बॉल-एंड-डिस्क इंटीग्रेटर: Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Component used in mechanical computers}}{{More citations needed|date=November 2022}}[[Image:Harmonic analyser disc and sphere.jpg|thumb|right|[[लॉर्ड केल्विन]] के ज्वारीय गणना पर कई बॉल और डिस्क इंटीग्रेटर का उपयोग किया गया था। बेलनाकार आउटपुट शाफ्ट, बॉल और इनपुट डिस्क स्पष्ट रूप से दिखाई देते हैं। शीर्ष पर दिखाई देने वाले रैक के साथ बॉल को बाईं या दाईं ओर ले जाकर अनुपात परिवर्तित कर दिया जाता है।]]'''बॉल और डिस्क इंटीग्रेटर''' | {{short description|Component used in mechanical computers}}{{More citations needed|date=November 2022}}[[Image:Harmonic analyser disc and sphere.jpg|thumb|right|[[लॉर्ड केल्विन]] के ज्वारीय गणना पर कई बॉल और डिस्क इंटीग्रेटर का उपयोग किया गया था। बेलनाकार आउटपुट शाफ्ट, बॉल और इनपुट डिस्क स्पष्ट रूप से दिखाई देते हैं। शीर्ष पर दिखाई देने वाले रैक के साथ बॉल को बाईं या दाईं ओर ले जाकर अनुपात परिवर्तित कर दिया जाता है।]]'''बॉल और डिस्क इंटीग्रेटर''' विकसित [[ यांत्रिक कंप्यूटर |यांत्रिक कंप्यूटर]] के प्रमुख उपकरण हैं जो सरल यांत्रिक साधनों के माध्यम से किसी इनपुट के मान का निरंतर एकीकरण करते हैं। इनका विशिष्ट उपयोग औद्योगिक क्षेत्र या सामग्री की मात्रा की माप, जहाजों पर रेंज-कीपिंग सिस्टम और घूर्णन वेगमापी बमसाइट्स मे किया जाता है। [[वन्नेवर बुश]] द्वारा [[टॉर्क एम्पलीफायर]] को सम्मिलित करने से 1930 और 1940 के दशक मे [[विभेदक विश्लेषक|अंतरात्मक विश्लेषक]] नामक उपकरण का निर्माण हुआ था। | ||
==विवरण और संचालन== | ==विवरण और संचालन== | ||
मूल यांत्रिकी में एक आउटपुट और दो इनपुट होते हैं। पहला इनपुट एक | मूल यांत्रिकी में एक आउटपुट और दो इनपुट होते हैं। पहला इनपुट एक घूर्णन डिस्क है जो सामान्यतः विद्युत चालित होती है। प्रायः यह इनपुट घूर्णन डिस्क यह सुनिश्चित करने के लिए होती है कि यह एक निश्चित दर पर घूर्णन करती है और एक प्रकार के घूर्णन नियंत्रक का उपयोग करती है। दूसरा इनपुट एक गतिमान कुंडल की तरह है जो अपने त्रिज्या के साथ इनपुट डिस्क के विपरीत प्रभावित होती है। जिसमे बियरिंग डिस्क आउटपुट शाफ्ट तक गति स्थानांतरित करती है। आउटपुट शाफ्ट की धुरी रेलगाड़ी की पटरियों के समानांतर उन्मुख होती है। जैसे ही गाड़ी स्लाइड करती है तब गाड़ी बेयरिंग डिस्क और आउटपुट दोनों के संपर्क में रहती है, जिससे एक से दूसरे को संचालन की स्वीकृति प्राप्त होती है। | ||
आउटपुट शाफ्ट की | आउटपुट शाफ्ट की घूर्णन दर रेलगाड़ी के विस्थापन द्वारा नियंत्रित होती है। जब बियरिंग डिस्क के केंद्र में स्थित होती है, तो कोई शुद्ध गति प्रदान नहीं की जाती है जिससे आउटपुट शाफ्ट स्थिर रहता है। जैसे ही रेलगाड़ी बेयरिंग को केंद्र से दूर और डिस्क के किनारे की ओर ले जाती है तब बेयरिंग मे इस प्रकार के आउटपुट शाफ्ट तीव्रता से घूमना प्रारम्भ कर देते है। सामान्यतः यह असीमित परिवर्तनशील गियर अनुपात के साथ दो गियर की एक प्रणाली है। जब बेयरिंग डिस्क केंद्र के निकट होती है, तो अपेक्षाकृत अनुपात कम या शून्य होता है और जब बेयरिंग डिस्क किनारे के निकट होती है, तो यह अनुपात अधिक होता है। | ||
बेयरिंग के विस्थापन की दिशा के आधार पर आउटपुट शाफ्ट आगे या पीछे घूम सकता है। यह इंटीग्रेटर के लिए एक उपयोगी विशेषता है। | बेयरिंग के विस्थापन की दिशा के आधार पर आउटपुट शाफ्ट आगे या पीछे घूम सकता है। यह इंटीग्रेटर के लिए एक उपयोगी विशेषता है। | ||
Line 20: | Line 20: | ||
20वीं शताब्दी के अंत तक नौसैनिक जहाज़ों पर क्षितिज से अधिक दूरी तक बंदूकों को स्थापित करना प्रारम्भ कर दिया गया था। इस प्रकार की दूरियों पर टावरों में स्पॉटर्स का आंखों से सही दूरी का अनुमान नहीं लगा सकते थे, जिससे और अधिक जटिल दूरी खोजने वाले सिस्टम का विकास हुआ। इसके अतिरिक्त बंदूकधारी अब सीधे अपने स्वयं के शॉट के गिरने का पता नहीं लगा सकते थे। ऐसा करने के लिए वे स्पॉटर्स पर निर्भर रहते थे और यह जानकारी उन्हें देते थे। उसी समय जहाजों की गति बढ़ रही थी, 1906 में [[एचएमएस ड्रेडनॉट (1906)|एचएमएस ड्रेडनॉट]] के प्रारम्भ के समय सामूहिक रूप से 20 समुद्री मील की बाधा को निरंतर सूचना प्रवाह और गणना को प्रबंधित करने के लिए केंद्रीकृत अग्नि नियंत्रण उपकरण का उपयोग किया गया था लेकिन फायरिंग की गणना बहुत जटिल और त्रुटि प्रवण सिद्ध हुई थी। | 20वीं शताब्दी के अंत तक नौसैनिक जहाज़ों पर क्षितिज से अधिक दूरी तक बंदूकों को स्थापित करना प्रारम्भ कर दिया गया था। इस प्रकार की दूरियों पर टावरों में स्पॉटर्स का आंखों से सही दूरी का अनुमान नहीं लगा सकते थे, जिससे और अधिक जटिल दूरी खोजने वाले सिस्टम का विकास हुआ। इसके अतिरिक्त बंदूकधारी अब सीधे अपने स्वयं के शॉट के गिरने का पता नहीं लगा सकते थे। ऐसा करने के लिए वे स्पॉटर्स पर निर्भर रहते थे और यह जानकारी उन्हें देते थे। उसी समय जहाजों की गति बढ़ रही थी, 1906 में [[एचएमएस ड्रेडनॉट (1906)|एचएमएस ड्रेडनॉट]] के प्रारम्भ के समय सामूहिक रूप से 20 समुद्री मील की बाधा को निरंतर सूचना प्रवाह और गणना को प्रबंधित करने के लिए केंद्रीकृत अग्नि नियंत्रण उपकरण का उपयोग किया गया था लेकिन फायरिंग की गणना बहुत जटिल और त्रुटि प्रवण सिद्ध हुई थी। | ||
इसका समाधान ड्रेयर-टेबल था जिसमें जहाज के सापेक्ष लक्ष्य की गति की तुलना करने और इस प्रकार उसकी सीमा और गति की गणना करने के लिए एक बड़े बॉल और डिस्क इंटीग्रेटर का उपयोग किया गया था। | इसका समाधान ड्रेयर-टेबल था जिसमें जहाज के सापेक्ष लक्ष्य की गति की तुलना करने और इस प्रकार उसकी सीमा और गति की गणना करने के लिए एक बड़े बॉल और डिस्क इंटीग्रेटर का उपयोग किया गया था। जिसमे आउटपुट पेपर के एक रोल के लिए था। पहला सिस्टम 1912 के आसपास प्रस्तुत किया गया था और 1914 में स्थापित किया गया था। समय के साथ ड्रेयर सिस्टम ने जहाजों की गति और इसी प्रकार की गणनाओं के आधार पर स्पष्ट और वास्तविक वायु की गति और दिशा के बीच वायु के सुधार के प्रभावों को हल करने के लिए अधिक से अधिक गणना की। 1918 के बाद जब मार्क-वी सिस्टम को बाद के जहाजों पर स्थापित किया गया था तब तक सिस्टम को 50 लोग एक साथ संचालित कर रहे थे। | ||
इसी प्रकार के उपकरण शीघ्र ही अन्य नौसेनाओं और अन्य भूमिकाओं के लिए दिखाई दिए। [[अमेरिकी नौसेना]] ने कुछ स्थिति तक सरल उपकरण का उपयोग किया था जिसे [[रेंजकीपर]] के नाम से जाना जाता है, लेकिन समय के साथ इसमें भी निरंतर संशोधन देखा गया और अंततः अमेरिकी संस्करणों के बराबर या अधिक सामान्य सिस्टम में परिवर्तित कर दिया गया था। एक समान गणना ने [[टारपीडो डेटा कंप्यूटर]] का आधार बनाया था। जिसने टारपीडो के बहुत लंबे समय के लगने वाली समस्या को अपेक्षाकृत कम समय मे हल कर दिया था। | इसी प्रकार के उपकरण शीघ्र ही अन्य नौसेनाओं और अन्य भूमिकाओं के लिए दिखाई दिए। [[अमेरिकी नौसेना]] ने कुछ स्थिति तक सरल उपकरण का उपयोग किया था जिसे [[रेंजकीपर]] के नाम से जाना जाता है, लेकिन समय के साथ इसमें भी निरंतर संशोधन देखा गया और अंततः अमेरिकी संस्करणों के बराबर या अधिक सामान्य सिस्टम में परिवर्तित कर दिया गया था। एक समान गणना ने [[टारपीडो डेटा कंप्यूटर]] का आधार बनाया था। जिसने टारपीडो के बहुत लंबे समय के लगने वाली समस्या को अपेक्षाकृत कम समय मे हल कर दिया था। | ||
Line 26: | Line 26: | ||
एक प्रसिद्ध उदाहरण नॉर्डेन बमसाइट है जिसमें बॉल को दूसरी डिस्क से परिवर्तित करके उसकी मूल डिज़ाइन में परिवर्तन किया गया था। इस प्रणाली में इंटीग्रेटर का उपयोग ऊंचाई, वायुगति और दिशा को देखते हुए सतह पर वस्तुओं की सापेक्ष गति की गणना करने के लिए किया जाता था। सतह पर वस्तुओं की वास्तविक गति के साथ गणना किए गए आउटपुट की तुलना करने पर कोई भी अंतर विमान पर वायु के प्रभाव के कारण हो सकता है। इन मानों को प्रयुक्त करने वाले डायल का उपयोग किसी भी दृश्यमान प्रवाह को शून्य करने के लिए किया गया था। जिसके परिणामस्वरूप शुद्ध वायु माप प्राप्त हुई जो पहले एक बहुत ही जटिल समस्या थी। | एक प्रसिद्ध उदाहरण नॉर्डेन बमसाइट है जिसमें बॉल को दूसरी डिस्क से परिवर्तित करके उसकी मूल डिज़ाइन में परिवर्तन किया गया था। इस प्रणाली में इंटीग्रेटर का उपयोग ऊंचाई, वायुगति और दिशा को देखते हुए सतह पर वस्तुओं की सापेक्ष गति की गणना करने के लिए किया जाता था। सतह पर वस्तुओं की वास्तविक गति के साथ गणना किए गए आउटपुट की तुलना करने पर कोई भी अंतर विमान पर वायु के प्रभाव के कारण हो सकता है। इन मानों को प्रयुक्त करने वाले डायल का उपयोग किसी भी दृश्यमान प्रवाह को शून्य करने के लिए किया गया था। जिसके परिणामस्वरूप शुद्ध वायु माप प्राप्त हुई जो पहले एक बहुत ही जटिल समस्या थी। | ||
बॉल डिस्क इंटीग्रेटर का उपयोग 1970 के दशक के मध्य तक बैलिस्टिक मिसाइल सिस्टम के एनालॉग मार्गदर्शन कंप्यूटरों में किया जाता था। पर्सिंग 1 मिसाइल सिस्टम ने शुद्ध मार्गदर्शन प्राप्त करने के लिए यांत्रिक | बॉल डिस्क इंटीग्रेटर का उपयोग 1970 के दशक के मध्य तक बैलिस्टिक मिसाइल सिस्टम के एनालॉग मार्गदर्शन कंप्यूटरों में किया जाता था। पर्सिंग-1 मिसाइल सिस्टम ने शुद्ध मार्गदर्शन प्राप्त करने के लिए यांत्रिक एनालॉग कंप्यूटर के साथ संयुक्त बेंडिक्स एसटी-120 जड़त्व मार्गदर्शन प्लेटफॉर्म का उपयोग किया था। एसटी-120 ने तीनों अक्षों के लिए एक्सेलेरोमीटर की जानकारी प्रदान की। आगे की गति के लिए [[एक्सेलेरोमीटर को कॉल करें|एक्सेलेरोमीटर]] ने अपनी स्थिति को बॉल इंटीग्रेटर की स्थिति रेडियल-बांह में स्थानांतरित कर दिया था। जिससे त्वरण बढ़ने पर बॉल इंटीग्रेटर की स्थिरता डिस्क केंद्र से दूर चली गई थी। डिस्क स्वयं समय का प्रतिनिधित्व करती है और स्थिर दर पर घूर्णन करती है। जैसे ही बॉल इंटीग्रेटर का फिक्स्चर डिस्क के केंद्र से आगे बढ़ता है, तो बॉल इंटीग्रेटर तीव्रता से घूर्णन करती है। बॉल इंटीग्रेटर की गति मिसाइल की गति को दर्शाती है और बॉल इंटीग्रेटर के घूर्णन की संख्या तय की गई दूरी को दर्शाती है। इन यांत्रिक स्थितियों का उपयोग स्टेजिंग घटनाओं के महत्व समाप्ति और वारहेड पृथक्करण को निर्धारित करने के लिए किया गया था। साथ ही वारहेड और सैन्य श्रृंखला को पूरा करने के लिए "अच्छे मार्गदर्शन" संकेतों का उपयोग किया गया था। इस सामान्य अवधारणा का पहला ज्ञात उपयोग पीनम्यूंडे में [[वर्नर वॉन ब्रौन]] समूह द्वारा विकसित [[वी-2 मिसाइल]] में किया गया था। जिसके लिए पीआईजीए एक्सेलेरोमीटर देखें। इसे बाद में रेडस्टोन आर्सेनल (आरएसए) में प्रस्तुत किया और रेडस्टोन रॉकेट को बाद में [[पर्शिंग 1|पर्शिंग-1]] पर प्रयुक्त किया गया था। | ||
==संदर्भ== | ==संदर्भ== | ||
Line 33: | Line 33: | ||
* {{cite AV media | date=1953 | title=Basic Mechanisms in Fire Control Computers, Part 1 | medium=Motion picture | publisher=United States Navy | time=30:53|ref={{harvid|United States Navy|1953}}}} | * {{cite AV media | date=1953 | title=Basic Mechanisms in Fire Control Computers, Part 1 | medium=Motion picture | publisher=United States Navy | time=30:53|ref={{harvid|United States Navy|1953}}}} | ||
* {{cite journal|last=Girvan|first=Ray|title=The revealed grace of the mechanism: computing after Babbage|url=http://www.scientific-computing.com/features/feature.php?feature_id=117|journal=Scientific Computing World|date=May–June 2003}} | * {{cite journal|last=Girvan|first=Ray|title=The revealed grace of the mechanism: computing after Babbage|url=http://www.scientific-computing.com/features/feature.php?feature_id=117|journal=Scientific Computing World|date=May–June 2003}} | ||
[[Category:Created On 25/07/2023]] | [[Category:Created On 25/07/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:यांत्रिक कंप्यूटर]] |
Latest revision as of 11:25, 12 August 2023
This article needs additional citations for verification. (November 2022) (Learn how and when to remove this template message) |
बॉल और डिस्क इंटीग्रेटर विकसित यांत्रिक कंप्यूटर के प्रमुख उपकरण हैं जो सरल यांत्रिक साधनों के माध्यम से किसी इनपुट के मान का निरंतर एकीकरण करते हैं। इनका विशिष्ट उपयोग औद्योगिक क्षेत्र या सामग्री की मात्रा की माप, जहाजों पर रेंज-कीपिंग सिस्टम और घूर्णन वेगमापी बमसाइट्स मे किया जाता है। वन्नेवर बुश द्वारा टॉर्क एम्पलीफायर को सम्मिलित करने से 1930 और 1940 के दशक मे अंतरात्मक विश्लेषक नामक उपकरण का निर्माण हुआ था।
विवरण और संचालन
मूल यांत्रिकी में एक आउटपुट और दो इनपुट होते हैं। पहला इनपुट एक घूर्णन डिस्क है जो सामान्यतः विद्युत चालित होती है। प्रायः यह इनपुट घूर्णन डिस्क यह सुनिश्चित करने के लिए होती है कि यह एक निश्चित दर पर घूर्णन करती है और एक प्रकार के घूर्णन नियंत्रक का उपयोग करती है। दूसरा इनपुट एक गतिमान कुंडल की तरह है जो अपने त्रिज्या के साथ इनपुट डिस्क के विपरीत प्रभावित होती है। जिसमे बियरिंग डिस्क आउटपुट शाफ्ट तक गति स्थानांतरित करती है। आउटपुट शाफ्ट की धुरी रेलगाड़ी की पटरियों के समानांतर उन्मुख होती है। जैसे ही गाड़ी स्लाइड करती है तब गाड़ी बेयरिंग डिस्क और आउटपुट दोनों के संपर्क में रहती है, जिससे एक से दूसरे को संचालन की स्वीकृति प्राप्त होती है।
आउटपुट शाफ्ट की घूर्णन दर रेलगाड़ी के विस्थापन द्वारा नियंत्रित होती है। जब बियरिंग डिस्क के केंद्र में स्थित होती है, तो कोई शुद्ध गति प्रदान नहीं की जाती है जिससे आउटपुट शाफ्ट स्थिर रहता है। जैसे ही रेलगाड़ी बेयरिंग को केंद्र से दूर और डिस्क के किनारे की ओर ले जाती है तब बेयरिंग मे इस प्रकार के आउटपुट शाफ्ट तीव्रता से घूमना प्रारम्भ कर देते है। सामान्यतः यह असीमित परिवर्तनशील गियर अनुपात के साथ दो गियर की एक प्रणाली है। जब बेयरिंग डिस्क केंद्र के निकट होती है, तो अपेक्षाकृत अनुपात कम या शून्य होता है और जब बेयरिंग डिस्क किनारे के निकट होती है, तो यह अनुपात अधिक होता है।
बेयरिंग के विस्थापन की दिशा के आधार पर आउटपुट शाफ्ट आगे या पीछे घूम सकता है। यह इंटीग्रेटर के लिए एक उपयोगी विशेषता है।
एक उदाहरण प्रणाली पर विचार करें जो स्लुइस के माध्यम से प्रवाहित पानी की कुल मात्रा को मापती है जो एक फ्लोट इनपुट गाड़ी से संबद्ध होती है ताकि पानी के स्तर के साथ बीयरिंग ऊपर और नीचे चलती रहे। जैसे ही पानी का स्तर बढ़ता है, बेयरिंग को इनपुट डिस्क के केंद्र से दूर दिया जाता है, जिससे आउटपुट की घूर्णन दर बढ़ जाती है। आउटपुट शाफ्ट के घूर्णन की कुल संख्या की गणना करके (उदाहरण के लिए ओडोमीटर उपकरण के साथ) और स्लुइस के अंतः वर्ग क्षेत्र से गुणा करके मीटर के पिछले भाग में प्रवाहित पानी की कुल मात्रा निर्धारित की जा सकती है।
इतिहास
आविष्कार और प्रारंभिक उपयोग
बॉल और डिस्क इंटीग्रेटर की मूल अवधारणा का वर्णन सबसे पहले विलियम थॉमसन, प्रथम बैरन केल्विन के भाई जेम्स थॉमसन द्वारा किया गया था। विलियम ने 1886 में हार्मोनिक एनालाइज़र बनाने के लिए इस अवधारणा का उपयोग किया था। इस प्रणाली का उपयोग बॉल की स्थिति के रूप में डायल किए गए इनपुट का प्रतिनिधित्व करने वाली फूरियर श्रृंखला के गुणांक की गणना करने के लिए किया गया था। अध्ययन किए जा रहे किसी भी बंदरगाह से ज्वार की ऊंचाई मापने के लिए इनपुट किए गए थे। फिर आउटपुट को एक समान मशीन, हार्मोनिक सिंथेसाइज़र में डाला गया था जो सूर्य और चंद्रमा के योग के चरण का प्रतिनिधित्व करने के लिए कई पहियों को घुमाता था। पहियों के शीर्ष पर चलने वाले एक तार ने अधिकतम मान लिया, जो एक निश्चित समय में बंदरगाह में ज्वार का प्रतिनिधित्व करता था।[1] थॉमसन ने अवकल समीकरणों को हल करने के रूप में उसी प्रणाली का उपयोग करने की संभावना का उल्लेख किया है लेकिन यह अनुभव किया कि इंटीग्रेटर से आउटपुट टॉर्क पॉइंटर्स के आवश्यक डाउनस्ट्रीम सिस्टम को चलाने के लिए अपेक्षाकृत बहुत कम था।[1]
इसी प्रकार की कई प्रणालियों का अनुसरण किया गया है जिसमे विशेष रूप से लियोनार्डो टोरेस क्यूवेडो की एक प्रणाली सम्मिलित है जो एक स्पेनिश भौतिक विज्ञानी थे, जिन्होंने बहुपदों की वास्तविक और समिश्र वर्गमूलों को हल करने के लिए कई उपकरण बनाए है।[2] जिसका माइकलसन और स्ट्रैटन ने हार्मोनिक विश्लेषक से फूरियर विश्लेषण किया है लेकिन केल्विन इंटीग्रेटर के अतिरिक्त 80 स्प्रिंग्स की एक श्रृंखला का उपयोग किया है। इस कार्य से फूरियर प्रतिनिधित्व में असंततता के निकट ओवरशूट की गिब्स घटना की गणितीय समझ विकसित हुई है।[1]
सैन्य कंप्यूटर
20वीं शताब्दी के अंत तक नौसैनिक जहाज़ों पर क्षितिज से अधिक दूरी तक बंदूकों को स्थापित करना प्रारम्भ कर दिया गया था। इस प्रकार की दूरियों पर टावरों में स्पॉटर्स का आंखों से सही दूरी का अनुमान नहीं लगा सकते थे, जिससे और अधिक जटिल दूरी खोजने वाले सिस्टम का विकास हुआ। इसके अतिरिक्त बंदूकधारी अब सीधे अपने स्वयं के शॉट के गिरने का पता नहीं लगा सकते थे। ऐसा करने के लिए वे स्पॉटर्स पर निर्भर रहते थे और यह जानकारी उन्हें देते थे। उसी समय जहाजों की गति बढ़ रही थी, 1906 में एचएमएस ड्रेडनॉट के प्रारम्भ के समय सामूहिक रूप से 20 समुद्री मील की बाधा को निरंतर सूचना प्रवाह और गणना को प्रबंधित करने के लिए केंद्रीकृत अग्नि नियंत्रण उपकरण का उपयोग किया गया था लेकिन फायरिंग की गणना बहुत जटिल और त्रुटि प्रवण सिद्ध हुई थी।
इसका समाधान ड्रेयर-टेबल था जिसमें जहाज के सापेक्ष लक्ष्य की गति की तुलना करने और इस प्रकार उसकी सीमा और गति की गणना करने के लिए एक बड़े बॉल और डिस्क इंटीग्रेटर का उपयोग किया गया था। जिसमे आउटपुट पेपर के एक रोल के लिए था। पहला सिस्टम 1912 के आसपास प्रस्तुत किया गया था और 1914 में स्थापित किया गया था। समय के साथ ड्रेयर सिस्टम ने जहाजों की गति और इसी प्रकार की गणनाओं के आधार पर स्पष्ट और वास्तविक वायु की गति और दिशा के बीच वायु के सुधार के प्रभावों को हल करने के लिए अधिक से अधिक गणना की। 1918 के बाद जब मार्क-वी सिस्टम को बाद के जहाजों पर स्थापित किया गया था तब तक सिस्टम को 50 लोग एक साथ संचालित कर रहे थे।
इसी प्रकार के उपकरण शीघ्र ही अन्य नौसेनाओं और अन्य भूमिकाओं के लिए दिखाई दिए। अमेरिकी नौसेना ने कुछ स्थिति तक सरल उपकरण का उपयोग किया था जिसे रेंजकीपर के नाम से जाना जाता है, लेकिन समय के साथ इसमें भी निरंतर संशोधन देखा गया और अंततः अमेरिकी संस्करणों के बराबर या अधिक सामान्य सिस्टम में परिवर्तित कर दिया गया था। एक समान गणना ने टारपीडो डेटा कंप्यूटर का आधार बनाया था। जिसने टारपीडो के बहुत लंबे समय के लगने वाली समस्या को अपेक्षाकृत कम समय मे हल कर दिया था।
एक प्रसिद्ध उदाहरण नॉर्डेन बमसाइट है जिसमें बॉल को दूसरी डिस्क से परिवर्तित करके उसकी मूल डिज़ाइन में परिवर्तन किया गया था। इस प्रणाली में इंटीग्रेटर का उपयोग ऊंचाई, वायुगति और दिशा को देखते हुए सतह पर वस्तुओं की सापेक्ष गति की गणना करने के लिए किया जाता था। सतह पर वस्तुओं की वास्तविक गति के साथ गणना किए गए आउटपुट की तुलना करने पर कोई भी अंतर विमान पर वायु के प्रभाव के कारण हो सकता है। इन मानों को प्रयुक्त करने वाले डायल का उपयोग किसी भी दृश्यमान प्रवाह को शून्य करने के लिए किया गया था। जिसके परिणामस्वरूप शुद्ध वायु माप प्राप्त हुई जो पहले एक बहुत ही जटिल समस्या थी।
बॉल डिस्क इंटीग्रेटर का उपयोग 1970 के दशक के मध्य तक बैलिस्टिक मिसाइल सिस्टम के एनालॉग मार्गदर्शन कंप्यूटरों में किया जाता था। पर्सिंग-1 मिसाइल सिस्टम ने शुद्ध मार्गदर्शन प्राप्त करने के लिए यांत्रिक एनालॉग कंप्यूटर के साथ संयुक्त बेंडिक्स एसटी-120 जड़त्व मार्गदर्शन प्लेटफॉर्म का उपयोग किया था। एसटी-120 ने तीनों अक्षों के लिए एक्सेलेरोमीटर की जानकारी प्रदान की। आगे की गति के लिए एक्सेलेरोमीटर ने अपनी स्थिति को बॉल इंटीग्रेटर की स्थिति रेडियल-बांह में स्थानांतरित कर दिया था। जिससे त्वरण बढ़ने पर बॉल इंटीग्रेटर की स्थिरता डिस्क केंद्र से दूर चली गई थी। डिस्क स्वयं समय का प्रतिनिधित्व करती है और स्थिर दर पर घूर्णन करती है। जैसे ही बॉल इंटीग्रेटर का फिक्स्चर डिस्क के केंद्र से आगे बढ़ता है, तो बॉल इंटीग्रेटर तीव्रता से घूर्णन करती है। बॉल इंटीग्रेटर की गति मिसाइल की गति को दर्शाती है और बॉल इंटीग्रेटर के घूर्णन की संख्या तय की गई दूरी को दर्शाती है। इन यांत्रिक स्थितियों का उपयोग स्टेजिंग घटनाओं के महत्व समाप्ति और वारहेड पृथक्करण को निर्धारित करने के लिए किया गया था। साथ ही वारहेड और सैन्य श्रृंखला को पूरा करने के लिए "अच्छे मार्गदर्शन" संकेतों का उपयोग किया गया था। इस सामान्य अवधारणा का पहला ज्ञात उपयोग पीनम्यूंडे में वर्नर वॉन ब्रौन समूह द्वारा विकसित वी-2 मिसाइल में किया गया था। जिसके लिए पीआईजीए एक्सेलेरोमीटर देखें। इसे बाद में रेडस्टोन आर्सेनल (आरएसए) में प्रस्तुत किया और रेडस्टोन रॉकेट को बाद में पर्शिंग-1 पर प्रयुक्त किया गया था।
संदर्भ
- ↑ 1.0 1.1 1.2 Girvan 2003.
- ↑ F. Thomas. A Short Account on Leonardo Torres ’ Endless Spindle , Mechanism and Machine Theory, Vol.43, No.8, pp.1055-1063, 2008.
ग्रन्थसूची
- Basic Mechanisms in Fire Control Computers, Part 1 (Motion picture). United States Navy. 1953. Event occurs at 30:53.
- Girvan, Ray (May–June 2003). "The revealed grace of the mechanism: computing after Babbage". Scientific Computing World.