत की दो विपरीत भुजाओं द्वारा घुमाकर प्राप्त की गई सतह) उन्मुख नहीं हो सकती: यदि हम एक सामान्य सदिश से प्रारंभ करते हैं और पट्टी के चारों ओर यात्रा करते हैं, तब अंत में सामान्य सदिश विपरीत दिशा की ओर संकेत करेगा।

प्रस्ताव — एक घिरा हुआ अलग-अलग क्षेत्र in आयाम का उन्मुख तभी होता है जब कहीं गायब होने वाला अस्तित्व मौजूद होता है -form on (वॉल्यूम फॉर्म कहा जाता है).

प्रस्ताव उपयोगी है क्योंकि यह हमें वॉल्यूम फॉर्म देकर एक अभिविन्यास देने की अनुमति देता है।

विभेदक रूपों का एकीकरण

यदि एक विवृत उपसमुच्चय M पर एक विभेदक n-रूप है (कोई भी एन-फॉर्म वह फॉर्म है), फिर इसका एकीकरण खत्म हो गया मानक अभिविन्यास के साथ इसे इस प्रकार परिभाषित किया गया है:

यदि एम को मानक एक के विपरीत अभिविन्यास दिया गया है, तब दाहिनी ओर के ऋणात्मक के रूप में परिभाषित किया गया है।

फिर हमारे पास बाहरी व्युत्पन्न और एकीकरण से संबंधित मौलिक सूत्र है:

स्टोक्स का सूत्र — एक सीमाबद्ध क्षेत्र के लिए in आयाम का जिसकी सीमा अनंत अनेकों का मिलन है -subsets, if तब उन्मुख है

किसी भी अंतर के लिए -form सीमा पर of .

यहां सूत्र के प्रमाण का एक रेखाचित्र दिया गया है।[19] यदि पर एक सुचारू कार्य है कॉम्पैक्ट समर्थन के साथ, तब हमारे पास है:

(चूंकि, गणना के मौलिक प्रमेय द्वारा, उपरोक्त का मूल्यांकन समर्थन वाले समुच्चय की सीमाओं पर किया जा सकता है।) दूसरी ओर,

होने देना विशेषता फलन पर संपर्क करें . फिर दाहिनी ओर दूसरा पद जाता है जबकि पहला जाता है , कलन के मौलिक प्रमेय को सिद्ध करने के समान तर्क द्वारा।

सूत्र गणना के मौलिक प्रमेय के साथ-साथ बहुपरिवर्तनीय गणना में स्टोक्स प्रमेय को सामान्यीकृत करता है। वास्तव में, यदि एक अंतराल है और , तब और सूत्र कहता है:

.

इसी प्रकार, यदि में एक उन्मुखी बंधी हुई सतह है और , तब और इसी तरह के लिए और . शर्तों को एकत्रित करने पर, हमें इस प्रकार मिलता है:

फिर, के एकीकरण की परिभाषा से , अपने पास कहाँ सदिश-वैल्यू फलन है और . अत: स्टोक्स का सूत्र बन जाता है

जो सतहों पर स्टोक्स प्रमेय का सामान्य रूप है। ग्रीन का प्रमेय भी स्टोक्स के सूत्र का एक विशेष मामला है।

स्टोक्स का सूत्र कॉची के अभिन्न सूत्र का एक सामान्य संस्करण भी उत्पन्न करता है। समष्टि चर के लिए इसे बताना और सिद्ध करना और संयुग्म आइए हम ऑपरेटरों का परिचय दें

इन नोटेशन में, एक फलन होलोमोर्फिक फलन (समष्टि-विश्लेषणात्मक) है यदि और केवल यदि (कौची-रीमैन समीकरण)।

इसके अतिरिक्त, हमारे पास है:

होने देना केंद्र के साथ एक पंचर डिस्क बनें .

तब से पर होलोमोर्फिक है , अपने पास:

.

स्टोक्स के सूत्र द्वारा,

दे फिर हमें मिलता है:[20][21]

घुमावदार संख्याएं और पोंकारे लेम्मा

एक भिन्न रूप यदि बंद और त्रुटिहीन रूप कहा जाता है और त्रुटिहीन यदि कहा जाता है कुछ भिन्न रूप के लिए (अधिकांशतः क्षमता कहा जाता है)। तब से , एक त्रुटिहीन प्रपत्र बंद है. किन्तु यह बातचीत सामान्य रूप से क्रियान्वित नहीं होती; कोई गैर-त्रुटिहीन बंद प्रपत्र हो सकता है. ऐसे फॉर्म का एक उत्कृष्ट उदाहरण है:[22]

,

जो कि एक भिन्न रूप है . मान लीजिए हम ध्रुवीय निर्देशांक पर स्विच करते हैं: कहाँ . तब

इससे यह पता नहीं चलता त्रुटिहीन है: समस्या यह है पर एक अच्छी तरह से परिभाषित सतत कार्य नहीं है . चूंकि कोई भी फलन पर साथ से भिन्न स्थिरांक से इसका कारणयह है त्रुटिहीन नहीं है. चूँकि, गणना यह दर्शाती है त्रुटिहीन है, उदाहरण के लिए, पर चूँकि हम ले सकते हैं वहाँ।

एक परिणाम है (पोंकारे लेम्मा) जो एक शर्त देता है जो गारंटी देता है कि बंद किए गए फॉर्म त्रुटिहीन हैं। इसे बताने के लिए, हमें टोपोलॉजी से कुछ धारणाओं की आवश्यकता है। दो सतत मानचित्र दिए गए के उपसमुच्चय के मध्य (या अधिक सामान्यतः टोपोलॉजिकल समष्टि), से एक होमोटॉपी को एक सतत कार्य है ऐसा है कि और . सहज रूप से, एक समरूपता एक फलन से दूसरे फलन की निरंतर भिन्नता है। एक समुच्चय में एक लूप (टोपोलॉजी) एक वक्र है जिसका प्रारंभिक बिंदु अंतिम बिंदु से मेल खाता है; अर्थात।, ऐसा है कि . फिर का एक उपसमुच्चय यदि प्रत्येक लूप एक स्थिर फलन के लिए समसमष्टििक है तब इसे बस जुड़ा हुआ है कहा जाता है। सरलता से जुड़े समुच्चय का एक विशिष्ट उदाहरण एक डिस्क है . मुख्य रूप से, एक लूप दिया गया है , हमारे पास समरूपता है से निरंतर कार्य के लिए . दूसरी ओर, एक छिद्रित डिस्क, बस कनेक्ट नहीं होती है।

पोंकारे लेम्मा — If का एक सरल रूप से जुड़ा हुआ खुला उपसमुच्चय है , फिर प्रत्येक को 1-फॉर्म पर बंद कर दिया गया सटीक है.

वक्रों और सतहों की ज्यामिति

चलता हुआ फ्रेम

सदिश फ़ील्ड पर यदि वह प्रत्येक बिंदु पर एक-दूसरे के ओर्थोगोनल हैं, तब उन्हें फ़्रेम फ़ील्ड कहा जाता है; अर्थात।, प्रत्येक बिंदु पर.[23] मूल उदाहरण मानक फ़्रेम है ; अर्थात।, प्रत्येक बिंदु के लिए एक मानक आधार है में . दूसरा उदाहरण बेलनाकार फ्रेम है

[24]

किसी वक्र की ज्यामिति के अध्ययन के लिए, उपयोग किया जाने वाला महत्वपूर्ण फ्रेम फ़्रेनेट फ़्रेम है एक इकाई-गति वक्र पर इस प्रकार दिया गया:

गॉस-बोनट प्रमेय

गॉस-बोनट प्रमेय किसी सतह की टोपोलॉजी और उसकी ज्यामिति से संबंधित है।

गॉस-बोनट प्रमेय — [25] प्रत्येक घिरी हुई सतह के लिए in , अपने पास:

where यूलर की विशेषता है and वक्रता.

विविधताओं की गणना

लैग्रेंज गुणक की विधि

लैग्रेंज गुणक — [26] Let के खुले उपसमुच्चय से एक अवकलनीय फलन बनें such that has rank at every point in . For a differentiable function , if एक बिंदु पर अधिकतम या न्यूनतम प्राप्त करता है in , तब वास्तविक संख्याएँ मौजूद होती हैं such that

.

दूसरे शब्दों में, is a स्थिर बिंदु of .

समुच्चय सामान्यतः इसे बाधा कहा जाता है।

उदाहरण:[27] मान लीजिए हम वृत्त के मध्य न्यूनतम दूरी ज्ञात करना चाहते हैं और रेखा . इसका कारण है कि हम फलन को छोटा करना चाहते हैं , एक बिंदु के मध्य की वर्ग दूरी वृत्त और एक बिंदु पर लाइन पर, बाधा के अनुसार . अपने पास:

जैकोबियन आव्युह के पश्चात् से हर समष्टि 2 रैंक पर है , लैग्रेंज गुणक देता है:

यदि , तब , संभव नहीं। इस प्रकार, और

इससे यह बात आसानी से समझ में आ जाती है और . अत: न्यूनतम दूरी है (न्यूनतम दूरी स्पष्ट रूप से उपस्तिथ है)।

यहां रैखिक बीजगणित का एक अनुप्रयोग है।[28] होने देना एक परिमित-आयामी वास्तविक सदिश समष्टि बनें और एक स्व-सहायक ऑपरेटर है। हम दिखाएंगे के eigenvectors से युक्त एक आधार है (अर्थात, विकर्णीय है) के आयाम पर प्रेरण द्वारा . आधार का चयन करना हम पहचान सकते हैं और आव्युह द्वारा दर्शाया गया है . फलन पर विचार करें , जहां ब्रैकेट का कारणआंतरिक उत्पाद है। तब . दूसरी ओर, के लिए , तब से सघन है, एक बिंदु पर अधिकतम या न्यूनतम प्राप्त करता है में . तब से , लैग्रेंज गुणक द्वारा, हम एक वास्तविक संख्या पाते हैं ऐसा है कि किन्तु इसका कारणहै . आगमनात्मक परिकल्पना द्वारा, स्व-सहायक संचालिका , ओर्थोगोनल पूरक , eigenvectors से युक्त एक आधार है।

अशक्त व्युत्पन्न

माप-शून्य समुच्चय तक, दो फलनों को अन्य फलनों (जिन्हें परीक्षण फलन कहा जाता है) के विरुद्ध एकीकरण के माध्यम से सामान्तर या नहीं निर्धारित किया जा सकता है। अर्थात्, निम्नलिखित को कभी-कभी विविधताओं के कलन की मौलिक प्रमेयिका कहा जाता है:

लेम्मा[29] — If एक खुले उपसमुच्चय पर स्थानीय रूप से एकीकृत कार्य हैं such that

for every (called a test function). Then लगभग हर जगह। यदि, इसके अतिरिक्त, तो फिर, निरंतर हैं .

एक सतत कार्य दिया गया , लेम्मा द्वारा, एक निरंतर भिन्न कार्य इस प्रकार कि यदि और केवल यदि

हरएक के लिए . किन्तु, भागों द्वारा एकीकरण द्वारा, बाईं ओर आंशिक व्युत्पन्न के उस पर ले जाया जा सकता है ; अर्थात।,

जहाँ से कोई सीमा शब्द नहीं है कॉम्पैक्ट समर्थन है. अभी मुख्य बात यह है कि यह अभिव्यक्ति यदि समझ में आती हो यह आवश्यक रूप से भिन्न नहीं है और इस प्रकार ऐसे फलन के व्युत्पन्न को समझने के लिए इसका उपयोग किया जा सकता है।

प्रत्येक समष्टिीय रूप से एकीकृत फलन पर ध्यान दें रैखिक कार्यात्मकता को परिभाषित करता है पर और, इसके अतिरिक्त, प्रारंभिक लेम्मा के कारण, प्रत्येक समष्टिीय रूप से एकीकृत फलन को ऐसे रैखिक फलनल के साथ पहचाना जा सकता है। इसलिए, सामान्यतः, यदि पर एक रैखिक कार्यात्मक है , फिर हम परिभाषित करते हैं रैखिक कार्यात्मक होना जहां ब्रैकेट का कारणहै . तब इसे इसका अशक्त व्युत्पन्न कहा जाता है इसके संबंध में . यदि निरंतर अवकलनीय है, तब इसका अशक्त व्युत्पन्न सामान्य के साथ मेल खाता है; अर्थात, रैखिक कार्यात्मक के सामान्य आंशिक व्युत्पन्न द्वारा निर्धारित रैखिक कार्यात्मक के समान है इसके संबंध में . एक सामान्य व्युत्पन्न को अधिकांशतः मौलिक व्युत्पन्न कहा जाता है। जब एक रैखिक कार्यात्मक पर एक निश्चित टोपोलॉजी के संबंध में निरंतर है , ऐसे रैखिक कार्यात्मक को वितरण (गणित) कहा जाता है, जो एक सामान्यीकृत फलन का एक उदाहरण है।

अशक्त व्युत्पन्न का एक उत्कृष्ट उदाहरण हेविसाइड फलन है , अंतराल पर विशेषता कार्य .[30] प्रत्येक परीक्षण फलन के लिए , अपने पास:

होने देना रैखिक कार्यात्मक को निरूपित करें , जिसे डिराक डेल्टा फलन कहा जाता है (चूँकि यह वास्तव में एक फलन नहीं है)। फिर उपरोक्त को इस प्रकार लिखा जा सकता है:

कॉची के अभिन्न सूत्र की अशक्त डेरिवेटिव के संदर्भ में समान व्याख्या है। समष्टि चर के लिए , होने देना . एक परीक्षण फलन के लिए , यदि डिस्क का समर्थन सम्मिलित है कॉची के अभिन्न सूत्र द्वारा, हमारे पास है:

तब से , इसका कारणयह है:

या

[31] सामान्यतः, एक सामान्यीकृत फलन को रैखिक आंशिक अंतर ऑपरेटर के लिए मौलिक समाधान कहा जाता है यदि ऑपरेटर का अनुप्रयोग डायराक डेल्टा है। इसलिए, ऊपर कहा गया है विभेदक ऑपरेटर के लिए मौलिक समाधान है .

हैमिल्टन-जैकोबी सिद्धांत

मैनिफोल्ड्स पर गणना

अनेक गुना की परिभाषा

इस अनुभाग के लिए सामान्य टोपोलॉजी में कुछ पृष्ठभूमि की आवश्यकता होती है।

अनेक गुना एक हॉसडॉर्फ टोपोलॉजिकल समष्टि है जिसे समष्टिीय रूप से यूक्लिडियन समष्टि द्वारा मॉडल किया गया है। परिभाषा के अनुसार, एक टोपोलॉजिकल समष्टि का एटलस (गणित) मानचित्रों का एक समुच्चय है , जिसे चार्ट कहा जाता है, जैसे कि

  • का एक खुला आवरण हैं ; अर्थात, प्रत्येक खुला है और ,
  • एक समरूपता है और
  • चिकना है; इस प्रकार एक भिन्नतावाद है।

परिभाषा के अनुसार, मैनिफोल्ड एक अधिकतम एटलस (जिसे एक भिन्न संरचना कहा जाता है) के साथ एक दूसरी-गणनीय हॉसडॉर्फ टोपोलॉजिकल समष्टि है; मैक्सिमम का कारण है कि यह सख्ती से बड़े एटलस में सम्मिलित नहीं है। अनेक गुना का आयाम मॉडल यूक्लिडियन समष्टि का आयाम है ; अर्थात्, और मैनिफोल्ड को एन-मैनिफोल्ड कहा जाता है जब इसका आयाम एन होता है। मैनिफ़ोल्ड पर एक फलन यदि चिकनी कहा जाता है चिकनी है प्रत्येक चार्ट के लिए भिन्न संरचना में.

मैनिफोल्ड पैराकॉम्पैक्ट समष्टि है; इसका निहितार्थ यह है कि यह किसी दिए गए विवृत आवरण के अधीन एकता के विभाजन को स्वीकार करता है।

यदि ऊपरी आधे समष्टि द्वारा प्रतिस्थापित किया जाता है , तब हमें सीमा के साथ अनेक गुना की धारणा प्राप्त होती है। बिंदुओं का समूह जो की सीमा को दर्शाता है चार्ट के अंतर्गत इसे दर्शाया गया है और की सीमा कहलाती है . यह सीमा टोपोलॉजिकल सीमा नहीं हो सकती है . के आंतरिक भाग के पश्चात् से से भिन्न है , मैनिफोल्ड खाली सीमा के साथ एक मैनिफोल्ड-विथ-बाउंड्री है।

अगला प्रमेय अनेक गुनाओं के अनेक उदाहरण प्रस्तुत करता है।

Theorem — [32] Let एक खुले उपसमुच्चय से भिन्न मानचित्र बनें ऐसा है कि रैंक है हर बिंदु के लिए in . फिर शून्य सेट is an -कई गुना.

उदाहरण के लिए, के लिए , व्युत्पन्न हर बिंदु पर एक रैंक है में . इसलिए, n-गोला एक एन-मैनिफोल्ड है।

प्रमेय को व्युत्क्रम फलन प्रमेय के परिणाम के रूप में सिद्ध किया गया है।

अनेक परिचित मैनिफोल्ड्स के उपसमुच्चय हैं . अगला सैद्धांतिक रूप से महत्वपूर्ण परिणाम कहता है कि किसी अन्य प्रकार की विविधता उपस्तिथ नहीं है। विसर्जन एक सहज मानचित्र है जिसका अंतर विशेषणात्मक होता है। एम्बेडिंग एक ऐसा विसर्जन है जो छवि के लिए होमियोमॉर्फिक (इस प्रकार भिन्न-रूपी) होता है।

व्हिटनी का एम्बेडिंग प्रमेय — प्रत्येक -मैनिफोल्ड को इसमें एम्बेड किया जा सकता है .

इस बात का प्रमाण कि इसमें अनेकता समाहित की जा सकती है कुछ के लिए एन अधिक आसान है और यहां आसानी से दिया जा सकता है। यह ज्ञात है कि मैनिफोल्ड का एक सीमित एटलस होता है . होने देना ऐसे सुचारु कार्य हों और ढकना (उदाहरण के लिए, एकता का विभाजन)। मानचित्र पर विचार करें

यह देखना आसान है एक इंजेक्शन विसर्जन है. यह एम्बेडिंग नहीं हो सकता है. इसे ठीक करने के लिए, हम इसका उपयोग करेंगे:

कहाँ एक सहज उचित मानचित्र है. एक सुचारू उचित मानचित्र का अस्तित्व एकता के विभाजन का परिणाम है। विसर्जन के चूँकिमें बाकी प्रमाण के लिए [1] देखें।

नैश का एम्बेडिंग प्रमेय कहता है कि, यदि रीमैनियन मीट्रिक से सुसज्जित है, तब एम्बेडिंग को बढ़ने के खर्च के साथ आइसोमेट्रिक माना जा सकता है ; इसके लिए, यह टी. ताओ का ब्लॉग देखें।

ट्यूबलर पड़ोस और ट्रांसवर्सलिटी

विधि ी रूप से महत्वपूर्ण परिणाम है:

ट्यूबलर पड़ोस प्रमेय — मान लीजिए M अनेक गुना है और एक कॉम्पैक्ट बंद सबमैनिफोल्ड। फिर एक पड़ोस मौजूद है of such that सामान्य बंडल से भिन्न है to and के शून्य खंड से मेल खाता है भिन्नता के अंतर्गत.

इसे मैनिफ़ोल्ड पर रीमैनियन मीट्रिक डालकर सिद्ध किया जा सकता है . मुख्य रूप से, मीट्रिक का चुनाव सामान्य बंडल बनाता है के लिए एक पूरक बंडल ; अर्थात।, का सीधा योग है और . फिर, मीट्रिक का उपयोग करके, हमारे पास घातांकीय मानचित्र होता है कुछ पड़ोस के लिए का सामान्य बंडल में किसी पड़ोस में का में . यहां घातांकीय मानचित्र अंतःक्षेपी नहीं हो सकता है किन्तु इसे सिकुड़कर अंतःक्षेपी (इस प्रकार भिन्नरूपी) बनाना संभव है (अभी के लिए, देखें [2])।

अनेक गुना और वितरण घनत्व पर एकीकरण

मैनिफोल्ड्स पर एकीकरण के विषय का प्रारंभिक बिंदु यह है कि मैनिफोल्ड्स पर फलनों को एकीकृत करने का कोई अपरिवर्तनीय विधि नहीं है। यह स्पष्ट हो सकता है यदि हमने पूछा: एक परिमित-आयामी वास्तविक सदिश समष्टि पर फलनों का एकीकरण क्या है? (इसके विपरीत, विभेदीकरण करने का एक अपरिवर्तनीय विधि है, क्योंकि परिभाषा के अनुसार, मैनिफोल्ड एक विभेदक संरचना के साथ आता है)। एकीकरण सिद्धांत को अनेक गुना प्रस्तुतकरने के अनेक तरीके हैं:

  • विभेदक रूपों को एकीकृत करें।
  • किसी उपाय के विरुद्ध एकीकरण करें।
  • मैनिफोल्ड को रीमानियन मेट्रिक से सुसज्जित करें और ऐसे मेट्रिक के विरुद्ध एकीकरण करें।

उदाहरण के लिए, यदि एक मैनिफ़ोल्ड यूक्लिडियन समष्टि में अंतर्निहित है , फिर यह परिवेशी यूक्लिडियन समष्टि से प्रतिबंधित लेबेस्ग माप प्राप्त करता है और फिर दूसरा दृष्टिकोण काम करता है। पहला दृष्टिकोण अनेक स्थितियों में ठीक है, किन्तु इसके लिए मैनिफोल्ड को उन्मुख करने की आवश्यकता होती है (और एक गैर-उन्मुख मैनिफोल्ड है जो पैथोलॉजिकल नहीं है)। तीसरा दृष्टिकोण सामान्यीकरण करता है और यह घनत्व की धारणा को जन्म देता है।

सामान्यीकरण

अनंत-आयामी मानक समष्टिों तक विस्तार

विभेदीकरण जैसी धारणाएँ मानक समष्टिों तक फैली हुई हैं।

यह भी देखें

टिप्पणियाँ

  1. This is just the tensor-hom adjunction.

उद्धरण

  1. Spivak 1965, Ch 2. Basic definitions.
  2. Hörmander 2015, Definition 1.1.4.
  3. Hörmander 2015, (1.1.3.)
  4. Hörmander 2015, Theorem 1.1.6.
  5. Hörmander 2015, (1.1.2)'
  6. Hörmander 2015, p. 8
  7. 7.0 7.1 Hörmander 2015, Theorem 1.1.8.
  8. Hörmander 2015, Lemma 7.1.4.
  9. Spivak 1965, Theorem 2-12.
  10. Spivak 1965, p. 46
  11. Spivak 1965, p. 47
  12. Spivak 1965, p. 48
  13. Spivak 1965, p. 50
  14. Spivak 1965, Theorem 3-8.
  15. Spivak 1965, p. 55
  16. Spivak 1965, Exercise 4.14.
  17. 17.0 17.1 17.2 Spivak 1965, p. 89
  18. Spivak 1965, Theorem 4-7.
  19. Hörmander 2015, p. 151
  20. Theorem 1.2.1. in Hörmander, Lars (1990). An Introduction to Complex Analysis in Several Variables (Third ed.). North Holland..
  21. Spivak 1965, Exercise 4-33.
  22. Spivak 1965, p. 93
  23. O'Neill 2006, Definition 6.1.
  24. O'Neill 2006, Example 6.2. (1)
  25. O'Neill 2006, Theorem 6.10.
  26. Spivak 1965, Exercise 5-16.
  27. Edwards 1994, Ch. II, $ 5. Example 9.
  28. Spivak 1965, Exercise 5-17.
  29. Hörmander 2015, Theorem 1.2.5.
  30. Hörmander 2015, Example 3.1.2.
  31. Hörmander 2015, p. 63
  32. Spivak 1965, Theorem 5-1.

संदर्भ