फ्रोबेनियस मैट्रिक्स: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 40: Line 40:
== संदर्भ ==
== संदर्भ ==
* [[Gene H. Golub]] and [[Charles F. Van Loan]] (1996). ''Matrix Computations'', third edition, Johns Hopkins University Press. {{ISBN|0-8018-5413-X}} (hardback), {{ISBN|0-8018-5414-8}} (paperback).
* [[Gene H. Golub]] and [[Charles F. Van Loan]] (1996). ''Matrix Computations'', third edition, Johns Hopkins University Press. {{ISBN|0-8018-5413-X}} (hardback), {{ISBN|0-8018-5414-8}} (paperback).
[[Category: मैट्रिसेस]]


[[Category: Machine Translated Page]]
[[Category:Created On 25/07/2023]]
[[Category:Created On 25/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:मैट्रिसेस]]

Latest revision as of 11:12, 14 August 2023

फ्रोबेनियस आव्यूह, संख्यात्मक गणित से प्राप्त एक विशेष प्रकार का वर्ग आव्यूह है। एक आव्यूह एक फ्रोबेनियस आव्यूह है यदि इसमें निम्नलिखित तीन गुण हैं:

  • मुख्य विकर्ण पर सभी प्रविष्टियाँ एक ही हैं
  • अधिक से अधिक एक कॉलम के मुख्य विकर्ण के नीचे की प्रविष्टियाँ यादृच्छिक हैं
  • हर दूसरी प्रविष्टि शून्य है

निम्नलिखित आव्यूह एक उदाहरण है.

फ्रोबेनियस मैट्रिस व्युत्क्रमणीय हैं। फ्रोबेनियस आव्यूह का व्युत्क्रम फिर से एक फ्रोबेनियस आव्यूह है, जो मुख्य विकर्ण के बाह्य बदले हुए संकेतों के साथ मूल आव्यूह के बराबर है। इसलिए उपरोक्त उदाहरण का व्युत्क्रम है::

फ्रोबेनियस मैट्रिसेस का नाम फर्डिनेंड जॉर्ज फ्रोबेनियस के नाम पर रखा गया है।

फ्रोबेनियस आव्यूह शब्द का उपयोग एक वैकल्पिक आव्यूह फॉर्म के लिए भी किया जा सकता है जो एक पहचान आव्यूह से केवल उस पंक्ति के विकर्ण प्रविष्टि से पहले एक पंक्ति के तत्वों में भिन्न होता है (उपरोक्त परिभाषा के विपरीत जिसमें आव्यूह पहचान आव्यूह से भिन्न होता है) विकर्ण के नीचे एक एकल कॉलम में)। निम्नलिखित आव्यूह इस वैकल्पिक रूप का एक उदाहरण है जिसमें 4-बाय-4 आव्यूह दिखाया गया है जिसकी तीसरी पंक्ति पहचान आव्यूह से भिन्न है।

फ्रोबेनियस मैट्रिसेस के इस बाद वाले रूप का एक वैकल्पिक नाम कार्ल फ्रेडरिक गॉस के बाद गॉस रूपांतरण आव्यूह है।[1] इनका उपयोग गॉसियन परिवर्तनों को दर्शाने के लिए गॉसियन उन्मूलन की प्रक्रिया में किया जाता है।

यदि एक आव्यूह को गॉस रूपांतरण आव्यूह के साथ बाईं ओर गुणा किया जाता है (बाएं गुणन), पिछली पंक्तियों का एक रैखिक संयोजन आव्यूह की दी गई पंक्ति में जोड़ा जाता है (ऊपर दिखाए गए उदाहरण में, पंक्तियों 1 और 2 का एक रैखिक संयोजन) रैखिक संयोजन पंक्ति 3 में जोड़ा जाएगा। व्युत्क्रम आव्यूह से गुणा करने पर दी गई पंक्ति के अनुरूप एक रैखिक संयोजन कम हो जाता है। यह गॉसियन उन्मूलन के प्राथमिक परिचालनों में से एक से मेल खाता है (पंक्तियों को स्थानांतरित करने और एक स्केलर गुणक के साथ एक पंक्ति को गुणा करने के संचालन के अलावा)।

यह भी देखें

  • प्राथमिक आव्यूह, फ्रोबेनियस आव्यूह का एक विशेष मामला जिसमें केवल एक ऑफ-विकर्ण गैर-शून्य होता है

टिप्पणियाँ

  1. Golub and Van Loan, p. 95.

संदर्भ

  • Gene H. Golub and Charles F. Van Loan (1996). Matrix Computations, third edition, Johns Hopkins University Press. ISBN 0-8018-5413-X (hardback), ISBN 0-8018-5414-8 (paperback).