फ्रेडहोम संचालक: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 128: Line 128:
{{Functional Analysis}}
{{Functional Analysis}}
{{authority control}}
{{authority control}}
{{DEFAULTSORT:Fredholm Operator}}[[Category: फ्रेडहोम सिद्धांत]] [[Category: रैखिक संचालक]]
{{DEFAULTSORT:Fredholm Operator}}


 
[[Category:Articles with hatnote templates targeting a nonexistent page|Fredholm Operator]]
 
[[Category:Collapse templates|Fredholm Operator]]
[[Category: Machine Translated Page]]
[[Category:Created On 25/07/2023|Fredholm Operator]]
[[Category:Created On 25/07/2023]]
[[Category:Machine Translated Page|Fredholm Operator]]
[[Category:Vigyan Ready]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Fredholm Operator]]
[[Category:Pages with script errors|Fredholm Operator]]
[[Category:Sidebars with styles needing conversion|Fredholm Operator]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready|Fredholm Operator]]
[[Category:Templates generating microformats|Fredholm Operator]]
[[Category:Templates that are not mobile friendly|Fredholm Operator]]
[[Category:Templates using TemplateData|Fredholm Operator]]
[[Category:Wikipedia metatemplates|Fredholm Operator]]
[[Category:फ्रेडहोम सिद्धांत|Fredholm Operator]]
[[Category:रैखिक संचालक|Fredholm Operator]]

Latest revision as of 15:25, 10 August 2023

गणित में, फ्रेडहोम ऑपरेटर्स कुछ ऑपरेटर (गणित) हैं जो इंटीग्रल समीकरणों के फ्रेडहोम सिद्धांत में उत्पन्न होते हैं। इनका नाम एरिक इवर फ्रेडहोम के सम्मान में रखा गया है। परिभाषा के अनुसार, एक फ्रेडहोम ऑपरेटर परिमित-आयामी कर्नेल (बीजगणित) के साथ दो बैनाच स्थानों के बीच एक घिरा हुआ रैखिक ऑपरेटर T : XY है। और परिमित-आयामी (बीजगणितीय) कोकर्नेल , और किसी फलन की संवर्त सीमा के साथ . आख़िरी नियम वास्तव में अनावश्यक है.[1]

फ्रेडहोम ऑपरेटर का रैखिक परिवर्तन या सूचकांक पूर्णांक है

या दूसरे शब्दों में,


गुण

सहज रूप से, फ्रेडहोम ऑपरेटर वे ऑपरेटर हैं जो परिमित-आयामी प्रभावों को अनदेखा करने पर विपरीत हो जाते हैं। औपचारिक रूप से सही कथन इस प्रकार है। बानाच स्पेस X और Y के बीच एक परिबद्ध ऑपरेटर T : XY फ्रेडहोम है यदि और केवल यदि यह विपरीत भागफल वलय कॉम्पैक्ट ऑपरेटर है, अथार्त , यदि कोई परिबद्ध रैखिक ऑपरेटर उपस्थित है

ऐसा है कि

क्रमशः X और Y पर कॉम्पैक्ट ऑपरेटर हैं।

यदि फ्रेडहोम ऑपरेटर को थोड़ा संशोधित किया जाता है, तो यह फ्रेडहोम ही रहता है और इसका सूचकांक भी वही रहता है। औपचारिक रूप से: X और Y तक फ्रेडहोम ऑपरेटरों का सेट परिबद्ध रैखिक ऑपरेटरों के बानाच स्पेस L(X, Y) में विवर्त है, जो ऑपरेटर मानदंड से सुसज्जित है, और सूचकांक स्थानीय रूप से स्थिर है। अधिक सटीक रूप से, यदि T0 X से Y तक फ्रेडहोम है, वहां ε > 0 उपस्थित है जैसे कि L(X,Y) में प्रत्येक T ||TT0|| < ε फ्रेडहोम है, जिसका सूचकांक T0 के समान है

जब T, X से Y तक फ़्रेडहोम है और Y से Z तक U फ़्रेडहोम है, तो रचना X से Z तक फ़्रेडहोम है और

जब T फ्रेडहोम है, तो ट्रांसपोज़ (या सहायक) ऑपरेटर T ′ Y ′ से X ′ तक फ्रेडहोम है, और ind(T ′) = −ind(T) जब X और Y हिल्बर्ट स्थान हैं, तो हर्मिटियन निकटवर्ती T के लिए भी यही निष्कर्ष प्रयुक्त होता है।

जब T फ्रेडहोम है और K एक कॉम्पैक्ट ऑपरेटर है, तो T + K फ्रेडहोम है। T का सूचकांक T के ऐसे सघन अस्पष्ट के अनुसार अपरिवर्तित रहता है। यह इस तथ्य से पता चलता है कि T + sK का सूचकांक i(s) [0, 1] में प्रत्येक s के लिए परिभाषित एक पूर्णांक है, और i(s) स्थानीय रूप से स्थिर है, इसलिए i(1) = i(0)।

कॉम्पैक्ट ऑपरेटरों के वर्ग की तुलना में बड़े वर्गों के लिए अस्पष्ट द्वारा अपरिवर्तनीयता सत्य है। उदाहरण के लिए, जब यू फ्रेडहोम है और T पूरी तरह से एकवचन ऑपरेटर है, तो T + U समान सूचकांक के साथ फ्रेडहोम है।[2] अनिवार्य ऑपरेटरों का वर्ग, जिसमें सख्ती से एकवचन ऑपरेटरों का वर्ग ठीक से सम्मिलित होता है, फ्रेडहोम ऑपरेटरों के लिए "परटर्बेशन क्लास" है। इसका अर्थ यह है कि एक ऑपरेटर अनिवार्य है यदि और केवल यदि T+U प्रत्येक फ्रेडहोम ऑपरेटर के लिए फ्रेडहोम है।

उदाहरण

मान लीजिए कि गैर-ऋणात्मक पूर्णांकों द्वारा अनुक्रमित ऑर्थोनॉर्मल आधार के साथ एक हिल्बर्ट स्पेस है। H पर (दाएं) शिफ्ट ऑपरेटर S द्वारा परिभाषित किया गया है

यह ऑपरेटर S इंजेक्टिव (वास्तव में, आइसोमेट्रिक) है और इसमें कोडिमेंशन 1 की एक संवर्त सीमा है, इसलिए S फ्रेडहोम है . शक्तियां , , सूचकांक के साथ फ्रेडहोम हैं . निकटवर्ती S* बाईं ओर की शिफ्ट है,

बाईं ओर की शिफ्ट S* इंडेक्स 1 के साथ फ्रेडहोम है।

यदि सम्मिश्र तल में यूनिट सर्कल T पर H मौलिक हार्डी स्पेस है तो सम्मिश्र घातांक के ऑर्थोनॉर्मल आधार के संबंध में शिफ्ट ऑपरेटर

फलन के साथ गुणन संचालिका Mφ है। अधिक सामान्यतः φ को T पर एक सम्मिश्र निरंतर फलन होने दें जो पर विलुप्त नहीं होता है, और Tφ को टोएप्लिट्ज़ ऑपरेटर को प्रतीक φ के साथ निरूपित करने दें, जो φ द्वारा गुणन के समान है और उसके बाद ऑर्थोगोनल प्रक्षेपण है।

तब Tφ पर एक फ्रेडहोम ऑपरेटर है, जिसका सूचकांक संवर्त पथ के 0 के आसपास घुमावदार संख्या से संबंधित है: Tφ का सूचकांक, जैसा कि इस आलेख में परिभाषित किया गया है, इस घुमावदार संख्या के विपरीत है।

अनुप्रयोग

किसी भी वृत्ताकार ऑपरेटर को फ्रेडहोम ऑपरेटर तक बढ़ाया जा सकता है। आंशिक अंतर समीकरणों में फ्रेडहोम ऑपरेटरों का उपयोग पैरामीट्रिक्स विधि का एक अमूर्त रूप है।

अतियाह-सिंगर सूचकांक प्रमेय मैनीफोल्ड पर कुछ ऑपरेटरों के सूचकांक का एक टोपोलॉजिकल लक्षण वर्णन देता है।

अतियाह-जेनिच प्रमेय एक कॉम्पैक्ट टोपोलॉजिकल स्पेस X के के-सिद्धांत K(X) को निरंतर होमोटॉपी वर्गों के सेट के साथ पहचानता है X से फ्रेडहोम ऑपरेटर्स HH के स्थान तक मानचित्र, जहां H अलग करने योग्य हिल्बर्ट स्पेस है और इन ऑपरेटरों का सेट ऑपरेटर मानदंड रखता है।

सामान्यीकरण

बी-फ्रेडहोम ऑपरेटर्स

प्रत्येक पूर्णांक के लिए, को से तक के प्रतिबंध के रूप में परिभाषित करें, जिसे से के मानचित्र के रूप में देखा जाता है। (विशेष रूप से यदि किसी पूर्णांक के लिए स्थान संवर्त है और एक फ़्रेडहोम ऑपरेटर है, तो को B-फ़्रेडहोम ऑपरेटर कहा जाता है। बी-फ़्रेडहोम ऑपरेटर के सूचकांक को फ़्रेडहोम ऑपरेटर के सूचकांक के रूप में परिभाषित किया गया है। यह दिखाया गया है कि सूचकांक पूर्णांक से स्वतंत्र है। बी-फ़्रेडहोम ऑपरेटरों को M. बर्कानी द्वारा 1999 में फ़्रेडहोम ऑपरेटरों के सामान्यीकरण के रूप में प्रस्तुत किया गया था।[3]

सेमी-फ़्रेडहोम ऑपरेटर्स

एक परिबद्ध रैखिक संचालिका T को अर्ध-फ़्रेडहोम कहा जाता है यदि इसकी सीमा संवर्त है और , में से कम से कम एक परिमित-आयामी है। सेमी-फ़्रेडहोम ऑपरेटर के लिए, सूचकांक को परिभाषित किया गया है


अनबाउंड ऑपरेटर्स

कोई अनबाउंडेड फ्रेडहोम ऑपरेटरों को भी परिभाषित कर सकता है। माना कि X और Y दो बैनाच स्थान हैं।

  1. संवर्त रैखिक ऑपरेटर को फ्रेडहोम कहा जाता है यदि इसका डोमेन में सघन है, इसकी सीमा संवर्त है, और T के कर्नेल और कोकर्नेल दोनों परिमित-आयामी हैं।
  2. को अर्ध-फ्रेडहोम कहा जाता है यदि इसका डोमेन में सघन है, इसकी सीमा संवर्त है, और T (या दोनों) का कर्नेल या कोकर्नेल परिमित-आयामी है .

जैसा कि ऊपर उल्लेख किया गया था, एक संवर्त ऑपरेटर की सीमा तब तक संवर्त रहती है जब तक कोकर्नेल परिमित-आयामी है (एडमंड्स और इवांस, प्रमेय I.3.2)।

टिप्पणियाँ

  1. Abramovich, Yuri A.; Aliprantis, Charalambos D. (2002). An Invitation to Operator Theory. Graduate Studies in Mathematics. Vol. 50. American Mathematical Society. p. 156. ISBN 978-0-8218-2146-6.
  2. Kato, Tosio (1958). "Perturbation theory for the nullity deficiency and other quantities of linear operators". Journal d'Analyse Mathématique. 6: 273–322. doi:10.1007/BF02790238.
  3. Berkani, Mohammed (1999). "On a class of quasi-Fredholm operators". Integral Equations and Operator Theory. 35 (2): 244–249. doi:10.1007/BF01236475.


संदर्भ