फ्रोबेनियस सहसंयोजक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 42: Line 42:
==संदर्भ==
==संदर्भ==
{{Reflist}}
{{Reflist}}
[[Category: मैट्रिक्स सिद्धांत]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 25/07/2023]]
[[Category:Created On 25/07/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:मैट्रिक्स सिद्धांत]]

Latest revision as of 11:12, 14 August 2023

आव्यूह (गणित) में, एक वर्ग आव्यूह के फ्रोबेनियस सहसंयोजक A इसके विशेष बहुपद हैं, अर्थात् प्रक्षेपण (रैखिक बीजगणित) आव्यूह Ai के आइगेन वैल्यू, आइगेन सदिश और आइगेनसमष्टि से संबद्ध A.[1]: pp.403, 437–8  इनका नाम गणितज्ञ फर्डिनेंड जॉर्ज फ्रोबेनियस के नाम पर रखा गया है।

प्रत्येक सहसंयोजक आइगेन वैल्यू λi, से संबद्ध आइगेनसमष्टि पर एक प्रक्षेपण है। फ्रोबेनियस सहसंयोजक सिल्वेस्टर के सूत्र के गुणांक हैं, जो आव्यूह f(A) के एक फलन को आव्यूह बहुपद के रूप में व्यक्त करता है, अर्थात् A के आइगेनवैल्यू पर उस फलन के मानों का एक रैखिक संयोजन है।


औपचारिक परिभाषा

मान लीजिए A एक विकर्णीय आव्यूह है जिसका आइगेन वैल्यू λ1, …, λk है।


फ्रोबेनियस सहसंयोजक Ai, i = 1 के लिए,…, k, आव्यूह है

यह अनिवार्य रूप से आव्यूह तर्क के साथ लैग्रेंज बहुपद है। यदि आइगेन वैल्यू λi सरल है, फिर एक-आयामी उप-समष्टि के लिए एक निष्क्रिय प्रक्षेपण आव्यूह के रूप में, Ai की एक इकाई ट्रेस (रैखिक बीजगणित) है।

यह मूलतः आव्यूह तर्क वाला लैग्रेंज बहुपद है। यदि आइगेन वैल्यू λi सरल है, तो एक-आयामी उप-समष्टि के लिए एक निष्क्रिय प्रक्षेपण आव्यूह के रूप में, Ai में एक इकाई ट्रेस (रैखिक बीजगणित) होता है।

सहसंयोजकों की गणना

फर्डिनेंड जॉर्ज फ्रोबेनियस (1849-1917), जर्मन गणितज्ञ। उनकी मुख्य रुचि अण्डाकार कार्य विभेदक समीकरण और बाद में समूह सिद्धांत थे।

आव्यूह A के फ्रोबेनियस सहसंयोजकों को किसी भी आइगेन अपघटन A = SDS−1 से प्राप्त किया जा सकता है, जहां S गैर-एकवचन है और D , Di,i = λi के साथ विकर्ण है। यदि A में कोई एकाधिक आइगेन वैल्यू ​​नहीं है, तो मान लीजिए कि ci, A का iवां दायां आइगेन सदिश है, अर्थात, S; का i वां स्तंभ है; और मान लीजिए कि ri , A का i वां बायां आइगेन सदिश है, अर्थात् S−1 की iवीं पंक्ति है। तब Ai = ci ri.।


यदि A का आइगेन वैल्यू λi कई बार प्रदर्शित होता है, तो Ai = Σj cj rj, जहां आइगेन वैल्यू λi से जुड़ी सभी पंक्तियों और स्तंभों का योग होता है।[1]: p.521 

उदाहरण

दो-दो आव्यूह पर विचार करें:

इस आव्यूह के दो आइगेन वैल्यू, 5 और −2 हैं; इस तरह (A − 5)(A + 2) = 0.


संगत आइगेन अपघटन है

इसलिए फ्रोबेनियस सहसंयोजक, स्पष्ट रूप से अनुमान हैं

साथ

टिप्पणी tr A1 = tr A2 = 1, आवश्यकता अनुसार है।

संदर्भ

  1. 1.0 1.1 Roger A. Horn and Charles R. Johnson (1991), Topics in Matrix Analysis. Cambridge University Press, ISBN 978-0-521-46713-1