रूथान समीकरण: Difference between revisions
No edit summary |
No edit summary |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
'''रूथान समीकरण''' एक गैर ऑर्थोनॉर्मल बेसिस | '''रूथान समीकरण''' एक गैर ऑर्थोनॉर्मल बेसिस समुच्चय (रसायन विज्ञान) में हार्ट्री-फॉक समीकरण का प्रतिनिधित्व करते हैं जो [[ गाऊसी कक्षीय |गाऊसी कक्षीय]] या गॉसियन-प्रकार या [[ स्लेटर-प्रकार कक्षीय |स्लेटर-प्रकार कक्षीय]] या स्लेटर-प्रकार का हो सकता है। यह संवर्त -कोश अणुओं या परमाणुओं पर प्रयुक्त होता है जहां सभी आणविक कक्षाएँ या परमाणु कक्षाएँ क्रमशः दोगुनी होती हैं। इसे सामान्यतः प्रतिबंधित हार्ट्री-फॉक सिद्धांत कहा जाता है। | ||
इस पद्धति को 1951 में क्लेमेंस सी.जे. रूथान और जॉर्ज जी. हॉल द्वारा स्वतंत्र रूप से विकसित किया गया था, और इस प्रकार इसे कभी-कभी ''रूथान-हॉल समीकरण'' भी कहा जाता है।<ref>Frank Jensen, ''Introduction to Computational Chemistry'', John Wiley and Sons, 1999, pp. 65–69, {{ISBN|0-471-98085-4}}</ref><ref>{{cite journal |doi= 10.1103/RevModPhys.23.69 |title= आणविक कक्षीय सिद्धांत में नए विकास|year= 1951 |author= Roothaan, C. C. J. |journal= Reviews of Modern Physics |volume= 23 |issue= 2 |pages= 69–89 |bibcode=1951RvMP...23...69R|url= http://elib.bsu.by/handle/123456789/154388 }}</ref><ref>{{cite journal |doi= 10.1098/rspa.1951.0048 |title= रासायनिक संयोजकता का आणविक कक्षीय सिद्धांत। आठवीं. आयनीकरण क्षमता की गणना करने की एक विधि|year= 1951 |author= Hall, G. G. |journal= [[Proceedings of the Royal Society A]] |volume= 205 |issue= 1083 |pages= 541–552|bibcode = 1951RSPSA.205..541H |s2cid= 94393143 }}</ref> रूथान समीकरणों को सामान्यीकृत आइगेनवेल्यू समस्या के समान रूप में लिखा जा सकता है, चूँकि वे एक मानक आइगेनवैल्यू समस्या नहीं हैं क्योंकि वे गैर-रेखीय हैं: | इस पद्धति को 1951 में क्लेमेंस सी.जे. रूथान और जॉर्ज जी. हॉल द्वारा स्वतंत्र रूप से विकसित किया गया था, और इस प्रकार इसे कभी-कभी ''रूथान-हॉल समीकरण'' भी कहा जाता है।<ref>Frank Jensen, ''Introduction to Computational Chemistry'', John Wiley and Sons, 1999, pp. 65–69, {{ISBN|0-471-98085-4}}</ref><ref>{{cite journal |doi= 10.1103/RevModPhys.23.69 |title= आणविक कक्षीय सिद्धांत में नए विकास|year= 1951 |author= Roothaan, C. C. J. |journal= Reviews of Modern Physics |volume= 23 |issue= 2 |pages= 69–89 |bibcode=1951RvMP...23...69R|url= http://elib.bsu.by/handle/123456789/154388 }}</ref><ref>{{cite journal |doi= 10.1098/rspa.1951.0048 |title= रासायनिक संयोजकता का आणविक कक्षीय सिद्धांत। आठवीं. आयनीकरण क्षमता की गणना करने की एक विधि|year= 1951 |author= Hall, G. G. |journal= [[Proceedings of the Royal Society A]] |volume= 205 |issue= 1083 |pages= 541–552|bibcode = 1951RSPSA.205..541H |s2cid= 94393143 }}</ref> रूथान समीकरणों को सामान्यीकृत आइगेनवेल्यू समस्या के समान रूप में लिखा जा सकता है, चूँकि वे एक मानक आइगेनवैल्यू समस्या नहीं हैं क्योंकि वे गैर-रेखीय हैं: | ||
Line 5: | Line 5: | ||
:<math>\mathbf{F} \mathbf{C} = \mathbf{S} \mathbf{C} \mathbf{\epsilon} | :<math>\mathbf{F} \mathbf{C} = \mathbf{S} \mathbf{C} \mathbf{\epsilon} | ||
</math> | </math> | ||
जहां | जहां F [[फॉक मैट्रिक्स|फॉक आव्यूह]] है (जो इलेक्ट्रॉन-इलेक्ट्रॉन इंटरैक्शन के कारण गुणांक C पर निर्भर करता है), C गुणांक का आव्यूह है, S आधार कार्यों का [[ओवरलैप मैट्रिक्स|ओवरलैप आव्यूह]] है, और <math>\epsilon</math> कक्षीय ऊर्जाओं का (विकर्ण, परिपाटी के अनुसार) आव्यूह है। ऑर्थोनॉर्मलाइज्ड आधार समुच्चय के स्थिति में ओवरलैप आव्यूह, S , पहचान आव्यूह को घटा देता है। ये समीकरण अनिवार्य रूप से एक विशेष आधार समुच्चय का उपयोग करके हार्ट्री-फॉक समीकरण पर प्रयुक्त [[गैलेर्किन विधि]] का एक विशेष स्थिति है। | ||
हार्ट्री-फॉक समीकरणों के विपरीत - जो पूर्णांक-विभेदक समीकरण हैं - रूथान-हॉल समीकरणों में एक आव्यूह -रूप होता है। इसलिए, उन्हें मानक तकनीकों का उपयोग करके हल किया जा सकता है। | हार्ट्री-फॉक समीकरणों के विपरीत - जो पूर्णांक-विभेदक समीकरण हैं - रूथान-हॉल समीकरणों में एक आव्यूह -रूप होता है। इसलिए, उन्हें मानक तकनीकों का उपयोग करके हल किया जा सकता है। | ||
Line 14: | Line 14: | ||
==संदर्भ== | ==संदर्भ== | ||
<references/> | <references/> | ||
{{quantum-chemistry-stub}} | {{quantum-chemistry-stub}} | ||
[[Category:All stub articles]] | |||
[[Category: | |||
[[Category:Created On 19/07/2023]] | [[Category:Created On 19/07/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Quantum chemistry stubs]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:क्वांटम रसायन शास्त्र]] |
Latest revision as of 13:03, 4 August 2023
रूथान समीकरण एक गैर ऑर्थोनॉर्मल बेसिस समुच्चय (रसायन विज्ञान) में हार्ट्री-फॉक समीकरण का प्रतिनिधित्व करते हैं जो गाऊसी कक्षीय या गॉसियन-प्रकार या स्लेटर-प्रकार कक्षीय या स्लेटर-प्रकार का हो सकता है। यह संवर्त -कोश अणुओं या परमाणुओं पर प्रयुक्त होता है जहां सभी आणविक कक्षाएँ या परमाणु कक्षाएँ क्रमशः दोगुनी होती हैं। इसे सामान्यतः प्रतिबंधित हार्ट्री-फॉक सिद्धांत कहा जाता है।
इस पद्धति को 1951 में क्लेमेंस सी.जे. रूथान और जॉर्ज जी. हॉल द्वारा स्वतंत्र रूप से विकसित किया गया था, और इस प्रकार इसे कभी-कभी रूथान-हॉल समीकरण भी कहा जाता है।[1][2][3] रूथान समीकरणों को सामान्यीकृत आइगेनवेल्यू समस्या के समान रूप में लिखा जा सकता है, चूँकि वे एक मानक आइगेनवैल्यू समस्या नहीं हैं क्योंकि वे गैर-रेखीय हैं:
जहां F फॉक आव्यूह है (जो इलेक्ट्रॉन-इलेक्ट्रॉन इंटरैक्शन के कारण गुणांक C पर निर्भर करता है), C गुणांक का आव्यूह है, S आधार कार्यों का ओवरलैप आव्यूह है, और कक्षीय ऊर्जाओं का (विकर्ण, परिपाटी के अनुसार) आव्यूह है। ऑर्थोनॉर्मलाइज्ड आधार समुच्चय के स्थिति में ओवरलैप आव्यूह, S , पहचान आव्यूह को घटा देता है। ये समीकरण अनिवार्य रूप से एक विशेष आधार समुच्चय का उपयोग करके हार्ट्री-फॉक समीकरण पर प्रयुक्त गैलेर्किन विधि का एक विशेष स्थिति है।
हार्ट्री-फॉक समीकरणों के विपरीत - जो पूर्णांक-विभेदक समीकरण हैं - रूथान-हॉल समीकरणों में एक आव्यूह -रूप होता है। इसलिए, उन्हें मानक तकनीकों का उपयोग करके हल किया जा सकता है।
यह भी देखें
- हार्ट्री-फॉक विधि
संदर्भ
- ↑ Frank Jensen, Introduction to Computational Chemistry, John Wiley and Sons, 1999, pp. 65–69, ISBN 0-471-98085-4
- ↑ Roothaan, C. C. J. (1951). "आणविक कक्षीय सिद्धांत में नए विकास". Reviews of Modern Physics. 23 (2): 69–89. Bibcode:1951RvMP...23...69R. doi:10.1103/RevModPhys.23.69.
- ↑ Hall, G. G. (1951). "रासायनिक संयोजकता का आणविक कक्षीय सिद्धांत। आठवीं. आयनीकरण क्षमता की गणना करने की एक विधि". Proceedings of the Royal Society A. 205 (1083): 541–552. Bibcode:1951RSPSA.205..541H. doi:10.1098/rspa.1951.0048. S2CID 94393143.