शुल्ब सूत्र: Difference between revisions
No edit summary |
|||
(4 intermediate revisions by 3 users not shown) | |||
Line 28: | Line 28: | ||
सूत्रों में [[पाइथागोरस प्रमेय]] के कथन, [[समद्विबाहु]] समकोण त्रिभुज के स्थिति में और सामान्य स्थिति में, साथ ही पाइथागोरस त्रिगुणों की सूची भी सम्मिलित हैं।<ref>{{harvtxt|Thibaut|1875}}, pp. 232–238</ref>उदाहरण के लिए, बौधायन में नियम इस प्रकार दिए गए हैं: | सूत्रों में [[पाइथागोरस प्रमेय]] के कथन, [[समद्विबाहु]] समकोण त्रिभुज के स्थिति में और सामान्य स्थिति में, साथ ही पाइथागोरस त्रिगुणों की सूची भी सम्मिलित हैं।<ref>{{harvtxt|Thibaut|1875}}, pp. 232–238</ref>उदाहरण के लिए, बौधायन में नियम इस प्रकार दिए गए हैं: | ||
1.9. वर्ग का विकर्ण [वर्ग के] क्षेत्रफल का दोगुना उत्पन्न करता है।<BR>[...]<BR> 1.12. आयत की चौड़ाई की लंबाई से अलग-अलग उत्पन्न [वर्गों का] क्षेत्रफल, विकर्ण द्वारा उत्पन्न [वर्ग के] क्षेत्रफल के बराबर होता है।<BR>1.13. यह 3 और 4, 12 और 5, 15 और 8, 7 और 24, 12 और 35, 15 और 36 भुजाओं वाले आयतों में देखा जाता है।<ref>{{harvtxt|Plofker|2007}}, pp. 388–389</ref> | |||
इसी प्रकार, अग्नि-वेदियों में समकोण बनाने के लिए आपस्तंबा के नियम निम्नलिखित पाइथागोरस त्रिगुणों का उपयोग करते हैं:<ref>{{harvtxt|Boyer|1991}}, p. 207</ref><ref name="joseph">{{Cite book |last=Joseph |first=G.G. |date=2000 |title=The Crest of the Peacock: The Non-European Roots of Mathematics |publisher=Princeton University Press |isbn=0-691-00659-8 |page=[https://archive.org/details/crestofpeacockno00jose/page/229 229] |url=https://archive.org/details/crestofpeacockno00jose/page/229 }}</ref> | इसी प्रकार, अग्नि-वेदियों में समकोण बनाने के लिए आपस्तंबा के नियम निम्नलिखित पाइथागोरस त्रिगुणों का उपयोग करते हैं:<ref>{{harvtxt|Boyer|1991}}, p. 207</ref><ref name="joseph">{{Cite book |last=Joseph |first=G.G. |date=2000 |title=The Crest of the Peacock: The Non-European Roots of Mathematics |publisher=Princeton University Press |isbn=0-691-00659-8 |page=[https://archive.org/details/crestofpeacockno00jose/page/229 229] |url=https://archive.org/details/crestofpeacockno00jose/page/229 }}</ref> | ||
Line 35: | Line 35: | ||
* <math>(8, 15, 17)</math> | * <math>(8, 15, 17)</math> | ||
* <math>(12, 35, 37)</math> | * <math>(12, 35, 37)</math> | ||
इसके अतिरिक्त, सूत्र | इसके अतिरिक्त, सूत्र, दिए गए दो वर्गों के योग या अंतर के बराबर क्षेत्रफल वाले वर्ग के निर्माण की प्रक्रियाओं का वर्णन करते हैं। दोनों निर्माण सबसे बड़े वर्गों को आयत के विकर्ण पर स्थित वर्ग मानकर आगे बढ़ते हैं, और दो छोटे वर्गों को उस आयत के किनारों पर बने वर्ग होने देते हैं। यह दावा है कि प्रत्येक प्रक्रिया वांछित क्षेत्र का वर्ग उत्पन्न करती है, पाइथागोरस प्रमेय के कथन के बराबर है। एक अन्य निर्माण से किसी दिए गए आयत के बराबर क्षेत्रफल वाला वर्ग बनता है। प्रक्रिया यह है कि आयत के अंत से आयताकार टुकड़ा काटा जाए और उसे किनारे पर चिपकाया जाए जिससे कि मूल आयत के बराबर क्षेत्रफल का सूक्ति बनाया जा सके। चूँकि सूक्ति दो वर्गों का अंतर है, समस्या को पिछले निर्माणों में से किसी एक का उपयोग करके पूरा किया जा सकता है।<ref>{{harvtxt|Thibaut|1875}}, pp. 243–246</ref> | ||
=== ज्यामिति === | === ज्यामिति === | ||
{{Pi box}} | {{Pi box}} | ||
''बौधायन शुल्ब सूत्र'' वर्ग और आयत जैसी ज्यामितीय आकृतियों का निर्माण देता है।<ref name=Plofker388-391>{{harvtxt|Plofker|2007}}, pp. 388-391</ref> यह कभी-कभी ज्यामितीय आकार से दूसरे ज्यामितीय आकार में अनुमानित, ज्यामितीय क्षेत्र-संरक्षण परिवर्तन भी देता है। इनमें [[वर्ग (ज्यामिति)]] को [[आयत]], समद्विबाहु समलंब, समद्विबाहु त्रिभुज, सम[[चतुर्भुज]] और वृत्त में बदलना और वृत्त को वर्ग में बदलना सम्मिलित है।<ref name=Plofker388-391/>इन ग्रंथों में सन्निकटन, जैसे कि वृत्त का वर्ग में परिवर्तन, अधिक सटीक कथनों के साथ-साथ दिखाई देते हैं। उदाहरण के तौर पर बौधायन में चौकोर चक्कर लगाने का कथन इस प्रकार दिया गया है: | ''बौधायन शुल्ब सूत्र'' वर्ग और आयत जैसी ज्यामितीय आकृतियों का निर्माण देता है।<ref name=Plofker388-391>{{harvtxt|Plofker|2007}}, pp. 388-391</ref> यह कभी-कभी ज्यामितीय आकार से दूसरे ज्यामितीय आकार में अनुमानित, ज्यामितीय क्षेत्र-संरक्षण परिवर्तन भी देता है। इनमें [[वर्ग (ज्यामिति)]] को [[आयत]], समद्विबाहु समलंब, समद्विबाहु त्रिभुज, सम[[चतुर्भुज]] और वृत्त में बदलना और वृत्त को वर्ग में बदलना सम्मिलित है।<ref name=Plofker388-391/>इन ग्रंथों में सन्निकटन, जैसे कि वृत्त का वर्ग में परिवर्तन, अधिक सटीक कथनों के साथ-साथ दिखाई देते हैं। उदाहरण के तौर पर बौधायन में चौकोर चक्कर लगाने का कथन इस प्रकार दिया गया है: | ||
2.9. यदि किसी वर्ग को वृत्त में बदलना है, तो [लंबाई की तन्तु] [वर्ग का] आधा विकर्ण केंद्र से पूर्व की ओर फैलाया जाता है [इसका एक हिस्सा वर्ग के पूर्वी हिस्से के बाहर स्थित होता है]; [बाहर पड़े भाग का एक तिहाई] शेष [आधे विकर्ण के] में जोड़कर, [आवश्यक] वृत्त खींचा जाता है।<ref name="Plofker391">{{harvtxt|Plofker|2007}}, p. 391</ref> | |||
और वृत्त का वर्ग करने का कथन इस प्रकार दिया गया है: | और वृत्त का वर्ग करने का कथन इस प्रकार दिया गया है: | ||
2.10. किसी वृत्त को वर्ग में बदलने के लिए उसके व्यास को आठ भागों में बाँटा जाता है; एक [ऐसे] भाग को उनतीस भागों में विभाजित करने के बाद उनमें से अट्ठाईस कम कर दिया जाता है और आगे छठे [बाएं भाग का] आठवां [छठे भाग का] कम कर दिया जाता है।<BR>2.11. वैकल्पिक रूप से, [व्यास] को पंद्रह भागों में विभाजित करें और उनमें से दो को कम करें; यह वर्ग की अनुमानित भुजा [वांछित] देता है।<ref name="Plofker391" /> | |||
2.9 और 2.10 में निर्माण π का मान 3.088 देता है, जबकि 2.11 में निर्माण π को 3.004 देता है।<ref>{{harvtxt|Plofker|2007}}, p. 392, "The 'circulature' and quadrature techniques in 2.9 and 2.10, the first of which is illustrated in figure 4.4, imply what we would call a value of π of 3.088, [...] The quadrature in 2.11, on the other hand, suggests that π = 3.004 (where <math>s = 2r\cdot13/15</math>), which is already considered only 'approximate.' In 2.12, the ratio of a square's diagonal to its side (our <math>\sqrt{2})</math> is considered to be 1 + 1/3 + 1/(3·4) - 1/(3·4·34) = 1.4142.</ref> | 2.9 और 2.10 में निर्माण π का मान 3.088 देता है, जबकि 2.11 में निर्माण π को 3.004 देता है।<ref>{{harvtxt|Plofker|2007}}, p. 392, "The 'circulature' and quadrature techniques in 2.9 and 2.10, the first of which is illustrated in figure 4.4, imply what we would call a value of π of 3.088, [...] The quadrature in 2.11, on the other hand, suggests that π = 3.004 (where <math>s = 2r\cdot13/15</math>), which is already considered only 'approximate.' In 2.12, the ratio of a square's diagonal to its side (our <math>\sqrt{2})</math> is considered to be 1 + 1/3 + 1/(3·4) - 1/(3·4·34) = 1.4142.</ref> | ||
Line 50: | Line 50: | ||
वेदी निर्माण से 2 के वर्गमूल का अनुमान भी लगाया गया जैसा कि तीन सूत्रों में पाया गया है। बौधायन सूत्र में यह इस प्रकार प्रकट होता है: | वेदी निर्माण से 2 के वर्गमूल का अनुमान भी लगाया गया जैसा कि तीन सूत्रों में पाया गया है। बौधायन सूत्र में यह इस प्रकार प्रकट होता है: | ||
2.12. माप को इसके तीसरे से बढ़ाया जाना है और इस [तीसरे] को फिर से अपने चौथे से कम करके [उस चौथे के] चौंतीसवें भाग से बढ़ाया जाना है; यह वर्ग का विकर्ण [जिसकी भुजा माप है] का [मान] है।<ref name="Plofker391" /> | |||
जिससे दो के वर्गमूल का मान इस प्रकार होता है: | जिससे दो के वर्गमूल का मान इस प्रकार होता है: | ||
Line 59: | Line 59: | ||
उदाहरण के लिए बर्क द्वारा भी इसका सुझाव दिया गया है<ref>{{harvtxt|Bürk|1901}}, p. 575</ref> कि √2 का यह सन्निकटन यह ज्ञान दर्शाता है कि √2 [[अपरिमेय संख्या]] है। यूक्लिड के तत्वों के अपने अनुवाद में, हीथ ने तर्कहीनता की खोज के लिए आवश्यक कई ऐतिहासिक रूपरेखा तैयार की है, और सबूत की कमी की ओर इशारा किया है कि भारतीय गणित ने शुल्ब सूत्र के युग में उन ऐतिहासिक को हासिल किया था।<ref>{{harvtxt|Heath|1925}}, p. 364: "As [Heinrich] Vogt says, three stages had to be passed through before the irrationality of the diagonal of a square was discovered in any real sense. (1) All values found by direct measurement of calculations based thereon have to be recognized as being inaccurate. Next (2) must supervene the conviction that it is ''impossible'' to arrive at an accurate arithmetical expression of the value. And lastly (3) the impossibility must be proved. Now there is no real evidence that the Indians, at the date in question, had even reached the first stage, still less the second or third."</ref> | उदाहरण के लिए बर्क द्वारा भी इसका सुझाव दिया गया है<ref>{{harvtxt|Bürk|1901}}, p. 575</ref> कि √2 का यह सन्निकटन यह ज्ञान दर्शाता है कि √2 [[अपरिमेय संख्या]] है। यूक्लिड के तत्वों के अपने अनुवाद में, हीथ ने तर्कहीनता की खोज के लिए आवश्यक कई ऐतिहासिक रूपरेखा तैयार की है, और सबूत की कमी की ओर इशारा किया है कि भारतीय गणित ने शुल्ब सूत्र के युग में उन ऐतिहासिक को हासिल किया था।<ref>{{harvtxt|Heath|1925}}, p. 364: "As [Heinrich] Vogt says, three stages had to be passed through before the irrationality of the diagonal of a square was discovered in any real sense. (1) All values found by direct measurement of calculations based thereon have to be recognized as being inaccurate. Next (2) must supervene the conviction that it is ''impossible'' to arrive at an accurate arithmetical expression of the value. And lastly (3) the impossibility must be proved. Now there is no real evidence that the Indians, at the date in question, had even reached the first stage, still less the second or third."</ref> | ||
== यह भी देखें == | == यह भी देखें == | ||
*कल्प (वेदांग) | *कल्प (वेदांग) | ||
Line 255: | Line 254: | ||
| isbn= 9783642617812 | | isbn= 9783642617812 | ||
}} | }} | ||
== अनुवाद == | == अनुवाद == | ||
* बौधायन का शुल्वसूत्र, द्वारकानाथयजवन की टिप्पणी के साथ, जॉर्ज थिबॉट द्वारा, द पंडित के अंकों की एक श्रृंखला में प्रकाशित किया गया था। बनारस कॉलेज की एक मासिक पत्रिका, जो संस्कृत साहित्य को समर्पित है। ध्यान दें कि टिप्पणी का अनुवाद नहीं किया गया है। | * बौधायन का शुल्वसूत्र, द्वारकानाथयजवन की टिप्पणी के साथ, जॉर्ज थिबॉट द्वारा, द पंडित के अंकों की एक श्रृंखला में प्रकाशित किया गया था। बनारस कॉलेज की एक मासिक पत्रिका, जो संस्कृत साहित्य को समर्पित है। ध्यान दें कि टिप्पणी का अनुवाद नहीं किया गया है। | ||
Line 276: | Line 273: | ||
* {{cite book|last1=Sen|first1=S.N.|first2=A.K.|last2=Bag|year=1983|title=पाठ, अंग्रेजी अनुवाद और टिप्पणी के साथ बौधायन, आपस्तंब, कात्यायन और मानव के शुल्ब सूत्र|place=New Delhi|publisher=Indian National Science Academy}} | * {{cite book|last1=Sen|first1=S.N.|first2=A.K.|last2=Bag|year=1983|title=पाठ, अंग्रेजी अनुवाद और टिप्पणी के साथ बौधायन, आपस्तंब, कात्यायन और मानव के शुल्ब सूत्र|place=New Delhi|publisher=Indian National Science Academy}} | ||
[[Category:CS1]] | |||
[[Category:CS1 Deutsch-language sources (de)]] | |||
[[Category: | |||
[[Category:Created On 01/07/2023]] | [[Category:Created On 01/07/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] |
Latest revision as of 11:34, 7 August 2023
शुल्व सूत्र या शुल्बसूत्र (संस्कृत: शुल्बसूत्र; śulba: डोरी, डोरी, तन्तु) श्रौता अनुष्ठान से संबंधित सूत्र ग्रंथ हैं और इनमें वेदी (वेदी)|अग्नि-वेदी निर्माण से संबंधित ज्यामिति सम्मिलितहै।
उद्देश्य और उत्पत्ति
शुल्ब सूत्र कल्प (वेदांग) नामक ग्रंथों के बड़े संग्रह का हिस्सा हैं, जिन्हें वेदों का परिशिष्ट माना जाता है। वे वैदिक काल से भारतीय गणित के ज्ञान के एकमात्र स्रोत हैं। अद्वितीय अग्नि-वेदी आकृतियाँ देवताओं के अनूठे उपहारों से जुड़ी थीं। उदाहरण के लिए, "जो स्वर्ग की इच्छा रखता है, उसे बाज़ के रूप में अग्नि-वेदी का निर्माण करना होता है"; "ब्राह्मण लोक को जीतने की इच्छा रखने वाले व्यक्ति को कछुए के रूप में अग्नि-वेदी का निर्माण करना चाहिए" और "जो लोग सम्मिलित और भविष्य के शत्रुओं को नष्ट करना चाहते हैं, उन्हें समचतुर्भुज के रूप में अग्नि-वेदी का निर्माण करना चाहिए"।[1]
चार प्रमुख शुल्ब सूत्र, जो गणितीय रूप से सबसे महत्वपूर्ण हैं, बौधायन, मानव, आपस्तंब और कात्यायन (गणितज्ञ) से संबंधित हैं।[2] उनकी भाषा उत्तर वैदिक संस्कृत है, जो सामान्यतः पहली सहस्राब्दी ईसा पूर्व के दौरान की रचना की ओर इशारा करती है।[2]सबसे पुराना सूत्र बौधायन से संबंधित है, जो संभवतः 800 ईसा पूर्व से 500 ईसा पूर्व के आसपास संकलित किया गया था।[2] पिंगरी का कहना है कि आपस्तंब संभवतः अगला सबसे पुराना है; वह स्पष्ट ऋण के आधार पर कात्यायन और मानव को कालानुक्रमिक रूप से तीसरे और चौथे स्थान पर रखता है।[3] प्लॉफ़कर के अनुसार, कात्यायन की रचना "संभवतः ईसा पूर्व चौथी शताब्दी के मध्य में पाणिनि द्वारा संस्कृत के महान व्याकरणिक संहिताकरण" के बाद की गई थी, लेकिन वह मानव को बौधायन के समान काल में रखती है।[4]
वैदिक ग्रंथों की रचना के संबंध में, प्लॉफ़कर लिखते हैं,
एक पवित्र वाणी के रूप में संस्कृत की वैदिक पूजा, जिसके दैवीय रूप से प्रकट ग्रंथों को लिखित रूप में प्रेषित करने के अतिरिक्त सुनाया, सुना और याद किया जाता था, ने सामान्य रूप से संस्कृत साहित्य को आकार देने में मदद की। ... इस प्रकार पाठ ऐसे प्रारूपों में लिखे गए थे जिन्हें आसानी से याद किया जा सकता था: विशेष रूप से चिरसम्मत काल में या तो संक्षिप्त गद्य सूत्र (सूत्र, एक शब्द जिसे बाद में सामान्य रूप से नियम या कलन विधि के अर्थ में लागू किया गया) या पद्य से याद किया जा सकता था। स्वाभाविक रूप से, याद रखने में आसानी कभी-कभी समझने में आसानी में हस्तक्षेप करती है। परिणामस्वरूप, अधिकांश ग्रंथों को एक या अधिक गद्य टिप्पणियों द्वारा पूरक किया गया..".[5]
शुल्ब सूत्र में से प्रत्येक के लिए कई टिप्पणियाँ हैं, लेकिन ये मूल कार्यों के बहुत बाद लिखी गईं। उदाहरण के लिए, आपस्तंब पर सुंदरराज की टिप्पणी 15वीं शताब्दी के उत्तरार्ध से आती है[6] और बौधायन पर द्वारकानाथ की टिप्पणी सुंदरराज से ऋण ली गई प्रतीत होती है।[7] स्टाल के अनुसार, शुल्बा सूत्र में वर्णित परंपरा के कुछ पहलुओं को "मौखिक रूप से प्रसारित" किया गया होगा, और वह दक्षिणी भारत में उन स्थानों की ओर इशारा करते हैं जहां अग्नि-वेदी अनुष्ठान अभी भी प्रचलित है और मौखिक परंपरा संरक्षित है।[8] हालाँकि, भारत में अग्नि-वेदी परंपरा काफी हद तक समाप्त हो गई, और प्लॉफ़कर ने चेतावनी दी कि जिन क्षेत्रों में यह प्रथा बनी हुई है, वे अखंड परंपरा के अतिरिक्त बाद के वैदिक पुनरुद्धार को प्रतिबिंबित कर सकते हैं।[4] शुल्ब सूत्र में वर्णित वेदी निर्माण के पुरातात्विक साक्ष्य विरल हैं। दूसरी शताब्दी ईसा पूर्व की बड़ी बाज़ के आकार की अग्नि वेदी (श्येनासिटी) कौशांबी में जी.आर.शर्मा द्वारा की गई खुदाई में मिली थी, लेकिन यह वेदी शुल्ब सूत्र द्वारा निर्धारित आयामों के अनुरूप नहीं है।[3][9]
शुल्ब सूत्र की सामग्री संभवतः स्वयं कार्यों से भी पुरानी है। शतपथ ब्राह्मण और तैत्तिरीय संहिता, जिनकी सामग्री दूसरी सहस्राब्दी के उत्तरार्ध या पहली सहस्राब्दी ईसा पूर्व की प्रारंभिक की है, वेदियों का वर्णन करती है जिनके आयाम 15 पद और 36 पद के पादों वाले समकोण त्रिभुज पर आधारित प्रतीत होता है, जो बौधायन शुल्ब सूत्र में सूचीबद्ध त्रिभुजों में से एक है।[10][11]
कई गणितज्ञों और इतिहासकारों ने उल्लेख किया है कि सबसे प्रारंभिक ग्रंथ 800 ईसा पूर्व में वैदिक हिंदुओं द्वारा 2000 ईसा पूर्व की मौखिक परंपरा के संकलन के आधार पर लिखे गए थे।[12][13] यह संभव है, जैसा कि गुप्ता ने प्रस्तावित किया था, कि ज्यामिति का विकास अनुष्ठान की जरूरतों को पूरा करने के लिए किया गया था।[14] कुछ विद्वान इससे भी आगे जाते हैं: स्टाल ने दोहरीकरण और अन्य ज्यामितीय परिवर्तन समस्याओं के प्रति समान रुचि और दृष्टिकोण का हवाला देते हुए भारतीय और ग्रीक ज्यामिति के लिए एक सामान्य अनुष्ठान उत्पत्ति की परिकल्पना की है।[15] सीडेनबर्ग, उसके बाद वैन डेर वेर्डन, गणित के लिए अनुष्ठानिक उत्पत्ति को अधिक व्यापक रूप से देखते हैं, यह मानते हुए कि प्रमुख प्रगति, जैसे कि पाइथागोरस प्रमेय की खोज, केवल एक ही स्थान पर हुई, और वहां से दुनिया के बाकी हिस्सों में फैल गई।[16][17] वान डेर वेर्डन का उल्लेख है कि सुलभा सूत्र के लेखक 600 ईसा पूर्व से पहले अस्तित्व में थे और ग्रीक ज्यामिति से प्रभावित नहीं हो सकते थे।[18][19] जबकि बॉयर ने संभावित उत्पत्ति के रूप में प्रथम बेबीलोनियन राजवंश गणित (लगभग 2000 ईसा पूर्व - 1600 ईसा पूर्व) का उल्लेख किया है, चूंकि यह भी कहा गया है कि शुल्बा सूत्र में एक सूत्र सम्मिलित है जो बेबीलोन स्रोतों में नहीं पाया जाता है।[20][1]केएस कृष्णन का उल्लेख है कि शुल्ब सूत्र मेसोपोटामिया के पाइथागोरस त्रिगुणों से पहले के हैं।[21] सीडेनबर्ग का तर्क है कि या तो "ओल्ड बेबीलोनिया को पाइथागोरस का प्रमेय भारत से मिला या ओल्ड बेबीलोनिया और भारत को यह किसी तीसरे स्रोत से मिला"। सीडेनबर्ग का सुझाव है कि यह स्रोत सुमेरियन हो सकता है और 1700 ईसा पूर्व का हो सकता है।[22] इसके विपरीत, पिंगरी ने चेतावनी दी है कि "[वेदी बनाने वालों के] कार्यों में ज्यामिति की अनूठी उत्पत्ति को देखना एक गलती होगी"; भारत और अन्य जगहों पर अन्य, चाहे व्यावहारिक या सैद्धांतिक समस्याओं के जवाब में, उनके समाधानों को स्मृति में रखे बिना या अंततः पांडुलिपियों में लिखे बिना बहुत आगे बढ़ गए होंगे।[23] प्लॉफ़कर इस संभावना को भी बढ़ाते हैं कि सम्मिलित ज्यामितीय ज्ञान को सचेत रूप से अनुष्ठान अभ्यास में सम्मिलित किया गया था।[24]
शुल्ब सूत्र की सूची
- आपस्तंब
- बौधायन
- मानवा
- कात्यायना
- मैत्रायणीय (कुछ हद तक मानव पाठ के समान)
- वराह (पांडुलिपि में)
- अभियोगी (पांडुलिपि में)
- हिरण्य अवतार (आपस्तंब शुल्ब सूत्र के समान)
गणित
पायथागॉरियन प्रमेय और पायथागॉरियन त्रिगुण
सूत्रों में पाइथागोरस प्रमेय के कथन, समद्विबाहु समकोण त्रिभुज के स्थिति में और सामान्य स्थिति में, साथ ही पाइथागोरस त्रिगुणों की सूची भी सम्मिलित हैं।[25]उदाहरण के लिए, बौधायन में नियम इस प्रकार दिए गए हैं:
1.9. वर्ग का विकर्ण [वर्ग के] क्षेत्रफल का दोगुना उत्पन्न करता है।
[...]
1.12. आयत की चौड़ाई की लंबाई से अलग-अलग उत्पन्न [वर्गों का] क्षेत्रफल, विकर्ण द्वारा उत्पन्न [वर्ग के] क्षेत्रफल के बराबर होता है।
1.13. यह 3 और 4, 12 और 5, 15 और 8, 7 और 24, 12 और 35, 15 और 36 भुजाओं वाले आयतों में देखा जाता है।[26]
इसी प्रकार, अग्नि-वेदियों में समकोण बनाने के लिए आपस्तंबा के नियम निम्नलिखित पाइथागोरस त्रिगुणों का उपयोग करते हैं:[27][28]
इसके अतिरिक्त, सूत्र, दिए गए दो वर्गों के योग या अंतर के बराबर क्षेत्रफल वाले वर्ग के निर्माण की प्रक्रियाओं का वर्णन करते हैं। दोनों निर्माण सबसे बड़े वर्गों को आयत के विकर्ण पर स्थित वर्ग मानकर आगे बढ़ते हैं, और दो छोटे वर्गों को उस आयत के किनारों पर बने वर्ग होने देते हैं। यह दावा है कि प्रत्येक प्रक्रिया वांछित क्षेत्र का वर्ग उत्पन्न करती है, पाइथागोरस प्रमेय के कथन के बराबर है। एक अन्य निर्माण से किसी दिए गए आयत के बराबर क्षेत्रफल वाला वर्ग बनता है। प्रक्रिया यह है कि आयत के अंत से आयताकार टुकड़ा काटा जाए और उसे किनारे पर चिपकाया जाए जिससे कि मूल आयत के बराबर क्षेत्रफल का सूक्ति बनाया जा सके। चूँकि सूक्ति दो वर्गों का अंतर है, समस्या को पिछले निर्माणों में से किसी एक का उपयोग करके पूरा किया जा सकता है।[29]
ज्यामिति
Part of a series of articles on the |
mathematical constant [[Pi|π]] |
---|
3.1415926535897932384626433... |
Uses |
Properties |
Value |
People |
History |
In culture |
Related topics |
|
बौधायन शुल्ब सूत्र वर्ग और आयत जैसी ज्यामितीय आकृतियों का निर्माण देता है।[30] यह कभी-कभी ज्यामितीय आकार से दूसरे ज्यामितीय आकार में अनुमानित, ज्यामितीय क्षेत्र-संरक्षण परिवर्तन भी देता है। इनमें वर्ग (ज्यामिति) को आयत, समद्विबाहु समलंब, समद्विबाहु त्रिभुज, समचतुर्भुज और वृत्त में बदलना और वृत्त को वर्ग में बदलना सम्मिलित है।[30]इन ग्रंथों में सन्निकटन, जैसे कि वृत्त का वर्ग में परिवर्तन, अधिक सटीक कथनों के साथ-साथ दिखाई देते हैं। उदाहरण के तौर पर बौधायन में चौकोर चक्कर लगाने का कथन इस प्रकार दिया गया है:
2.9. यदि किसी वर्ग को वृत्त में बदलना है, तो [लंबाई की तन्तु] [वर्ग का] आधा विकर्ण केंद्र से पूर्व की ओर फैलाया जाता है [इसका एक हिस्सा वर्ग के पूर्वी हिस्से के बाहर स्थित होता है]; [बाहर पड़े भाग का एक तिहाई] शेष [आधे विकर्ण के] में जोड़कर, [आवश्यक] वृत्त खींचा जाता है।[31]
और वृत्त का वर्ग करने का कथन इस प्रकार दिया गया है:
2.10. किसी वृत्त को वर्ग में बदलने के लिए उसके व्यास को आठ भागों में बाँटा जाता है; एक [ऐसे] भाग को उनतीस भागों में विभाजित करने के बाद उनमें से अट्ठाईस कम कर दिया जाता है और आगे छठे [बाएं भाग का] आठवां [छठे भाग का] कम कर दिया जाता है।
2.11. वैकल्पिक रूप से, [व्यास] को पंद्रह भागों में विभाजित करें और उनमें से दो को कम करें; यह वर्ग की अनुमानित भुजा [वांछित] देता है।[31]
2.9 और 2.10 में निर्माण π का मान 3.088 देता है, जबकि 2.11 में निर्माण π को 3.004 देता है।[32]
वर्गमूल
वेदी निर्माण से 2 के वर्गमूल का अनुमान भी लगाया गया जैसा कि तीन सूत्रों में पाया गया है। बौधायन सूत्र में यह इस प्रकार प्रकट होता है:
2.12. माप को इसके तीसरे से बढ़ाया जाना है और इस [तीसरे] को फिर से अपने चौथे से कम करके [उस चौथे के] चौंतीसवें भाग से बढ़ाया जाना है; यह वर्ग का विकर्ण [जिसकी भुजा माप है] का [मान] है।[31]
जिससे दो के वर्गमूल का मान इस प्रकार होता है:
दरअसल, वर्गमूल की गणना की प्रारंभिक विधि कुछ सूत्रों में पाई जा सकती है, विधि में प्रतिवर्तन सूत्र सम्मिलित है: x के बड़े मानों के लिए, जो स्वयं को गैर-प्रतिवर्तन पहचान पर आधारित करता है r के मानों के लिए a के सापेक्ष अत्यंत छोटा है।
उदाहरण के लिए बर्क द्वारा भी इसका सुझाव दिया गया है[35] कि √2 का यह सन्निकटन यह ज्ञान दर्शाता है कि √2 अपरिमेय संख्या है। यूक्लिड के तत्वों के अपने अनुवाद में, हीथ ने तर्कहीनता की खोज के लिए आवश्यक कई ऐतिहासिक रूपरेखा तैयार की है, और सबूत की कमी की ओर इशारा किया है कि भारतीय गणित ने शुल्ब सूत्र के युग में उन ऐतिहासिक को हासिल किया था।[36]
यह भी देखें
- कल्प (वेदांग)
उद्धरण और फ़ुटनोट
- ↑ 1.0 1.1 Plofker (2007), p. 387, "Certain shapes and sizes of fire-altars were associated with particular gifts that the sacrificer desired from the gods: 'he who desires heaven is to construct a fire-altar in the form of a falcon'; 'a fire-altar in the form of a tortoise is to be constructed by one desiring to win the world of Brahman'; 'those who wish to destroy existing and future enemies should construct a fire-altar in the form of a rhombus' [Sen and Bag 1983, 86, 98, 111]."
- ↑ 2.0 2.1 2.2 Plofker (2007), p. 387
- ↑ 3.0 3.1 Pingree (1981), p. 4
- ↑ 4.0 4.1 Plofker (2009), p.18
- ↑ Plofker (2009), p. 11
- ↑ Pingree (1981), p. 6
- ↑ Delire (2009), p. 50
- ↑ Staal (1999), p. 111
- ↑ Plofker (2009), p 19.
- ↑ Bürk (1901), p. 554
- ↑ Heath (1925), p. 362
- ↑ "सुलभा सूत्र के वर्गमूल". pi.math.cornell.edu. Retrieved 2020-05-24.
- ↑ Datta, Bibhutibhusan (1931). ""रूट" के लिए हिंदू शब्दों की उत्पत्ति पर". The American Mathematical Monthly. 38 (7): 371–376. doi:10.2307/2300909. ISSN 0002-9890. JSTOR 2300909.
- ↑ Gupta (1997), p. 154
- ↑ Staal (1999), pp. 106, 109–110
- ↑ Seidenberg (1978)
- ↑ van der Waerden (1983)
- ↑ Van der Waerden, Barten L (1983). प्राचीन सभ्यताओं में ज्यामिति और बीजगणित. Springer Verlag. p. 12. ISBN 0387121595.
- ↑ Joseph, George Gheverghese (1997). "What Is a Square Root? A Study of Geometrical Representation in Different Mathematical Traditions". Mathematics in School. 26 (3): 4–9. ISSN 0305-7259. JSTOR 30215281.
- ↑ Boyer (1991), p. 207, "We find rules for the construction of right angles by means of triples of cords the lengths of which form Pythagorean triages, such as 3, 4, and 5, or 5, 12, and 13, or 8, 15, and 17, or 12, 35, and 37. However all of these triads are easily derived from the old Babylonian rule; hence, Mesopotamian influence in the Sulvasutras is not unlikely. Aspastamba knew that the square on the diagonal of a rectangle is equal to the sum of the squares on the two adjacent sides, but this form of the Pythagorean theorem also may have been derived from Mesopotamia. ... So conjectural are the origin and period of the Sulbasutras that we cannot tell whether or not the rules are related to early Egyptian surveying or to the later Greek problem of altar doubling. They are variously dated within an interval of almost a thousand years stretching from the eighth century B.C. to the second century of our era."
- ↑ Krishnan, K S (2019). Origin of Vedas, Chapter 5. Notion Press. ISBN 978-1645879800.
- ↑ Seidenberg (1983), p. 121
- ↑ Pingree (1981), p. 5
- ↑ Plofker (2009), p. 17
- ↑ Thibaut (1875), pp. 232–238
- ↑ Plofker (2007), pp. 388–389
- ↑ Boyer (1991), p. 207
- ↑ Joseph, G.G. (2000). The Crest of the Peacock: The Non-European Roots of Mathematics. Princeton University Press. p. 229. ISBN 0-691-00659-8.
- ↑ Thibaut (1875), pp. 243–246
- ↑ 30.0 30.1 Plofker (2007), pp. 388-391
- ↑ 31.0 31.1 31.2 Plofker (2007), p. 391
- ↑ Plofker (2007), p. 392, "The 'circulature' and quadrature techniques in 2.9 and 2.10, the first of which is illustrated in figure 4.4, imply what we would call a value of π of 3.088, [...] The quadrature in 2.11, on the other hand, suggests that π = 3.004 (where ), which is already considered only 'approximate.' In 2.12, the ratio of a square's diagonal to its side (our is considered to be 1 + 1/3 + 1/(3·4) - 1/(3·4·34) = 1.4142.
- ↑ Plofker (2007), p. 392
- ↑ Cooke (2005), p. 200
- ↑ Bürk (1901), p. 575
- ↑ Heath (1925), p. 364: "As [Heinrich] Vogt says, three stages had to be passed through before the irrationality of the diagonal of a square was discovered in any real sense. (1) All values found by direct measurement of calculations based thereon have to be recognized as being inaccurate. Next (2) must supervene the conviction that it is impossible to arrive at an accurate arithmetical expression of the value. And lastly (3) the impossibility must be proved. Now there is no real evidence that the Indians, at the date in question, had even reached the first stage, still less the second or third."
संदर्भ
- Boyer, Carl B. (1991). A History of Mathematics (Second ed.). John Wiley & Sons. ISBN 0-471-54397-7.
- Bürk, Albert (1901). "Das Āpastamba-Śulba-Sūtra, herausgegeben, übersetzt und mit einer Einleitung versehen". Zeitschrift der Deutschen Morgenländischen Gesellschaft (in Deutsch). 55: 543–591.
- Delire, Jean Michele (2009). "Chronological inferences from a comparison between commentaries on different Śulbasūtras". In Wujastyk, Dominik (ed.). Mathematics and Medicine in Sanskrit. pp. 37–62.
- Bryant, Edwin (2001). The Quest for the Origins of Vedic Culture: The Indo-Aryan Migration Debate. Oxford University Press. ISBN 9780195137774.
- Cooke, Roger (2005) [First published 1997]. The History of Mathematics: A Brief Course. Wiley-Interscience. ISBN 0-471-44459-6.
- Datta, Bibhutibhushan (1932). The Science of the Sulba. A study in early Hindu geometry. University of Calcutta.
- Gupta, R.C. (1997). "Baudhāyana". In Selin, Helaine (ed.). Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. Springer. ISBN 978-0-7923-4066-9.
- Heath, Sir Thomas L. (1925) [1908]. The Thirteen Books of Euclid's Elements, Translated from the Text of Heiberg, with Introduction and Commentary. Vol. I (2 ed.). New York: Dover.
- Pingree, David (1981), Gonda, Jan (ed.), Jyotiḥśāstra : astral and mathematical literature, A history of Indian literature, vol. VI, Scientific and technical literature
- Plofker, Kim (2007). "Mathematics in India". In Katz, Victor J (ed.). The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook. Princeton University Press. ISBN 978-0-691-11485-9.
- Plofker, Kim (2009). Mathematics in India. Princeton University Press. ISBN 9780691120676.
- Sarma, K.V. (1997). "Sulbasutras". In Selin, Helaine (ed.). Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. Springer. ISBN 978-0-7923-4066-9.
- Seidenberg, A. (1978). "The origin of mathematics". Archive for History of Exact Sciences. 18 (4): 301–342. doi:10.1007/BF00348435. S2CID 118671661.
- Seidenberg, A. (1983). "The Geometry of the Vedic Rituals". In Staal, Frits (ed.). Agni: The Vedic Ritual of the Fire Altar. Berkeley: Asian Humanities Press.
- Staal, Frits (1999). "Greek and Vedic Geometry". Journal of Indian Philosophy. 27: 105–127. doi:10.1023/A:1004364417713. S2CID 16466375.
- Thibaut, George (1875). "On the Śulvasútras". The Journal of the Asiatic Society of Bengal. 44: 227–275.
- van der Waerden, Bartel Leendert (1983). Geometry and Algebra in Ancient Civilizations. Springer-Verlag. ISBN 9783642617812.
अनुवाद
- बौधायन का शुल्वसूत्र, द्वारकानाथयजवन की टिप्पणी के साथ, जॉर्ज थिबॉट द्वारा, द पंडित के अंकों की एक श्रृंखला में प्रकाशित किया गया था। बनारस कॉलेज की एक मासिक पत्रिका, जो संस्कृत साहित्य को समर्पित है। ध्यान दें कि टिप्पणी का अनुवाद नहीं किया गया है।
- (1875) '9' (108): 292-298
- (1875-1876) '10' (109): 17-22, id=ICkJAAAAQAAJ&pg=PA44 (110): 44-50, (111): 72-74, com/books?id=ICkJAAAAQAAJ&pg=PA139 (114): 139-146, (115): 166-170, [https:// books.google.com/books?id=ICkJAAAAQAAJ&pg=PA186 (116): 186–194], (117): 209–218
- (नई श्रृंखला) (1876-1877) '1' (5): 316-322, com/books?id=jHxFAQAAIAAJ&pg=PA556 (9): 556–578, (10): 626–642, [https:// books.google.com/books?id=jHxFAQAAIAAJ&pg=PA692 (11): 692–706], (12): 761–770
- जॉर्ज थिबॉट द्वारा सूर्यदास के पुत्र राम की टिप्पणी के साथ कात्यायन का शुलबपरिशिष्ट, द पंडित के अंकों की एक श्रृंखला में प्रकाशित हुआ था। बनारस कॉलेज की एक मासिक पत्रिका, जो संस्कृत साहित्य को समर्पित है। ध्यान दें कि टिप्पणी का अनुवाद नहीं किया गया है।
- (नई श्रृंखला) (1882) '4' (1-4): 94-103, com/books?id=Pn5FAQAAIAAJ&pg=PP342 (5–8): 328–339, (9–10): 382–389, [ https://books.google.com/books?id=Pn5FAQAAIAAJ&pg=PP507 (9-10): 487-491]
- Bürk, Albert (1902). "आपस्तंब शुल्ब सूत्र, संपादित, अनुवादित और एक परिचय के साथ". Zeitschrift der Deutschen Morgenländischen Gesellschaft (in Deutsch). 56: 327–391. प्रतिलेखन और विश्लेषण में Bürk (1901).
- Sen, S.N.; Bag, A.K. (1983). पाठ, अंग्रेजी अनुवाद और टिप्पणी के साथ बौधायन, आपस्तंब, कात्यायन और मानव के शुल्ब सूत्र. New Delhi: Indian National Science Academy.