हाइपरप्रायर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(9 intermediate revisions by 3 users not shown)
Line 3: Line 3:
बायेसियन आँकड़ों में, '''हाइपरप्रायर''' [[हाइपरपैरामीटर]] पर [[पूर्व वितरण]] है, जो की पूर्व वितरण के पैरामीटर पर है।
बायेसियन आँकड़ों में, '''हाइपरप्रायर''' [[हाइपरपैरामीटर]] पर [[पूर्व वितरण]] है, जो की पूर्व वितरण के पैरामीटर पर है।


''हाइपरपैरामीटर'' शब्द की तरह, ''हाइपर'' का उपयोग इसे अंतर्निहित सिस्टम के लिए मॉडल के पैरामीटर के पूर्व वितरण से अलग करना है। वे विशेष रूप से [[बहुस्तरीय मॉडल]] के उपयोग में उत्पन्न होते हैं।<ref>{{cite book |first=Ioannis |last=Ntzoufras |chapter=Bayesian Hierarchical Models |pages=305–340 |title=WinBUGS का उपयोग करके बायेसियन मॉडलिंग|location= |publisher=Wiley |year=2009 |isbn=978-0-470-14114-4 }}</ref><ref>{{cite book |first=Richard |last=McElreath |chapter=Models With Memory |title=Statistical Rethinking : A Bayesian Course with Examples in R and Stan |location= |publisher=CRC Press |year=2020 |isbn=978-0-367-13991-9 }}</ref>
''हाइपरपैरामीटर'' शब्द की तरह, ''हाइपर'' का उपयोग इसे अंतर्निहित सिस्टम के लिए मॉडल के पैरामीटर के पूर्व वितरण से भिन्न करना है।वह विशेष रूप से [[बहुस्तरीय मॉडल]] के उपयोग में उत्पन्न होते हैं।<ref>{{cite book |first=Ioannis |last=Ntzoufras |chapter=Bayesian Hierarchical Models |pages=305–340 |title=WinBUGS का उपयोग करके बायेसियन मॉडलिंग|location= |publisher=Wiley |year=2009 |isbn=978-0-470-14114-4 }}</ref><ref>{{cite book |first=Richard |last=McElreath |chapter=Models With Memory |title=Statistical Rethinking : A Bayesian Course with Examples in R and Stan |location= |publisher=CRC Press |year=2020 |isbn=978-0-367-13991-9 }}</ref>


उदाहरण के लिए, यदि कोई [[बर्नौली वितरण]] के पैरामीटर पी के वितरण को मॉडल करने के लिए [[बीटा वितरण]] का उपयोग कर रहा है, तो:
उदाहरण के लिए, यदि कोई [[बर्नौली वितरण]] के पैरामीटर p के वितरण को मॉडल करने के लिए [[बीटा वितरण]] का उपयोग कर रहा है, तो:


* बर्नौली वितरण (पैरामीटर पी के साथ) अंतर्निहित प्रणाली का मॉडल है;
* बर्नौली वितरण (पैरामीटर p के साथ) अंतर्निहित प्रणाली का मॉडल है;
* पी अंतर्निहित प्रणाली (बर्नौली वितरण) का पैरामीटर है;
* p अंतर्निहित प्रणाली (बर्नौली वितरण) का पैरामीटर है;
* बीटा वितरण (पैरामीटर α और β के साथ) पी का पूर्व वितरण है;
* बीटा वितरण (पैरामीटर α और β के साथ) p का पूर्व वितरण है;
* α और β पूर्व वितरण (बीटा वितरण) के पैरामीटर हैं, इसलिए हाइपरपैरामीटर;
* α और β पूर्व वितरण (बीटा वितरण) के पैरामीटर हैं, इसलिए हाइपरपैरामीटर;
* इस प्रकार α और β का पूर्व वितरण अतिपूर्व वितरण है।
* इस प्रकार α और β का पूर्व वितरण अतिपूर्व वितरण है।


सिद्धांत रूप में, कोई उपरोक्त को दोहरा सकता है: यदि हाइपरप्रायर में स्वयं हाइपरपैरामीटर हैं, तो इन्हें हाइपरहाइपरपैरामीटर इत्यादि कहा जा सकता है।
सिद्धांत रूप में, कोई उपरोक्त को दोहरा सकता है: यदि हाइपरप्रायर में स्वयं हाइपरपैरामीटर हैं, तो इन्हें हाइपर पैरामीटर इत्यादि कहा जा सकता है।                                          


कोई समान रूप से हाइपरपैरामीटर पर पश्च वितरण को हाइपरपोस्टीरियर कह सकता है, और, यदि ये एक ही परिवार में हैं, तो उन्हें संयुग्मित हाइपरडिस्ट्रीब्यूशन या संयुग्म हाइपरप्रायर कह सकते हैं। चूँकि, यह तेजी से बहुत अमूर्त हो जाता है और मूल समस्या से दूर हो जाता है।
कोई समान रूप से हाइपर पैरामीटर पर पश्च वितरण को हाइपर पोस्टीरियर कह सकता है, और, यदि यह  एक ही वर्ग में हैं, तो उन्हें संयुग्मित हाइपर डिस्ट्रीब्यूशन या संयुग्म हाइपरप्रायर कह सकते हैं। चूँकि, यह तेजी से बहुत अमूर्त हो जाता है और मूल समस्या से दूर हो जाता है।
 
== उद्देश्य                                       ==
'''हाइपरप्रायर कह सकते हैं। चूँकि, यह तेजी से बहुत अमूर्त हो जाता है'''
हाइपरप्रियर्स, संयुग्मित पूर्वज की तरह, कम्प्यूटेशनल सुविधा है -वह बायेसियन अनुमान की प्रक्रिया को नहीं बदलते हैं, किंतु बस पूर्व के साथ अधिक सरलता से वर्णन और गणना करने की अनुमति देते हैं।
 
== उद्देश्य ==
हाइपरप्रियर्स, संयुग्मित पूर्वज की तरह, कम्प्यूटेशनल सुविधा है - वे बायेसियन अनुमान की प्रक्रिया को नहीं बदलते हैं, किंतु बस पूर्व के साथ अधिक सरलता से वर्णन और गणना करने की अनुमति देते हैं।


=== अनिश्चितता ===
=== अनिश्चितता ===
सबसे पहले, हाइपरप्रायर का उपयोग किसी को हाइपरपैरामीटर में अनिश्चितता व्यक्त करने की अनुमति देता है: निश्चित पूर्व को लेना धारणा है, पूर्व के हाइपरपैरामीटर को अलग करने से व्यक्ति को इस धारणा पर संवेदनशीलता विश्लेषण करने की अनुमति मिलती है, और इस हाइपरपैरामीटर पर वितरण लेने से व्यक्ति को व्यक्त करने की अनुमति मिलती है इस धारणा में अनिश्चितता: मान लें कि पूर्व इस रूप (यह पैरामीट्रिक परिवार) का है, किंतु हम अनिश्चित हैं कि मापदंडों के मान क्या होने चाहिए।
सबसे पहले, हाइपरप्रायर का उपयोग किसी को हाइपरपैरामीटर में अनिश्चितता व्यक्त करने की अनुमति देता है: निश्चित पूर्व को लेना धारणा है, पूर्व के हाइपरपैरामीटर को भिन्न  करने से व्यक्ति को इस धारणा पर संवेदनशीलता विश्लेषण करने की अनुमति मिलती है, और इस हाइपरपैरामीटर पर वितरण लेने से व्यक्ति को व्यक्त करने की अनुमति मिलती है इस धारणा में अनिश्चितता: मान लें कि पूर्व इस रूप (यह पैरामीट्रिक वर्ग) का है, किंतु हम अनिश्चित हैं कि मापदंडों के मान क्या होने चाहिए।


=== मिश्रण वितरण ===
=== मिश्रण वितरण                                                                                                                             ===
अधिक संक्षेप में, यदि कोई हाइपरप्रायर का उपयोग करता है, तो पूर्व वितरण (अंतर्निहित मॉडल के पैरामीटर पर) स्वयं [[मिश्रण घनत्व]] है: यह विभिन्न पूर्व वितरणों (विभिन्न हाइपरपैरामीटर पर) का भारित औसत है, जिसमें हाइपरप्रायर भार होता है . यह अतिरिक्त संभावित वितरण जोड़ता है (जिस पैरामीट्रिक परिवार का उपयोग किया जा रहा है उससे परे), क्योंकि वितरण के पैरामीट्रिक परिवार आम तौर पर [[उत्तल सेट]] नहीं होते हैं - चूंकि मिश्रण घनत्व वितरण का [[उत्तल संयोजन]] है, यह सामान्य रूप से परिवार के बाहर स्थित होगा।
अधिक संक्षेप में, यदि कोई हाइपरप्रायर का उपयोग करता है, तो पूर्व वितरण (अंतर्निहित मॉडल के पैरामीटर पर) स्वयं [[मिश्रण घनत्व]] है: यह विभिन्न पूर्व वितरणों (विभिन्न हाइपरपैरामीटर पर) का भारित औसत है, जिसमें हाइपरप्रायर भार होता है . यह अतिरिक्त संभावित वितरण जोड़ता है (जिस पैरामीट्रिक वर्ग का उपयोग किया जा रहा है उससे परे), क्योंकि वितरण के पैरामीट्रिक वर्ग सामान्यतः [[उत्तल सेट]] नहीं होते हैं - चूंकि मिश्रण घनत्व वितरण का [[उत्तल संयोजन]] है, यह सामान्य रूप से वर्ग के बाहर स्थित होगा। उदाहरण के लिए, दो सामान्य वितरणों का मिश्रण सामान्य वितरण नहीं है: यदि कोई भिन्न -भिन्न  साधन (पर्याप्त रूप से दूर) लेता है और प्रत्येक का 50% मिश्रण करता है, तो उसे द्विमोडल वितरण प्राप्त होता है, जो इस प्रकार सामान्य नहीं है। वास्तव में, सामान्य वितरण का उत्तल पतवार सभी वितरणों में सघन होता है, इसलिए कुछ स्थितियों में, आप उपयुक्त हाइपरप्रायर वाले वर्ग का उपयोग करके अनेैतिक रूप से किसी दिए गए पूर्व का अनुमान लगा सकते हैं।
उदाहरण के लिए, दो सामान्य वितरणों का मिश्रण सामान्य वितरण नहीं है: यदि कोई अलग-अलग साधन (पर्याप्त रूप से दूर) लेता है और प्रत्येक का 50% मिश्रण करता है, तो उसे द्विमोडल वितरण प्राप्त होता है, जो इस प्रकार सामान्य नहीं है। वास्तव में, सामान्य वितरण का उत्तल पतवार सभी वितरणों में सघन होता है, इसलिए कुछ मामलों में, आप उपयुक्त हाइपरप्रायर वाले परिवार का उपयोग करके मनमाने ढंग से किसी दिए गए पूर्व का अनुमान लगा सकते हैं।


यह दृष्टिकोण विशेष रूप से उपयोगी है यदि कोई संयुग्मित पूर्वज का उपयोग करता है: व्यक्तिगत संयुग्मित पूर्वज ने सरलता से पश्चवर्ती गणना की है, और इस प्रकार संयुग्मित पूर्वज का मिश्रण पश्चवर्ती का एक ही मिश्रण है: किसी को केवल यह जानने की जरूरत है कि प्रत्येक संयुग्मित पूर्व कैसे बदलता है।
यह दृष्टिकोण विशेष रूप से उपयोगी है यदि कोई संयुग्मित पूर्वज का उपयोग करता है: व्यक्तिगत संयुग्मित पूर्वज ने सरलता से पश्चवर्ती गणना की है, और इस प्रकार संयुग्मित पूर्वज का मिश्रण पश्चवर्ती का एक ही मिश्रण है: किसी को केवल यह जानने की आवश्यकता है कि प्रत्येक संयुग्मित पूर्व कैसे बदलता है। एकल संयुग्म पूर्व का उपयोग करना बहुत अधिक प्रतिबंधात्मक हो सकता है, किंतु संयुग्म पूर्व के मिश्रण का उपयोग करने से ऐसे रूप में वांछित वितरण मिल सकता है जिसकी गणना करना आसान है। यह आइजनफंक्शन के संदर्भ में किसी फ़ंक्शन को विघटित करने के समान है - पूर्व में संयुग्मित करें: आइजनफंक्शन के साथ सादृश्य देखें।
एकल संयुग्म पूर्व का उपयोग करना बहुत अधिक प्रतिबंधात्मक हो सकता है, किंतु संयुग्म पूर्व के मिश्रण का उपयोग करने से ऐसे रूप में वांछित वितरण मिल सकता है जिसकी गणना करना आसान है।
यह eigenfunctions के संदर्भ में किसी फ़ंक्शन को विघटित करने के समान है - eigenfunctions के साथ पूर्व #सादृश्य को संयुग्मित करें | पूर्व में संयुग्मित करें: eigenfunctions के साथ सादृश्य देखें।


=== [[गतिशील प्रणाली]] ===
=== [[गतिशील प्रणाली]] ===
हाइपरप्रायर संभावित हाइपरपैरामीटर के स्थान पर वितरण है। यदि कोई संयुग्मित पुजारियों का उपयोग कर रहा है, तो इस स्थान को पीछे की ओर ले जाकर संरक्षित किया जाता है - इस प्रकार जैसे ही डेटा आता है, वितरण बदलता है, किंतु इस स्थान पर रहता है: जैसे ही डेटा आता है, वितरण गतिशील प्रणाली के रूप में विकसित होता है (हाइपरपैरामीटर स्थान का प्रत्येक बिंदु विकसित होता है) अद्यतन हाइपरपैरामीटर्स के लिए), समय के साथ अभिसरण होता है, जैसे पहले स्वयं अभिसरण होता है।
हाइपरप्रायर संभावित हाइपरपैरामीटर के स्थान पर वितरण है। यदि कोई संयुग्मित पूर्वोक्तों का उपयोग कर रहा है, तो इस स्थान को पीछे की ओर ले जाकर संरक्षित किया जाता है - इस प्रकार जैसे ही डेटा आता है, तो वितरण बदलता है, किंतु इस स्थान पर रहता है: जैसे ही डेटा आता है, वितरण गतिशील प्रणाली के रूप में विकसित होता है (हाइपरपैरामीटर स्थान का प्रत्येक बिंदु अद्यतन हाइपरपैरामीटर्स में विकसित होता है), समय के साथ अभिसरण होता है, जैसे की पहले स्वयं अभिसरण करता है।                                                                                          


== संदर्भ ==
== संदर्भ                                       ==
{{Reflist}}
{{Reflist}}
== अग्रिम पठन ==
== अग्रिम पठन                                                                                                                                   ==
* {{cite book |last=Bernardo |first=J. M. |last2=Smith |first2=A. F. M. |year=2000 |title=Bayesian Theory |location=New York |publisher=Wiley |isbn=0-471-49464-X |url=https://books.google.com/books?id=11nSgIcd7xQC }}
* {{cite book |last=Bernardo |first=J. M. |last2=Smith |first2=A. F. M. |year=2000 |title=Bayesian Theory |location=New York |publisher=Wiley |isbn=0-471-49464-X |url=https://books.google.com/books?id=11nSgIcd7xQC }}
[[Category: बायेसियन आँकड़े]]


[[Category: Machine Translated Page]]
[[Category:Created On 07/07/2023]]
[[Category:Created On 07/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal-inline template with redlinked portals]]
[[Category:Templates Vigyan Ready]]
[[Category:बायेसियन आँकड़े]]

Latest revision as of 14:11, 3 August 2023

बायेसियन आँकड़ों में, हाइपरप्रायर हाइपरपैरामीटर पर पूर्व वितरण है, जो की पूर्व वितरण के पैरामीटर पर है।

हाइपरपैरामीटर शब्द की तरह, हाइपर का उपयोग इसे अंतर्निहित सिस्टम के लिए मॉडल के पैरामीटर के पूर्व वितरण से भिन्न करना है।वह विशेष रूप से बहुस्तरीय मॉडल के उपयोग में उत्पन्न होते हैं।[1][2]

उदाहरण के लिए, यदि कोई बर्नौली वितरण के पैरामीटर p के वितरण को मॉडल करने के लिए बीटा वितरण का उपयोग कर रहा है, तो:

  • बर्नौली वितरण (पैरामीटर p के साथ) अंतर्निहित प्रणाली का मॉडल है;
  • p अंतर्निहित प्रणाली (बर्नौली वितरण) का पैरामीटर है;
  • बीटा वितरण (पैरामीटर α और β के साथ) p का पूर्व वितरण है;
  • α और β पूर्व वितरण (बीटा वितरण) के पैरामीटर हैं, इसलिए हाइपरपैरामीटर;
  • इस प्रकार α और β का पूर्व वितरण अतिपूर्व वितरण है।

सिद्धांत रूप में, कोई उपरोक्त को दोहरा सकता है: यदि हाइपरप्रायर में स्वयं हाइपरपैरामीटर हैं, तो इन्हें हाइपर पैरामीटर इत्यादि कहा जा सकता है।

कोई समान रूप से हाइपर पैरामीटर पर पश्च वितरण को हाइपर पोस्टीरियर कह सकता है, और, यदि यह एक ही वर्ग में हैं, तो उन्हें संयुग्मित हाइपर डिस्ट्रीब्यूशन या संयुग्म हाइपरप्रायर कह सकते हैं। चूँकि, यह तेजी से बहुत अमूर्त हो जाता है और मूल समस्या से दूर हो जाता है।

उद्देश्य

हाइपरप्रियर्स, संयुग्मित पूर्वज की तरह, कम्प्यूटेशनल सुविधा है -वह बायेसियन अनुमान की प्रक्रिया को नहीं बदलते हैं, किंतु बस पूर्व के साथ अधिक सरलता से वर्णन और गणना करने की अनुमति देते हैं।

अनिश्चितता

सबसे पहले, हाइपरप्रायर का उपयोग किसी को हाइपरपैरामीटर में अनिश्चितता व्यक्त करने की अनुमति देता है: निश्चित पूर्व को लेना धारणा है, पूर्व के हाइपरपैरामीटर को भिन्न करने से व्यक्ति को इस धारणा पर संवेदनशीलता विश्लेषण करने की अनुमति मिलती है, और इस हाइपरपैरामीटर पर वितरण लेने से व्यक्ति को व्यक्त करने की अनुमति मिलती है इस धारणा में अनिश्चितता: मान लें कि पूर्व इस रूप (यह पैरामीट्रिक वर्ग) का है, किंतु हम अनिश्चित हैं कि मापदंडों के मान क्या होने चाहिए।

मिश्रण वितरण

अधिक संक्षेप में, यदि कोई हाइपरप्रायर का उपयोग करता है, तो पूर्व वितरण (अंतर्निहित मॉडल के पैरामीटर पर) स्वयं मिश्रण घनत्व है: यह विभिन्न पूर्व वितरणों (विभिन्न हाइपरपैरामीटर पर) का भारित औसत है, जिसमें हाइपरप्रायर भार होता है . यह अतिरिक्त संभावित वितरण जोड़ता है (जिस पैरामीट्रिक वर्ग का उपयोग किया जा रहा है उससे परे), क्योंकि वितरण के पैरामीट्रिक वर्ग सामान्यतः उत्तल सेट नहीं होते हैं - चूंकि मिश्रण घनत्व वितरण का उत्तल संयोजन है, यह सामान्य रूप से वर्ग के बाहर स्थित होगा। उदाहरण के लिए, दो सामान्य वितरणों का मिश्रण सामान्य वितरण नहीं है: यदि कोई भिन्न -भिन्न साधन (पर्याप्त रूप से दूर) लेता है और प्रत्येक का 50% मिश्रण करता है, तो उसे द्विमोडल वितरण प्राप्त होता है, जो इस प्रकार सामान्य नहीं है। वास्तव में, सामान्य वितरण का उत्तल पतवार सभी वितरणों में सघन होता है, इसलिए कुछ स्थितियों में, आप उपयुक्त हाइपरप्रायर वाले वर्ग का उपयोग करके अनेैतिक रूप से किसी दिए गए पूर्व का अनुमान लगा सकते हैं।

यह दृष्टिकोण विशेष रूप से उपयोगी है यदि कोई संयुग्मित पूर्वज का उपयोग करता है: व्यक्तिगत संयुग्मित पूर्वज ने सरलता से पश्चवर्ती गणना की है, और इस प्रकार संयुग्मित पूर्वज का मिश्रण पश्चवर्ती का एक ही मिश्रण है: किसी को केवल यह जानने की आवश्यकता है कि प्रत्येक संयुग्मित पूर्व कैसे बदलता है। एकल संयुग्म पूर्व का उपयोग करना बहुत अधिक प्रतिबंधात्मक हो सकता है, किंतु संयुग्म पूर्व के मिश्रण का उपयोग करने से ऐसे रूप में वांछित वितरण मिल सकता है जिसकी गणना करना आसान है। यह आइजनफंक्शन के संदर्भ में किसी फ़ंक्शन को विघटित करने के समान है - पूर्व में संयुग्मित करें: आइजनफंक्शन के साथ सादृश्य देखें।

गतिशील प्रणाली

हाइपरप्रायर संभावित हाइपरपैरामीटर के स्थान पर वितरण है। यदि कोई संयुग्मित पूर्वोक्तों का उपयोग कर रहा है, तो इस स्थान को पीछे की ओर ले जाकर संरक्षित किया जाता है - इस प्रकार जैसे ही डेटा आता है, तो वितरण बदलता है, किंतु इस स्थान पर रहता है: जैसे ही डेटा आता है, वितरण गतिशील प्रणाली के रूप में विकसित होता है (हाइपरपैरामीटर स्थान का प्रत्येक बिंदु अद्यतन हाइपरपैरामीटर्स में विकसित होता है), समय के साथ अभिसरण होता है, जैसे की पहले स्वयं अभिसरण करता है।

संदर्भ

  1. Ntzoufras, Ioannis (2009). "Bayesian Hierarchical Models". WinBUGS का उपयोग करके बायेसियन मॉडलिंग. Wiley. pp. 305–340. ISBN 978-0-470-14114-4.
  2. McElreath, Richard (2020). "Models With Memory". Statistical Rethinking : A Bayesian Course with Examples in R and Stan. CRC Press. ISBN 978-0-367-13991-9.

अग्रिम पठन