लिलीफोर्स परीक्षण: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Statistical test for normality of data}} आंकड़ों में, लिलीफ़ोर्स परीक्षण कोलमोगोरो...")
 
No edit summary
 
(5 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Statistical test for normality of data}}
{{Short description|Statistical test for normality of data}}
आंकड़ों में, लिलीफ़ोर्स परीक्षण कोलमोगोरोव-स्मिरनोव परीक्षण पर आधारित एक [[सामान्यता परीक्षण]] है। इसका उपयोग [[शून्य परिकल्पना]] का परीक्षण करने के लिए किया जाता है कि डेटा [[सामान्य वितरण]] आबादी से आता है, जब शून्य परिकल्पना ''कौन सा'' सामान्य वितरण निर्दिष्ट नहीं करती है; यानी, यह वितरण के [[अपेक्षित मूल्य]] और विचरण को निर्दिष्ट नहीं करता है।<ref name=":0">{{Cite journal|last=Lilliefors|first=Hubert W.|date=1967-06-01|title=माध्य और प्रसरण अज्ञात के साथ सामान्यता के लिए कोलमोगोरोव-स्मिरनोव परीक्षण पर|journal=Journal of the American Statistical Association|volume=62|issue=318|pages=399–402|doi=10.1080/01621459.1967.10482916|s2cid=16462094 |issn=0162-1459|url=https://semanticscholar.org/paper/4aad1756e88dba86399a75891895e00b160f5460}}</ref> इसका नाम [[जॉर्ज वाशिंगटन विश्वविद्यालय]] में सांख्यिकी के प्रोफेसर [[ह्यूबर्ट लिलीफोर्स]] के नाम पर रखा गया है।
आंकड़ों के अनुसार, '''लिलीफोर्स परीक्षण''' कोलमोगोरोव-स्मिरनोव परीक्षण पर आधारित एक सामान्यता परीक्षण है। इसका उपयोग [[शून्य परिकल्पना|रिक्त परिकल्पना]] (नल हाइपोथिसिस) का परीक्षण करने के लिए किया जाता है कि डेटा सामान्य रूप से वितरित जनसंख्या से आता है जब रिक्त परिकल्पना यह निर्दिष्ट नहीं करती है कि कौन सा सामान्य वितरण है; यानी, यह वितरण के [[अपेक्षित मूल्य]] और विचरण को निर्दिष्ट नहीं करता है।<ref name=":0">{{Cite journal|last=Lilliefors|first=Hubert W.|date=1967-06-01|title=माध्य और प्रसरण अज्ञात के साथ सामान्यता के लिए कोलमोगोरोव-स्मिरनोव परीक्षण पर|journal=Journal of the American Statistical Association|volume=62|issue=318|pages=399–402|doi=10.1080/01621459.1967.10482916|s2cid=16462094 |issn=0162-1459|url=https://semanticscholar.org/paper/4aad1756e88dba86399a75891895e00b160f5460}}</ref> इसका नाम जॉर्ज वाशिंगटन विश्वविद्यालय में सांख्यिकी के प्रोफेसर ह्यूबर्ट लिलीफोर्स के नाम पर रखा गया है।


परीक्षण के एक प्रकार का उपयोग अशक्त परिकल्पना का परीक्षण करने के लिए किया जा सकता है कि डेटा एक तेजी से वितरित आबादी से आता है, जब अशक्त परिकल्पना यह निर्दिष्ट नहीं करती है कि कौन सा घातांकीय वितरण है।<ref>{{Cite journal|last=Lilliefors|first=Hubert W.|date=1969-03-01|title=माध्य अज्ञात के साथ घातीय वितरण के लिए कोलमोगोरोव-स्मिरनोव परीक्षण पर|journal=Journal of the American Statistical Association|volume=64|issue=325|pages=387–389|doi=10.1080/01621459.1969.10500983|issn=0162-1459}}</ref>


परीक्षण के एक प्रकार का उपयोग अशक्त परिकल्पना का परीक्षण करने के लिए किया जा सकता है कि डेटा एक तेजी से वितरित जनसंख्या से आता है जब अशक्त परिकल्पना यह निर्दिष्ट नहीं करती है कि कौन सा घातांकीय वितरण है।<ref>{{Cite journal|last=Lilliefors|first=Hubert W.|date=1969-03-01|title=माध्य अज्ञात के साथ घातीय वितरण के लिए कोलमोगोरोव-स्मिरनोव परीक्षण पर|journal=Journal of the American Statistical Association|volume=64|issue=325|pages=387–389|doi=10.1080/01621459.1969.10500983|issn=0162-1459}}</ref>


==परीक्षण==
==परीक्षण==
परीक्षण इस प्रकार आगे बढ़ता है:<ref name=":0" />
परीक्षण इस प्रकार आगे बढ़ता है:<ref name=":0" />


# पहले डेटा के आधार पर जनसंख्या माध्य और जनसंख्या भिन्नता का अनुमान लगाएं।
# सबसे पहले आंकड़ों के आधार पर जनसंख्या माध्य और जनसंख्या भिन्नता का अनुमान लगाएं।
# फिर अनुमानित माध्य और अनुमानित विचरण के साथ अनुभवजन्य वितरण फ़ंक्शन और सामान्य वितरण के संचयी वितरण फ़ंक्शन (सीडीएफ) के बीच अधिकतम विसंगति का पता लगाएं। कोलमोगोरोव-स्मिरनोव परीक्षण की तरह, यह परीक्षण आँकड़ा होगा।
# फिर अनुमानित माध्य और अनुमानित विचरण के साथ सामान्य वितरण के अनुभवजन्य वितरण फलन और संचयी वितरण फलन (सीडीएफ) के बीच अधिकतम विसंगति का पता लगाएं है। कोल्मोगोरोव-स्मिरनोव परीक्षण की तरह ही, यह परीक्षण आँकड़ा होगा।
# अंत में, आकलन करें कि क्या अधिकतम विसंगति सांख्यिकीय महत्व के लिए काफी बड़ी है, इसलिए शून्य परिकल्पना को अस्वीकार करने की आवश्यकता है। यहीं पर यह परीक्षण कोलमोगोरोव-स्मिरनोव परीक्षण से अधिक जटिल हो जाता है। चूंकि उन आंकड़ों के आधार पर अनुमान द्वारा अनुमानित सीडीएफ को डेटा के करीब ले जाया गया है, इसलिए अधिकतम विसंगति को उससे छोटा बना दिया गया है, यदि शून्य परिकल्पना ने केवल एक सामान्य वितरण को चुना होता। इस प्रकार परीक्षण आँकड़ों का शून्य वितरण, यानी शून्य परिकल्पना को सत्य मानते हुए इसकी संभाव्यता वितरण, कोलमोगोरोव-स्मिरनोव वितरण की तुलना में [[स्टोकेस्टिक क्रम]] है। यह लिलीफोर्स वितरण है। आज तक, इस वितरण के लिए तालिकाओं की गणना केवल [[मोंटे कार्लो विधि]]यों द्वारा की गई है।<!-- I think the foregoing sentence was true as of May 2003; if anyone knows any relevant more recent work, of if it's otherwise wrong, please edit this accordingly. -- Mike Hardy -->
# अंत में, आकलन करें कि क्या अधिकतम विसंगति सांख्यिकीय रूप से महत्वपूर्ण होने के लिए काफी बड़ी है, इसलिए रिक्त परिकल्पना को अस्वीकार करने की आवश्यकता है। यहीं पर यह परीक्षण कोलमोगोरोव-स्मिरनोव परीक्षण से अधिक जटिल हो जाता है। चूंकि उन आंकड़ों के आधार पर अनुमान द्वारा अनुमानित सीडीएफ को डेटा के करीब ले जाया गया है, इसलिए अधिकतम विसंगति को उससे छोटा बना दिया गया है, यदि रिक्त परिकल्पना ने केवल एक सामान्य वितरण को चुना होता। इस प्रकार परीक्षण सांख्यिकी का "रिक्त वितरण", अर्थात रिक्त परिकल्पना को सत्य मानते हुए इसकी संभाव्यता वितरण, कोलमोगोरोव-स्मिरनोव वितरण से स्टोकेस्टिक रूप से छोटा है। यह '''लिलीफोर्स वितरण''' है। आज तक, इस वितरण के लिए तालिकाओं की गणना केवल मोंटे कार्लो विधियों द्वारा की गई है।
1986 में परीक्षण के लिए महत्वपूर्ण मूल्यों की एक संशोधित तालिका प्रकाशित की गई थी।<ref>{{Cite journal|last1=Dallal|first1=Gerard E.|last2=Wilkinson|first2=Leland|date=1986-11-01|title=सामान्यता के लिए लिलीफ़ोर्स के परीक्षण सांख्यिकी के वितरण का एक विश्लेषणात्मक अनुमान|journal=The American Statistician|volume=40|issue=4|pages=294–296|doi=10.1080/00031305.1986.10475419|issn=0003-1305}}</ref>
1986 में परीक्षण के लिए महत्वपूर्ण मूल्यों की एक संशोधित तालिका प्रकाशित की गई थी।<ref>{{Cite journal|last1=Dallal|first1=Gerard E.|last2=Wilkinson|first2=Leland|date=1986-11-01|title=सामान्यता के लिए लिलीफ़ोर्स के परीक्षण सांख्यिकी के वितरण का एक विश्लेषणात्मक अनुमान|journal=The American Statistician|volume=40|issue=4|pages=294–296|doi=10.1080/00031305.1986.10475419|issn=0003-1305}}</ref>


Line 20: Line 20:
{{Reflist}}
{{Reflist}}


 
स्रोत
==स्रोत==
* कोनोवर, डब्ल्यू.जे. (1999), प्रैक्टिकल नॉनपैरामीट्रिक सांख्यिकी, तीसरा संस्करण। विली: न्यूयॉर्क.
* कोनोवर, डब्ल्यू.जे. (1999), प्रैक्टिकल नॉनपैरामीट्रिक सांख्यिकी, तीसरा संस्करण। विली: न्यूयॉर्क.


Line 29: Line 28:
*[https://www.mathworks.com/help/stats/lillietest.html Lilliefors test] on [[MathWorks|Mathworks]]
*[https://www.mathworks.com/help/stats/lillietest.html Lilliefors test] on [[MathWorks|Mathworks]]


{{Statistics}}
{{DEFAULTSORT:Lilliefors Test}}
 
{{DEFAULTSORT:Lilliefors Test}}[[Category: सामान्यता परीक्षण]]
 
 


[[Category: Machine Translated Page]]
[[Category:Created On 07/07/2023|Lilliefors Test]]
[[Category:Created On 07/07/2023]]
[[Category:Lua-based templates|Lilliefors Test]]
[[Category:Machine Translated Page|Lilliefors Test]]
[[Category:Pages with script errors|Lilliefors Test]]
[[Category:Short description with empty Wikidata description|Lilliefors Test]]
[[Category:Templates Vigyan Ready|Lilliefors Test]]
[[Category:Templates that add a tracking category|Lilliefors Test]]
[[Category:Templates that generate short descriptions|Lilliefors Test]]
[[Category:Templates using TemplateData|Lilliefors Test]]
[[Category:सामान्यता परीक्षण|Lilliefors Test]]

Latest revision as of 10:56, 7 August 2023

आंकड़ों के अनुसार, लिलीफोर्स परीक्षण कोलमोगोरोव-स्मिरनोव परीक्षण पर आधारित एक सामान्यता परीक्षण है। इसका उपयोग रिक्त परिकल्पना (नल हाइपोथिसिस) का परीक्षण करने के लिए किया जाता है कि डेटा सामान्य रूप से वितरित जनसंख्या से आता है जब रिक्त परिकल्पना यह निर्दिष्ट नहीं करती है कि कौन सा सामान्य वितरण है; यानी, यह वितरण के अपेक्षित मूल्य और विचरण को निर्दिष्ट नहीं करता है।[1] इसका नाम जॉर्ज वाशिंगटन विश्वविद्यालय में सांख्यिकी के प्रोफेसर ह्यूबर्ट लिलीफोर्स के नाम पर रखा गया है।


परीक्षण के एक प्रकार का उपयोग अशक्त परिकल्पना का परीक्षण करने के लिए किया जा सकता है कि डेटा एक तेजी से वितरित जनसंख्या से आता है जब अशक्त परिकल्पना यह निर्दिष्ट नहीं करती है कि कौन सा घातांकीय वितरण है।[2]

परीक्षण

परीक्षण इस प्रकार आगे बढ़ता है:[1]

  1. सबसे पहले आंकड़ों के आधार पर जनसंख्या माध्य और जनसंख्या भिन्नता का अनुमान लगाएं।
  2. फिर अनुमानित माध्य और अनुमानित विचरण के साथ सामान्य वितरण के अनुभवजन्य वितरण फलन और संचयी वितरण फलन (सीडीएफ) के बीच अधिकतम विसंगति का पता लगाएं है। कोल्मोगोरोव-स्मिरनोव परीक्षण की तरह ही, यह परीक्षण आँकड़ा होगा।
  3. अंत में, आकलन करें कि क्या अधिकतम विसंगति सांख्यिकीय रूप से महत्वपूर्ण होने के लिए काफी बड़ी है, इसलिए रिक्त परिकल्पना को अस्वीकार करने की आवश्यकता है। यहीं पर यह परीक्षण कोलमोगोरोव-स्मिरनोव परीक्षण से अधिक जटिल हो जाता है। चूंकि उन आंकड़ों के आधार पर अनुमान द्वारा अनुमानित सीडीएफ को डेटा के करीब ले जाया गया है, इसलिए अधिकतम विसंगति को उससे छोटा बना दिया गया है, यदि रिक्त परिकल्पना ने केवल एक सामान्य वितरण को चुना होता। इस प्रकार परीक्षण सांख्यिकी का "रिक्त वितरण", अर्थात रिक्त परिकल्पना को सत्य मानते हुए इसकी संभाव्यता वितरण, कोलमोगोरोव-स्मिरनोव वितरण से स्टोकेस्टिक रूप से छोटा है। यह लिलीफोर्स वितरण है। आज तक, इस वितरण के लिए तालिकाओं की गणना केवल मोंटे कार्लो विधियों द्वारा की गई है।

1986 में परीक्षण के लिए महत्वपूर्ण मूल्यों की एक संशोधित तालिका प्रकाशित की गई थी।[3]


यह भी देखें

  • जार्के-बेरा परीक्षण

संदर्भ

  1. 1.0 1.1 Lilliefors, Hubert W. (1967-06-01). "माध्य और प्रसरण अज्ञात के साथ सामान्यता के लिए कोलमोगोरोव-स्मिरनोव परीक्षण पर". Journal of the American Statistical Association. 62 (318): 399–402. doi:10.1080/01621459.1967.10482916. ISSN 0162-1459. S2CID 16462094.
  2. Lilliefors, Hubert W. (1969-03-01). "माध्य अज्ञात के साथ घातीय वितरण के लिए कोलमोगोरोव-स्मिरनोव परीक्षण पर". Journal of the American Statistical Association. 64 (325): 387–389. doi:10.1080/01621459.1969.10500983. ISSN 0162-1459.
  3. Dallal, Gerard E.; Wilkinson, Leland (1986-11-01). "सामान्यता के लिए लिलीफ़ोर्स के परीक्षण सांख्यिकी के वितरण का एक विश्लेषणात्मक अनुमान". The American Statistician. 40 (4): 294–296. doi:10.1080/00031305.1986.10475419. ISSN 0003-1305.

स्रोत

  • कोनोवर, डब्ल्यू.जे. (1999), प्रैक्टिकल नॉनपैरामीट्रिक सांख्यिकी, तीसरा संस्करण। विली: न्यूयॉर्क.

बाहरी संबंध