धनात्मक समुच्चय सिद्धांत: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Class of alternative set theories}} | {{Short description|Class of alternative set theories}} | ||
[[गणितीय तर्क]] में, ''' | [[गणितीय तर्क]] में, '''धनात्मक समुच्चय सिद्धांत''' वैकल्पिक समुच्चय सिद्धांत के एक वर्ग का नाम है जिसमें [[समझ का सिद्धांत]] कम से कम '''धनात्मक सूत्रों''' के लिए होता है <math>\phi</math> (सूत्रों का सबसे छोटा वर्ग जिसमें परमाणु सदस्यता और समानता सूत्र सम्मिलित हैं और संयोजन, विच्छेदन,अस्तित्वगत और सार्वभौमिक परिमाणीकरण के तहत समापन होता हैं)। | ||
सामान्यतौर पर,इन सिद्धांतों की प्रेरणा संस्थानिक है: समुच्चय वे कक्षाएं हैं जो निश्चित संस्थानिक के तहत समापन होता हैं। | सामान्यतौर पर,इन सिद्धांतों की प्रेरणा संस्थानिक है: समुच्चय वे कक्षाएं हैं जो निश्चित संस्थानिक के तहत समापन होता हैं। धनात्मक सूत्रों के निर्माण में अनुमत विभिन्न निर्माणों के लिए सिमित करने की शर्तें आसानी से प्रेरित होती हैं (और कोई भी '''सामान्यीकृत धनात्मक समझ''' प्राप्त करने के लिए समुच्चय में बंधे सार्वभौमिक परिमाण के उपयोग को उचित ठहरा सकता है): अस्तित्वगत परिमाण के औचित्य के लिए यह आवश्यक लगता है कि संस्थानिक [[सघन स्थान]] रिक्त स्थान होता है | | ||
== अभिगृहीत == | == अभिगृहीत == | ||
Line 14: | Line 14: | ||
=== समझ का | === समझ का धनात्मक सिद्धांत === | ||
<math>\exists x \forall y (y \in x \leftrightarrow \phi(y))</math> | <math>\exists x \forall y (y \in x \leftrightarrow \phi(y))</math> | ||
जहाँ <math>\phi</math> एक धनात्मक सूत्र है. एक धनात्मक सूत्र केवल [[तार्किक स्थिरांक]] का उपयोग करता है <math>\{\top, \bot, \land, \lor, \forall, \exists, =, \in\}</math> लेकिन नहीं <math>\{\to, \neg\}</math>. | |||
=== समापन === | === समापन === | ||
<math>\exists x \forall y (y \in x \leftrightarrow \forall z (\forall w (\phi(w) \rightarrow w \in z) \rightarrow y \in z))</math> | <math>\exists x \forall y (y \in x \leftrightarrow \forall z (\forall w (\phi(w) \rightarrow w \in z) \rightarrow y \in z))</math> | ||
जहाँ <math>\phi</math> एक धनात्मक सूत्र है.यानी हर सूत्र के लिए <math>\phi</math>, सभी समुच्चय का प्रतिच्छेदन जिसमें प्रत्येक सम्मिलित है <math>x</math> ऐसा है कि <math>\phi(x)</math> उपस्थित होता है। इसे का समापन कहा जाता है <math>\{x \mid \phi(x)\}</math> और विभिन्न तरीकों में से किसी एक में लिखा गया है जिससे संस्थानिक समापन प्रस्तुत किया जा सकता है। इसे अत्यधिक संक्षेप में रखा जा सकता है यदि वर्ग भाषा की अनुमति है (वॉन न्यूमैन-बर्नेज़-गोडेल समुच्चय सिद्धांत के अनुसार वर्ग को परिभाषित करने वाले समुच्चय पर कोई भी शर्त): किसी भी वर्ग C के लिए समुच्चय होता है जो सभी समुच्चय का प्रतिच्छेदन होता है जिसमें C उपवर्ग के रूप में होता है। यदि समुच्चय को संस्थानिक में सिमित कक्षाओं के रूप में समझा जाता है तो यह एक उचित सिद्धांत है। | |||
=== अनंत का अभिगृहीत === | === अनंत का अभिगृहीत === | ||
Line 28: | Line 30: | ||
[[जॉन वॉन न्यूमैन]] [[क्रमसूचक संख्या]] <math>\omega</math> उपस्थित होता है। यह सामान्य अर्थों में अनंत का सिद्धांत नहीं है; यदि अनंत धारण नहीं करता है, तो सिमित हो जाना <math>\omega</math> अस्तित्व में है और स्वयं ही इसका एकमात्र अतिरिक्त सदस्य है (यह निश्चित रूप से अनंत है); इस स्वयंसिद्ध का मुद्दा यह है <math>\omega</math> इसमें कोई भी अतिरिक्त तत्व सम्मिलित नहीं है, जो सिद्धांत को दूसरे क्रम के अंकगणित की ताकत से मोर्स-केली समुच्चय सिद्धांत की ताकत तक बढ़ा देता है, जिसमें उचित वर्ग क्रमसूचक [[कमजोर रूप से कॉम्पैक्ट कार्डिनल|कमजोर रूप से सघन मुख्य]] होता है। | [[जॉन वॉन न्यूमैन]] [[क्रमसूचक संख्या]] <math>\omega</math> उपस्थित होता है। यह सामान्य अर्थों में अनंत का सिद्धांत नहीं है; यदि अनंत धारण नहीं करता है, तो सिमित हो जाना <math>\omega</math> अस्तित्व में है और स्वयं ही इसका एकमात्र अतिरिक्त सदस्य है (यह निश्चित रूप से अनंत है); इस स्वयंसिद्ध का मुद्दा यह है <math>\omega</math> इसमें कोई भी अतिरिक्त तत्व सम्मिलित नहीं है, जो सिद्धांत को दूसरे क्रम के अंकगणित की ताकत से मोर्स-केली समुच्चय सिद्धांत की ताकत तक बढ़ा देता है, जिसमें उचित वर्ग क्रमसूचक [[कमजोर रूप से कॉम्पैक्ट कार्डिनल|कमजोर रूप से सघन मुख्य]] होता है। | ||
== | == अभिरुचि गुण == | ||
* इस सिद्धांत में सार्वत्रिक समुच्चय एक उचित समुच्चय होता है। | * इस सिद्धांत में सार्वत्रिक समुच्चय एक उचित समुच्चय होता है। | ||
* इस सिद्धांत के समुच्चय उन समुच्चय का संग्रह हैं जो कक्षाओं पर निश्चित संस्थानिक के तहत सिमित होता हैं। | * इस सिद्धांत के समुच्चय उन समुच्चय का संग्रह हैं जो कक्षाओं पर निश्चित संस्थानिक के तहत सिमित होता हैं। | ||
* सिद्धांत जेएफसी की व्याख्या कर सकता है (स्वयं को अच्छी तरह से स्थापित समुच्चय के वर्ग तक सीमित करके, जो स्वयं | * सिद्धांत जेएफसी की व्याख्या कर सकता है (स्वयं को अच्छी तरह से स्थापित समुच्चय के वर्ग तक सीमित करके, जो स्वयं समुच्चय नहीं है)। यह वास्तव में एक सशक्त सिद्धांत की व्याख्या करता है (मोर्स-केली समुच्चय सिद्धांत उचित वर्ग क्रमसूचक कमजोर सघन मुख्य के साथ)होता है। | ||
<!--* ... many more --> | <!--* ... many more --> | ||
Line 38: | Line 40: | ||
== शोधकर्ता == | == शोधकर्ता == | ||
* [[इसहाक मालित्ज़]] ने मूल रूप से यूसीएलए में अपनी 1976 की पीएचडी थीसिस में | * [[इसहाक मालित्ज़]] ने मूल रूप से यूसीएलए में अपनी 1976 की पीएचडी थीसिस में धनात्मक समुच्चय सिद्धांत पेश की थी | | ||
* [[अलोंजो चर्च]] उपरोक्त थीसिस की देखरेख करने वाली समिति का अध्यक्ष था | | * [[अलोंजो चर्च]] उपरोक्त थीसिस की देखरेख करने वाली समिति का अध्यक्ष था | | ||
*[[ओलिवियर एसेर]] इस क्षेत्र में सबसे अत्यधिक सक्रिय नजर आते हैं।{{cn|date=February 2023}} | *[[ओलिवियर एसेर]] इस क्षेत्र में सबसे अत्यधिक सक्रिय नजर आते हैं।{{cn|date=February 2023}} | ||
Line 53: | Line 55: | ||
|mr=1669902 | |mr=1669902 | ||
|doi=10.1002/malq.19990450110}} | |doi=10.1002/malq.19990450110}} | ||
[[Category: | [[Category:All articles with unsourced statements]] | ||
[[Category:Articles with unsourced statements from February 2023]] | |||
[[Category:Created On 21/07/2023]] | [[Category:Created On 21/07/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:सेट सिद्धांत की प्रणाली]] |
Latest revision as of 17:21, 8 August 2023
गणितीय तर्क में, धनात्मक समुच्चय सिद्धांत वैकल्पिक समुच्चय सिद्धांत के एक वर्ग का नाम है जिसमें समझ का सिद्धांत कम से कम धनात्मक सूत्रों के लिए होता है (सूत्रों का सबसे छोटा वर्ग जिसमें परमाणु सदस्यता और समानता सूत्र सम्मिलित हैं और संयोजन, विच्छेदन,अस्तित्वगत और सार्वभौमिक परिमाणीकरण के तहत समापन होता हैं)।
सामान्यतौर पर,इन सिद्धांतों की प्रेरणा संस्थानिक है: समुच्चय वे कक्षाएं हैं जो निश्चित संस्थानिक के तहत समापन होता हैं। धनात्मक सूत्रों के निर्माण में अनुमत विभिन्न निर्माणों के लिए सिमित करने की शर्तें आसानी से प्रेरित होती हैं (और कोई भी सामान्यीकृत धनात्मक समझ प्राप्त करने के लिए समुच्चय में बंधे सार्वभौमिक परिमाण के उपयोग को उचित ठहरा सकता है): अस्तित्वगत परिमाण के औचित्य के लिए यह आवश्यक लगता है कि संस्थानिक सघन स्थान रिक्त स्थान होता है |
अभिगृहीत
समुच्चय सिद्धांत ओलिवियर एस्सेर के निम्नलिखित सिद्धांत सम्मिलित होता हैं:[1]
विस्तृतता का सिद्धांत
समझ का धनात्मक सिद्धांत
जहाँ एक धनात्मक सूत्र है. एक धनात्मक सूत्र केवल तार्किक स्थिरांक का उपयोग करता है लेकिन नहीं .
समापन
जहाँ एक धनात्मक सूत्र है.यानी हर सूत्र के लिए , सभी समुच्चय का प्रतिच्छेदन जिसमें प्रत्येक सम्मिलित है ऐसा है कि उपस्थित होता है। इसे का समापन कहा जाता है और विभिन्न तरीकों में से किसी एक में लिखा गया है जिससे संस्थानिक समापन प्रस्तुत किया जा सकता है। इसे अत्यधिक संक्षेप में रखा जा सकता है यदि वर्ग भाषा की अनुमति है (वॉन न्यूमैन-बर्नेज़-गोडेल समुच्चय सिद्धांत के अनुसार वर्ग को परिभाषित करने वाले समुच्चय पर कोई भी शर्त): किसी भी वर्ग C के लिए समुच्चय होता है जो सभी समुच्चय का प्रतिच्छेदन होता है जिसमें C उपवर्ग के रूप में होता है। यदि समुच्चय को संस्थानिक में सिमित कक्षाओं के रूप में समझा जाता है तो यह एक उचित सिद्धांत है।
अनंत का अभिगृहीत
जॉन वॉन न्यूमैन क्रमसूचक संख्या उपस्थित होता है। यह सामान्य अर्थों में अनंत का सिद्धांत नहीं है; यदि अनंत धारण नहीं करता है, तो सिमित हो जाना अस्तित्व में है और स्वयं ही इसका एकमात्र अतिरिक्त सदस्य है (यह निश्चित रूप से अनंत है); इस स्वयंसिद्ध का मुद्दा यह है इसमें कोई भी अतिरिक्त तत्व सम्मिलित नहीं है, जो सिद्धांत को दूसरे क्रम के अंकगणित की ताकत से मोर्स-केली समुच्चय सिद्धांत की ताकत तक बढ़ा देता है, जिसमें उचित वर्ग क्रमसूचक कमजोर रूप से सघन मुख्य होता है।
अभिरुचि गुण
- इस सिद्धांत में सार्वत्रिक समुच्चय एक उचित समुच्चय होता है।
- इस सिद्धांत के समुच्चय उन समुच्चय का संग्रह हैं जो कक्षाओं पर निश्चित संस्थानिक के तहत सिमित होता हैं।
- सिद्धांत जेएफसी की व्याख्या कर सकता है (स्वयं को अच्छी तरह से स्थापित समुच्चय के वर्ग तक सीमित करके, जो स्वयं समुच्चय नहीं है)। यह वास्तव में एक सशक्त सिद्धांत की व्याख्या करता है (मोर्स-केली समुच्चय सिद्धांत उचित वर्ग क्रमसूचक कमजोर सघन मुख्य के साथ)होता है।
शोधकर्ता
- इसहाक मालित्ज़ ने मूल रूप से यूसीएलए में अपनी 1976 की पीएचडी थीसिस में धनात्मक समुच्चय सिद्धांत पेश की थी |
- अलोंजो चर्च उपरोक्त थीसिस की देखरेख करने वाली समिति का अध्यक्ष था |
- ओलिवियर एसेर इस क्षेत्र में सबसे अत्यधिक सक्रिय नजर आते हैं।[citation needed]
यह भी देखें
- डब्ल्यू. वी. क्वीन द्वारा नई नींव
संदर्भ
- ↑ Holmes, M. Randall (21 September 2021). "वैकल्पिक स्वयंसिद्ध सेट सिद्धांत". In Zalta, Edward N. (ed.). Stanford Encyclopedia of Philosophy.
- Esser, Olivier (1999), "On the consistency of a positive theory.", Mathematical Logic Quarterly, 45 (1): 105–116, doi:10.1002/malq.19990450110, MR 1669902