मिश्रित मॉडल: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 65: Line 65:
*{{cite book |last1=West |first1=B. T. |last2=Welch |first2=K. B. |last3=Galecki |first3=A. T. |year=2007 |title=Linear Mixed Models: A Practical Guide Using Statistical Software |location=New York |publisher=Chapman & Hall/CRC }}
*{{cite book |last1=West |first1=B. T. |last2=Welch |first2=K. B. |last3=Galecki |first3=A. T. |year=2007 |title=Linear Mixed Models: A Practical Guide Using Statistical Software |location=New York |publisher=Chapman & Hall/CRC }}


{{DEFAULTSORT:Mixed Model}}[[Category: प्रतिगमन मॉडल]] [[Category: भिन्नता का विश्लेषण]]
{{DEFAULTSORT:Mixed Model}}


 
[[Category:Articles with hatnote templates targeting a nonexistent page|Mixed Model]]
 
[[Category:Created On 07/07/2023|Mixed Model]]
[[Category: Machine Translated Page]]
[[Category:Lua-based templates|Mixed Model]]
[[Category:Created On 07/07/2023]]
[[Category:Machine Translated Page|Mixed Model]]
[[Category:Vigyan Ready]]
[[Category:Pages with empty portal template|Mixed Model]]
[[Category:Pages with script errors|Mixed Model]]
[[Category:Portal-inline template with redlinked portals|Mixed Model]]
[[Category:Short description with empty Wikidata description|Mixed Model]]
[[Category:Templates Vigyan Ready|Mixed Model]]
[[Category:Templates that add a tracking category|Mixed Model]]
[[Category:Templates that generate short descriptions|Mixed Model]]
[[Category:Templates using TemplateData|Mixed Model]]
[[Category:प्रतिगमन मॉडल|Mixed Model]]
[[Category:भिन्नता का विश्लेषण|Mixed Model]]

Latest revision as of 17:57, 10 August 2023

मिश्रित मॉडल या मिश्रित त्रुटि-घटक मॉडल एक सांख्यिकीय मॉडल होता है जिसमें निश्चित प्रभाव और यादृच्छिक प्रभाव दोनों होते है।[1][2] यह मॉडल भौतिक, जैविक और सामाजिक विज्ञान के विविध विषयों में उपयोगी होता है। वह उन सेटिंग्स में विशेष रूप से उपयोगी होते है जहां बार-बार माप डिजाइन एक ही सांख्यिकीय इकाइयों (अनुदैर्ध्य अध्ययन) पर किए जाते है, या जहां माप संबंधित सांख्यिकीय इकाइयों के समूहों पर किए जाते है।[2] अनुपस्थित मूल्यों को मिश्रित प्रभाव मॉडल अधिकांशतः अधिक पारंपरिक दृष्टिकोण विश्लेषण पर प्राथमिकता दी जाती है।

यह पृष्ठ सामान्यीकृत रैखिक मिश्रित मॉडल या गैर-रेखीय मिश्रित-प्रभाव मॉडल के अतिरिक्त मुख्य रूप से रैखिक मिश्रित-प्रभाव मॉडल (एलएमईएम) पर तर्क करता है।

इतिहास और वर्तमान स्थिति

रोनाल्ड फिशर ने गुण मूल्यों के सहसंबंधों का अध्ययन करने के लिए यादृच्छिक प्रभाव मॉडल प्रस्तुत किया था।[3] 1950 के दशक में, चार्ल्स रॉय हेंडरसन निश्चित प्रभाव अनुमानक का गॉस-मार्कोव प्रमेय और यादृच्छिक प्रभावों की सर्वोत्तम रैखिक निष्पक्ष भविष्यवाणियाँ प्रदान की गईं थी।[4][5][6][7] इसके बाद, मिश्रित मॉडल सांख्यिकीय अनुसंधान का एक प्रमुख क्षेत्र बन गया था, जिसमें अधिकतम संभावना अनुमान, गैर-रेखीय मिश्रित प्रभाव मॉडल के बायेसियन सांख्यिकी अनुमान की गणना करना सम्मलित होता है। मिश्रित मॉडल कई विषयों में उपयुक्त किए जाते है जहां रुचि की प्रत्येक इकाई पर कई सहसंबद्ध माप किए जाते है। आनुवंशिकी से लेकर विपणन तक के क्षेत्रों में मानव और पशु विषयों से जुड़े अनुसंधान में इनका प्रमुखता से उपयोग किया जाता है।[8][9]

परिभाषा

आव्यूह संकेतन में एक रैखिक मिश्रित मॉडल को इस प्रकार दर्शाया जा सकता है

जहाँ

  • माध्य के साथ प्रेक्षणों का एक ज्ञात वेक्टर है ;
  • निश्चित प्रभावों का एक अज्ञात वेक्टर है;
  • माध्य के साथ यादृच्छिक प्रभावों का एक अज्ञात वेक्टर है और विचरण-सहप्रसरण आव्यूह है ;
  • माध्य के साथ यादृच्छिक त्रुटियों का एक अज्ञात वेक्टर है और विचरण है ;
  • और अवलोकनों से संबंधित डिज़ाइन आव्यूह को और , है।

अनुमान

संयुक्त घनत्व और इस प्रकार लिखा जा सकता है: . सामान्यता, , और , और संयुक्त घनत्व को अधिकतम करते है और , रैखिक मिश्रित मॉडल के लिए हेंडरसन के मिश्रित मॉडल समीकरण (एमएमई) से हमे प्राप्त होता है:[4][6][10]

एमएमई के समाधान, और के लिए सर्वोत्तम रैखिक निष्पक्ष अनुमान और भविष्यवक्ता है और ,। यह गॉस-मार्कोव प्रमेय का परिणाम होता है जब परिणाम का सशर्त भिन्नता पहचान आव्यूह के लिए स्केलेबल नहीं होता है। जब सशर्त विचरण ज्ञात होता है, तो व्युत्क्रम विचरण भारित न्यूनतम वर्ग अनुमान सबसे अच्छा रैखिक निष्पक्ष अनुमान होता है। चूँकि, सशर्त भिन्नता संभवतः ही कभी ज्ञात होती है। इसलिए एमएमई को हल करते समय विचरण और भारित पैरामीटर अनुमानों का संयुक्त रूप से अनुमान लगाना वांछनीय होता है।

ऐसे मिश्रित मॉडल का उपयोग एक विधि अपेक्षा-अधिकतमकरण कलन विधि (ईएम) में किया जाता है जहां विचरण घटकों को उपद्रव पैरामीटर के रूप में माना जाता है।[11] वर्तमान में, यह विधि सांख्यिकीय सॉफ्टवेयर जैसे कि पायथन (प्रोग्रामिंग भाषा) और एसएएस (सॉफ्टवेयर) (प्रो मिश्रित) में उपयुक्त की गई है, और केवल आर (प्रोग्रामिंग भाषा) के एनएलएमई पैकेज एलएमई () में प्रारंभिक चरण के रूप में उपयुक्त की गई है। जब त्रुटियों का वितरण सामान्य होता है तो मिश्रित मॉडल समीकरणों का समाधान अधिकतम अनुमानित होता है।[12][13]

मिश्रित मॉडल को उपयुक्त करने के लिए कई अन्य विधियां होती है, जिनमें प्रारंभ में एमईएम का उपयोग करना और फिर न्यूटन-रेफसन (आर (प्रोग्रामिंग भाषा) पैकेज नाइम द्वारा प्रयुक्त) सम्मलित होते है।[14] lme()), केवल (निम्न-आयामी) विचरण-सहसंयोजक मापदंडों के आधार पर एक रूपरेखा लॉग संभावना प्राप्त करने के लिए न्यूनतम वर्गों को उपयुक्त किया जाता है , अर्थात, इसका आव्यूह है , और फिर उस कम उद्देश्य फ़ंक्शन के लिए आधुनिक प्रत्यक्ष अनुकूलन R (प्रोग्रामिंग भाषा) के LME4 द्वारा प्रयुक्त) पैकेज lmer() और जूलिया (प्रोग्रामिंग भाषा) पैकेज मिश्रित मॉडल) और संभावना का प्रत्यक्ष अनुकूलन (उदाहरण के लिए R (प्रोग्रामिंग भाषा) के glmmTMB द्वारा उपयोग किया जाता है। विशेष रूप से, हेंडरसन द्वारा प्रस्तावित विहित रूप सिद्धांत मिश्रित मॉडल के लिए उपयोगी होता है, कई लोकप्रिय सॉफ्टवेयर पैकेज विरल आव्यूह विधियों (जैसे lme4 और मिश्रित मॉडल.jl) का लाभ उठाने के लिए संख्यात्मक गणना के लिए एक अलग सूत्रीकरण का उपयोग करते है।

यह भी देखें

संदर्भ

  1. Baltagi, Badi H. (2008). पैनल डेटा का अर्थमितीय विश्लेषण (Fourth ed.). New York: Wiley. pp. 54–55. ISBN 978-0-470-51886-1.
  2. 2.0 2.1 Gomes, Dylan G.E. (20 January 2022). "Should I use fixed effects or random effects when I have fewer than five levels of a grouping factor in a mixed-effects model?". PeerJ. 10: e12794. doi:10.7717/peerj.12794.
  3. Fisher, RA (1918). "मेंडेलियन विरासत की धारणा पर रिश्तेदारों के बीच सहसंबंध". Transactions of the Royal Society of Edinburgh. 52 (2): 399–433. doi:10.1017/S0080456800012163.
  4. 4.0 4.1 Robinson, G.K. (1991). "That BLUP is a Good Thing: The Estimation of Random Effects". Statistical Science. 6 (1): 15–32. doi:10.1214/ss/1177011926. JSTOR 2245695.
  5. C. R. Henderson; Oscar Kempthorne; S. R. Searle; C. M. von Krosigk (1959). "कटाई के अधीन अभिलेखों से पर्यावरण और आनुवंशिक प्रवृत्तियों का अनुमान". Biometrics. International Biometric Society. 15 (2): 192–218. doi:10.2307/2527669. JSTOR 2527669.
  6. 6.0 6.1 L. Dale Van Vleck. "Charles Roy Henderson, April 1, 1911 – March 14, 1989" (PDF). United States National Academy of Sciences.
  7. McLean, Robert A.; Sanders, William L.; Stroup, Walter W. (1991). "मिश्रित रैखिक मॉडल के लिए एक एकीकृत दृष्टिकोण". The American Statistician. American Statistical Association. 45 (1): 54–64. doi:10.2307/2685241. JSTOR 2685241.
  8. analytics guru and mixed model
  9. Mixed models in industry
  10. Henderson, C R (1973). "सर मूल्यांकन और आनुवंशिक रुझान" (PDF). Journal of Animal Science. American Society of Animal Science. 1973: 10–41. doi:10.1093/ansci/1973.Symposium.10. Retrieved 17 August 2014.
  11. Lindstrom, ML; Bates, DM (1988). "Newton–Raphson and EM algorithms for linear mixed-effects models for repeated-measures data". JASA. 83 (404): 1014–1021. doi:10.1080/01621459.1988.10478693.
  12. Laird, Nan M.; Ware, James H. (1982). "अनुदैर्ध्य डेटा के लिए यादृच्छिक-प्रभाव मॉडल". Biometrics. International Biometric Society. 38 (4): 963–974. doi:10.2307/2529876. JSTOR 2529876. PMID 7168798.
  13. Fitzmaurice, Garrett M.; Laird, Nan M.; Ware, James H. (2004). अनुप्रयुक्त अनुदैर्ध्य विश्लेषण. John Wiley & Sons. pp. 326–328.
  14. Pinheiro, J; Bates, DM (2006). एस और एस-प्लस में मिश्रित-प्रभाव वाले मॉडल. Statistics and Computing. New York: Springer Science & Business Media. doi:10.1007/b98882. ISBN 0-387-98957-9.


अग्रिम पठन

  • Gałecki, Andrzej; Burzykowski, Tomasz (2013). Linear Mixed-Effects Models Using R: A Step-by-Step Approach. New York: Springer. ISBN 978-1-4614-3900-4.
  • Milliken, G. A.; Johnson, D. E. (1992). Analysis of Messy Data: Vol. I. Designed Experiments. New York: Chapman & Hall.
  • West, B. T.; Welch, K. B.; Galecki, A. T. (2007). Linear Mixed Models: A Practical Guide Using Statistical Software. New York: Chapman & Hall/CRC.