वेक्टर परिमाणीकरण: Difference between revisions
No edit summary |
No edit summary |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 22: | Line 22: | ||
# दोहराना | # दोहराना | ||
अभिसरण उत्पन्न करने के लिए कूलिंग शेड्यूल का उपयोग करना वांछनीय है: सिम्युलेटेड एनीलिंग देखें। अन्य (सरल) विधि लिंडे-बुज़ो-ग्रे एल्गोरिदम है जो [[ K- का अर्थ है क्लस्टरिंग |K- का अर्थ है क्लस्टरिंग]] | अभिसरण उत्पन्न करने के लिए कूलिंग शेड्यूल का उपयोग करना वांछनीय है: सिम्युलेटेड एनीलिंग देखें। अन्य (सरल) विधि लिंडे-बुज़ो-ग्रे एल्गोरिदम है जो [[ K- का अर्थ है क्लस्टरिंग |K- का अर्थ है क्लस्टरिंग]] k-मीन्स पर आधारित है। | ||
एल्गोरिदम को डेटा सेट से यादृच्छिक बिंदुओं को चुनने के अतिरिक्त 'लाइव' डेटा के साथ पुनरावृत्त रूप से अद्यतन किया जा सकता है, किन्तु यदि डेटा कई प्रतिरूपों पर अस्थायी रूप से सहसंबद्ध है तो यह कुछ पूर्वाग्रह प्रस्तुत करता है। | एल्गोरिदम को डेटा सेट से यादृच्छिक बिंदुओं को चुनने के अतिरिक्त 'लाइव' डेटा के साथ पुनरावृत्त रूप से अद्यतन किया जा सकता है, किन्तु यदि डेटा कई प्रतिरूपों पर अस्थायी रूप से सहसंबद्ध है तो यह कुछ पूर्वाग्रह प्रस्तुत करता है। | ||
Line 38: | Line 38: | ||
[[सदिश स्थल|वेक्टर]] परिमाणीकरण, जिसे ब्लॉक परिमाणीकरण या क्रम मिलान परिमाणीकरण भी कहा जाता है, अधिकांशतः हानिपूर्ण डेटा संपीड़न में उपयोग किया जाता है। इस प्रकार यह बहुआयामी वेक्टर समष्टि से मूल्यों को निचले आयाम के असतत [[रैखिक उपस्थान]] से मूल्यों के सीमित सेट में एन्कोडिंग द्वारा कार्य करता है। इस प्रकार निचले-समष्टि वाले वेक्टर को कम संग्रहण समष्टि की आवश्यकता होती है, इसलिए डेटा संपीड़ित होता है। वेक्टर परिमाणीकरण की घनत्व मिलान गुण के कारण, संपीड़ित डेटा में त्रुटियां होती हैं जो घनत्व के व्युत्क्रमानुपाती होती हैं। | [[सदिश स्थल|वेक्टर]] परिमाणीकरण, जिसे ब्लॉक परिमाणीकरण या क्रम मिलान परिमाणीकरण भी कहा जाता है, अधिकांशतः हानिपूर्ण डेटा संपीड़न में उपयोग किया जाता है। इस प्रकार यह बहुआयामी वेक्टर समष्टि से मूल्यों को निचले आयाम के असतत [[रैखिक उपस्थान]] से मूल्यों के सीमित सेट में एन्कोडिंग द्वारा कार्य करता है। इस प्रकार निचले-समष्टि वाले वेक्टर को कम संग्रहण समष्टि की आवश्यकता होती है, इसलिए डेटा संपीड़ित होता है। वेक्टर परिमाणीकरण की घनत्व मिलान गुण के कारण, संपीड़ित डेटा में त्रुटियां होती हैं जो घनत्व के व्युत्क्रमानुपाती होती हैं। | ||
परिवर्तन सामान्यतः [[प्रक्षेपण (गणित)]] या [[कोडबुक]] का उपयोग करके किया जाता है। कुछ स्थितियों में, कोडबुक का उपयोग आउटपुट के रूप में [[उपसर्ग कोड|उपसर्ग कोडित]] | परिवर्तन सामान्यतः [[प्रक्षेपण (गणित)]] या [[कोडबुक]] का उपयोग करके किया जाता है। कुछ स्थितियों में, कोडबुक का उपयोग आउटपुट के रूप में [[उपसर्ग कोड|उपसर्ग कोडित]] वेरिएबल -लंबाई एन्कोडेड मान उत्पन्न करके, उसी चरण में असतत मान को [[एन्ट्रापी कोड]] करने के लिए भी किया जा सकता है। | ||
अलग-अलग आयाम स्तरों के सेट को प्रत्येक प्रतिरूप को अलग से परिमाणित करने के अतिरिक्त संयुक्त रूप से परिमाणित किया जाता है। k-आयामी वेक्टर <math>[x_1,x_2,...,x_k]</math> पर विचार करें इसे n < k के साथ n-आयामी वेक्टर <math>[y_1,y_2,...,y_n]</math> के सेट से निकटतम मिलान वेक्टर चुनकर संपीड़ित किया जाता है। | अलग-अलग आयाम स्तरों के सेट को प्रत्येक प्रतिरूप को अलग से परिमाणित करने के अतिरिक्त संयुक्त रूप से परिमाणित किया जाता है। k-आयामी वेक्टर <math>[x_1,x_2,...,x_k]</math> पर विचार करें इसे n < k के साथ n-आयामी वेक्टर <math>[y_1,y_2,...,y_n]</math> के सेट से निकटतम मिलान वेक्टर चुनकर संपीड़ित किया जाता है। | ||
Line 88: | Line 88: | ||
=== क्रम पहचान में उपयोग === | === क्रम पहचान में उपयोग === | ||
VQ का उपयोग अस्सी के दशक में भाषण के लिए भी किया जाता था <ref>{{cite journal|last=Burton|first=D. K.|author2=Shore, J. E. |author3=Buck, J. T. |title=वेक्टर परिमाणीकरण का उपयोग करके पृथक शब्द पहचान का सामान्यीकरण|journal=IEEE International Conference on Acoustics Speech and Signal Processing ICASSP|volume=8|year=1983|pages=1021–1024|doi=10.1109/ICASSP.1983.1171915}}</ref> और [[वक्ता की पहचान|वक्ता पहचान]] का उपयोग किया जाता है <ref>{{cite journal|last=Soong|first=F.|author2=A. Rosenberg |author3=L. Rabiner |author4=B. Juang |title=स्पीकर रिकग्निशन के लिए एक वेक्टर क्वांटिज़ेशन दृष्टिकोण|journal=IEEE Proceedings International Conference on Acoustics, Speech and Signal Processing ICASSP|year=1985|volume=1|pages=387–390|doi=10.1109/ICASSP.1985.1168412|s2cid=8970593|url=https://www.semanticscholar.org/paper/9e1d50d98ae09c15354dbcb126609e337d3dc6fb}}</ref> इस प्रकार वर्तमान में इसका उपयोग कुशल [[निकटतम पड़ोसी खोज|निकटतम नेबर खोज]] के लिए भी किया गया है <ref>{{cite journal|author=H. Jegou |author2=M. Douze |author3=C. Schmid|title=निकटतम पड़ोसी खोज के लिए उत्पाद परिमाणीकरण|journal=IEEE Transactions on Pattern Analysis and Machine Intelligence|year=2011|volume=33|issue=1|pages=117–128|doi=10.1109/TPAMI.2010.57|pmid=21088323 |url=http://hal.archives-ouvertes.fr/docs/00/51/44/62/PDF/paper_hal.pdf |archive-url=https://web.archive.org/web/20111217142048/http://hal.archives-ouvertes.fr/docs/00/51/44/62/PDF/paper_hal.pdf |archive-date=2011-12-17 |url-status=live|citeseerx=10.1.1.470.8573 |s2cid=5850884 }}</ref> और ऑन-लाइन हस्ताक्षर पहचान <ref>{{cite journal|last=Faundez-Zanuy|first=Marcos|title=VQ-DTW पर आधारित ऑफ़लाइन और ऑन-लाइन हस्ताक्षर पहचान|journal=Pattern Recognition|year=2007|volume=40|issue=3|pages=981–992|doi=10.1016/j.patcog.2006.06.007}}</ref> क्रम पहचान अनुप्रयोगों में, इस उपयोगकर्ता के ध्वनिक वेक्टर का उपयोग करके प्रत्येक वर्ग (प्रत्येक वर्ग बायोमेट्रिक अनुप्रयोगों में उपयोगकर्ता होता है) के लिए कोडबुक का निर्माण किया जाता है। इस प्रकार परीक्षण चरण में प्रशिक्षण चरण में प्राप्त कोडबुक के पूरे सेट के साथ परीक्षण सिग्नल के परिमाणीकरण विरूपण पर कार्य किया जाता है। इस प्रकार कोडबुक जो सबसे छोटी वेक्टर परिमाणीकरण विकृति प्रदान करती है, पहचाने गए उपयोगकर्ता को | VQ का उपयोग अस्सी के दशक में भाषण के लिए भी किया जाता था <ref>{{cite journal|last=Burton|first=D. K.|author2=Shore, J. E. |author3=Buck, J. T. |title=वेक्टर परिमाणीकरण का उपयोग करके पृथक शब्द पहचान का सामान्यीकरण|journal=IEEE International Conference on Acoustics Speech and Signal Processing ICASSP|volume=8|year=1983|pages=1021–1024|doi=10.1109/ICASSP.1983.1171915}}</ref> और [[वक्ता की पहचान|वक्ता पहचान]] का उपयोग किया जाता है <ref>{{cite journal|last=Soong|first=F.|author2=A. Rosenberg |author3=L. Rabiner |author4=B. Juang |title=स्पीकर रिकग्निशन के लिए एक वेक्टर क्वांटिज़ेशन दृष्टिकोण|journal=IEEE Proceedings International Conference on Acoustics, Speech and Signal Processing ICASSP|year=1985|volume=1|pages=387–390|doi=10.1109/ICASSP.1985.1168412|s2cid=8970593|url=https://www.semanticscholar.org/paper/9e1d50d98ae09c15354dbcb126609e337d3dc6fb}}</ref> इस प्रकार वर्तमान में इसका उपयोग कुशल [[निकटतम पड़ोसी खोज|निकटतम नेबर खोज]] के लिए भी किया गया है <ref>{{cite journal|author=H. Jegou |author2=M. Douze |author3=C. Schmid|title=निकटतम पड़ोसी खोज के लिए उत्पाद परिमाणीकरण|journal=IEEE Transactions on Pattern Analysis and Machine Intelligence|year=2011|volume=33|issue=1|pages=117–128|doi=10.1109/TPAMI.2010.57|pmid=21088323 |url=http://hal.archives-ouvertes.fr/docs/00/51/44/62/PDF/paper_hal.pdf |archive-url=https://web.archive.org/web/20111217142048/http://hal.archives-ouvertes.fr/docs/00/51/44/62/PDF/paper_hal.pdf |archive-date=2011-12-17 |url-status=live|citeseerx=10.1.1.470.8573 |s2cid=5850884 }}</ref> और ऑन-लाइन हस्ताक्षर पहचान <ref>{{cite journal|last=Faundez-Zanuy|first=Marcos|title=VQ-DTW पर आधारित ऑफ़लाइन और ऑन-लाइन हस्ताक्षर पहचान|journal=Pattern Recognition|year=2007|volume=40|issue=3|pages=981–992|doi=10.1016/j.patcog.2006.06.007}}</ref> क्रम पहचान अनुप्रयोगों में, इस उपयोगकर्ता के ध्वनिक वेक्टर का उपयोग करके प्रत्येक वर्ग (प्रत्येक वर्ग बायोमेट्रिक अनुप्रयोगों में उपयोगकर्ता होता है) के लिए कोडबुक का निर्माण किया जाता है। इस प्रकार परीक्षण चरण में प्रशिक्षण चरण में प्राप्त कोडबुक के पूरे सेट के साथ परीक्षण सिग्नल के परिमाणीकरण विरूपण पर कार्य किया जाता है। इस प्रकार कोडबुक जो सबसे छोटी वेक्टर परिमाणीकरण विकृति प्रदान करती है, पहचाने गए उपयोगकर्ता को निरुपित करती है। | ||
क्रम पहचान में वीक्यू का मुख्य लाभ इसका कम कम्प्यूटेशनल बोझ है जब इसकी तुलना [[गतिशील समय विरूपण]] (डीटीडब्ल्यू) और [[छिपा हुआ मार्कोव मॉडल|हिडेन मार्कोव मॉडल]] (एचएमएम) जैसी अन्य तकनीकों से की जाती है। डीटीडब्ल्यू और एचएमएम की तुलना में मुख्य दोष यह है कि यह संकेतों (भाषण, हस्ताक्षर इत्यादि) के अस्थायी विकास को ध्यान में नहीं रखता है क्योंकि सभी वेक्टर मिश्रित होते हैं। इस प्रकार इस समस्या को दूर करने के लिए बहु-खंड कोडबुक दृष्टिकोण प्रस्तावित किया गया है।<ref>{{cite journal|last=Faundez-Zanuy|first=Marcos|author2=Juan Manuel Pascual-Gaspar |title=मल्टी-सेक्शन वीक्यू पर आधारित कुशल ऑन-लाइन हस्ताक्षर पहचान|journal=Pattern Analysis and Applications|year=2011|volume=14|issue=1|pages=37–45|doi=10.1007/s10044-010-0176-8|s2cid=24868914|url=https://www.semanticscholar.org/paper/acf19e33b76ca5520e85e5c1be54c9920aa590b1}}</ref> इस प्रकार बहु-खंड दृष्टिकोण में कई खंडों के साथ सिग्नल को मॉडलिंग करना सम्मिलित है (उदाहरण के लिए, प्रारंभिक भाग के लिए कोडबुक, केंद्र के लिए और और अंतिम भाग के लिए अंतिम कोडबुक)। | क्रम पहचान में वीक्यू का मुख्य लाभ इसका कम कम्प्यूटेशनल बोझ है जब इसकी तुलना [[गतिशील समय विरूपण]] (डीटीडब्ल्यू) और [[छिपा हुआ मार्कोव मॉडल|हिडेन मार्कोव मॉडल]] (एचएमएम) जैसी अन्य तकनीकों से की जाती है। डीटीडब्ल्यू और एचएमएम की तुलना में मुख्य दोष यह है कि यह संकेतों (भाषण, हस्ताक्षर इत्यादि) के अस्थायी विकास को ध्यान में नहीं रखता है क्योंकि सभी वेक्टर मिश्रित होते हैं। इस प्रकार इस समस्या को दूर करने के लिए बहु-खंड कोडबुक दृष्टिकोण प्रस्तावित किया गया है।<ref>{{cite journal|last=Faundez-Zanuy|first=Marcos|author2=Juan Manuel Pascual-Gaspar |title=मल्टी-सेक्शन वीक्यू पर आधारित कुशल ऑन-लाइन हस्ताक्षर पहचान|journal=Pattern Analysis and Applications|year=2011|volume=14|issue=1|pages=37–45|doi=10.1007/s10044-010-0176-8|s2cid=24868914|url=https://www.semanticscholar.org/paper/acf19e33b76ca5520e85e5c1be54c9920aa590b1}}</ref> इस प्रकार बहु-खंड दृष्टिकोण में कई खंडों के साथ सिग्नल को मॉडलिंग करना सम्मिलित है (उदाहरण के लिए, प्रारंभिक भाग के लिए कोडबुक, केंद्र के लिए और और अंतिम भाग के लिए अंतिम कोडबुक)। | ||
Line 124: | Line 124: | ||
* [http://qccpack.sourceforge.net QccPack — Quantization, Compression, and Coding Library (open source)] | * [http://qccpack.sourceforge.net QccPack — Quantization, Compression, and Coding Library (open source)] | ||
* [https://dl.acm.org/citation.cfm?id=1535126 VQ Indexes Compression and Information Hiding Using Hybrid Lossless Index Coding], Wen-Jan Chen and Wen-Tsung Huang | * [https://dl.acm.org/citation.cfm?id=1535126 VQ Indexes Compression and Information Hiding Using Hybrid Lossless Index Coding], Wen-Jan Chen and Wen-Tsung Huang | ||
[[es:Cuantificación digital#Cuantificación vectorial]] | [[es:Cuantificación digital#Cuantificación vectorial]] | ||
[[ru:Векторное квантование]] | [[ru:Векторное квантование]] | ||
[[Category:Articles using small message boxes]] | |||
[[Category:Articles with invalid date parameter in template]] | |||
[[Category: | |||
[[Category:Created On 25/07/2023]] | [[Category:Created On 25/07/2023]] | ||
[[Category:Incomplete lists from August 2008]] | |||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Multi-column templates]] | |||
[[Category:Pages using div col with small parameter]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Templates using under-protected Lua modules]] | |||
[[Category:Wikipedia fully protected templates|Div col]] | |||
[[Category:बिना पर्यवेक्षण के सीखना]] | |||
[[Category:हानिपूर्ण संपीड़न एल्गोरिदम]] |
Latest revision as of 10:40, 14 August 2023
वेक्टर परिमाणीकरण (VQ) सिंग्नल प्रोसेसिंग से मौलिक परिमाणीकरण (सिग्नल प्रोसेसिंग) तकनीक है जो प्रोटोटाइप वेक्टर के वितरण द्वारा संभाव्यता घनत्व कार्यों के मॉडलिंग की अनुमति देता है। इसका उपयोग मूल रूप से डेटा संपीड़न के लिए किया गया था। यह बिंदुओं के बड़े समूह (समन्वय वेक्टर) को उन समूहों में विभाजित करके कार्य करता है जिनके निकटतम बिंदुओं की संख्या लगभग समान होती है। इस प्रकार प्रत्येक समूह को उसके केन्द्रक बिंदु द्वारा दर्शाया जाता है, जैसा कि k-साधन और कुछ अन्य क्लस्टर विश्लेषण एल्गोरिदम में होता है।
वेक्टर परिमाणीकरण की घनत्व मिलान गुण शक्तिशाली है, विशेष रूप से बड़े और उच्च-आयामी डेटा के घनत्व की पहचान करने के लिए किया जाता है। चूँकि डेटा बिंदुओं को उनके निकटतम सेंट्रोइड के सूचकांक द्वारा दर्शाया जाता है, सामान्यतः होने वाले डेटा में कम त्रुटि होती है, और विरल डेटा में उच्च त्रुटि होती है। यही कारण है कि VQ हानिपूर्ण डेटा संपीड़न के लिए उपयुक्त है। इस प्रकार इसका उपयोग हानिपूर्ण डेटा सुधार और घनत्व अनुमान के लिए भी किया जा सकता है।
वेक्टर परिमाणीकरण प्रतिस्पर्धी शिक्षण प्रतिमान पर आधारित है, इसलिए यह स्व-संगठित मानचित्र मॉडल और ऑटोएन्कोडर जैसे गहन शिक्षण एल्गोरिदम में उपयोग किए जाने वाले विरल कोडिंग मॉडल से निकटता से संबंधित है।
प्रशिक्षण
वेक्टर परिमाणीकरण के लिए सबसे सरल प्रशिक्षण एल्गोरिदम है:[1]
- यादृच्छिक रूप से प्रतिरूप बिंदु चुनें
- दूरी के छोटे से अंश द्वारा, निकटतम परिमाणीकरण वेक्टर सेंट्रोइड को इस प्रतिरूप बिंदु की ओर ले जाएं
- दोहराना
एक अधिक परिष्कृत एल्गोरिदम घनत्व मिलान अनुमान में पूर्वाग्रह को कम करता है, और अतिरिक्त संवेदनशीलता मापदंड को सम्मिलित करके यह सुनिश्चित करता है कि सभी बिंदुओं का उपयोग किया जाता है :
- प्रत्येक केन्द्रक की संवेदनशीलता को थोड़ी राशि में बढ़ाएँ
- यादृच्छिक रूप से एक प्रतिरूप बिंदु चुनें
- प्रत्येक परिमाणीकरण वेक्टर केन्द्रक के लिए, को और की दूरी को निरूपित करें
- वह केन्द्रक ज्ञात कीजिए जिसके लिए सबसे छोटा है।
- दूरी के एक छोटे से अंश द्वारा को की ओर ले जाएँ
- को शून्य पर सेट करें
- दोहराना
अभिसरण उत्पन्न करने के लिए कूलिंग शेड्यूल का उपयोग करना वांछनीय है: सिम्युलेटेड एनीलिंग देखें। अन्य (सरल) विधि लिंडे-बुज़ो-ग्रे एल्गोरिदम है जो K- का अर्थ है क्लस्टरिंग k-मीन्स पर आधारित है।
एल्गोरिदम को डेटा सेट से यादृच्छिक बिंदुओं को चुनने के अतिरिक्त 'लाइव' डेटा के साथ पुनरावृत्त रूप से अद्यतन किया जा सकता है, किन्तु यदि डेटा कई प्रतिरूपों पर अस्थायी रूप से सहसंबद्ध है तो यह कुछ पूर्वाग्रह प्रस्तुत करता है।
अनुप्रयोग
वेक्टर परिमाणीकरण का उपयोग हानिपूर्ण डेटा संपीड़न, हानिपूर्ण डेटा सुधार, क्रम पहचान, घनत्व अनुमान और क्लस्टरिंग के लिए किया जाता है।
हानिपूर्ण डेटा सुधार, या पूर्वानुमान, का उपयोग कुछ आयामों से विलुप्त डेटा को पुनर्प्राप्त करने के लिए किया जाता है। इस प्रकार यह उपलब्ध डेटा आयामों के साथ निकटतम समूह को खोजकर किया जाता है, फिर विलुप्त आयामों के मानों के आधार पर परिणाम की पूर्वानुमान की जाती है, यह मानते हुए कि उनका मान समूह के सेंट्रोइड के समान होता है।
घनत्व अनुमान के लिए, वह क्षेत्र/आयतन जो किसी अन्य की तुलना में किसी विशेष केन्द्रक के निकट है, घनत्व के व्युत्क्रमानुपाती होता है (एल्गोरिदम की घनत्व मिलान गुण के कारण)।
डेटा संपीड़न में उपयोग
वेक्टर परिमाणीकरण, जिसे ब्लॉक परिमाणीकरण या क्रम मिलान परिमाणीकरण भी कहा जाता है, अधिकांशतः हानिपूर्ण डेटा संपीड़न में उपयोग किया जाता है। इस प्रकार यह बहुआयामी वेक्टर समष्टि से मूल्यों को निचले आयाम के असतत रैखिक उपस्थान से मूल्यों के सीमित सेट में एन्कोडिंग द्वारा कार्य करता है। इस प्रकार निचले-समष्टि वाले वेक्टर को कम संग्रहण समष्टि की आवश्यकता होती है, इसलिए डेटा संपीड़ित होता है। वेक्टर परिमाणीकरण की घनत्व मिलान गुण के कारण, संपीड़ित डेटा में त्रुटियां होती हैं जो घनत्व के व्युत्क्रमानुपाती होती हैं।
परिवर्तन सामान्यतः प्रक्षेपण (गणित) या कोडबुक का उपयोग करके किया जाता है। कुछ स्थितियों में, कोडबुक का उपयोग आउटपुट के रूप में उपसर्ग कोडित वेरिएबल -लंबाई एन्कोडेड मान उत्पन्न करके, उसी चरण में असतत मान को एन्ट्रापी कोड करने के लिए भी किया जा सकता है।
अलग-अलग आयाम स्तरों के सेट को प्रत्येक प्रतिरूप को अलग से परिमाणित करने के अतिरिक्त संयुक्त रूप से परिमाणित किया जाता है। k-आयामी वेक्टर पर विचार करें इसे n < k के साथ n-आयामी वेक्टर के सेट से निकटतम मिलान वेक्टर चुनकर संपीड़ित किया जाता है।
n-आयामी वेक्टर के सभी संभावित संयोजन उस वेक्टर समष्टि का निर्माण करें जिससे सभी परिमाणित वेक्टर संबंधित होंते है।
कोडबुक में परिमाणित मानों के अतिरिक्त केवल कोडवर्ड का सूचकांक भेजा जाता है। इससे समष्टि की बचत होती है और अधिक संपीड़न प्राप्त होता है।
एमपीईजी-4 (वीक्यूएफ) में ट्विनवीक्यू या ट्विनवीक्यू समय डोमेन भारित इंटरलीव्ड वेक्टर परिमाणीकरण से संबंधित एमपीईजी-4 मानक का भाग है।
वेक्टर परिमाणीकरण पर आधारित वीडियो कोडेक्स
- बैंक वीडियो[2]
- सिनेपैक
- डाला परिवर्तन-आधारित है किन्तु रूपांतरित गुणांकों पर पिरामिड वेक्टर परिमाणीकरण का उपयोग करता है [3]
- डिजिटल वीडियो इंटरैक्टिव: प्रोडक्शन-लेवल वीडियो और रियल-टाइम वीडियो
- इण्डियो
- माइक्रोसॉफ्ट वीडियो 1
- क्विकटाइम या क्विकटाइम 1.x: एप्पल वीडियो (आरपीजेडए) और क्विकटाइम ग्राफ़िक्स कोडेक (एसएमसी)
- सोरेनसन कोडेक एसवीक्यू1 और एसवीक्यू3
- स्मैकर वीडियो
- वीक्यूए प्रारूप, कई खेलों में उपयोग किया जाता है
वेक्टर परिमाणीकरण पर आधारित वीडियो कोडेक्स के उपयोग में मोशन कंपंसेशन या ब्लॉक मोशन कंपंसेशन पूर्वानुमान के साथ ट्रांसफॉर्म कोडिंग या डिजिटल, जैसे k आधार पर अधिक गिरावट आई है। जिन्हें एमपीईजी मानकों में परिभाषित किया गया है, क्योंकि वेक्टर परिमाणीकरण की कम डिकोडिंग समष्टि कम प्रासंगिक हो गई है।
वेक्टर परिमाणीकरण पर आधारित ऑडियो कोडेक्स
- एएमआर-डब्ल्यूबी+
- सीईएलपी
- कोडेक 2
- डीटीएस सुसंगत ध्वनिकी
- जी.729
- आईएलबीसी
- ऑग वॉर्बिस [4]
- ओपस (कोडेक) ट्रांसफ़ॉर्म-आधारित है किन्तु रूपांतरित गुणांकों पर पिरामिड वेक्टर परिमाणीकरण का उपयोग करता है
- ट्विनवीक्यू
क्रम पहचान में उपयोग
VQ का उपयोग अस्सी के दशक में भाषण के लिए भी किया जाता था [5] और वक्ता पहचान का उपयोग किया जाता है [6] इस प्रकार वर्तमान में इसका उपयोग कुशल निकटतम नेबर खोज के लिए भी किया गया है [7] और ऑन-लाइन हस्ताक्षर पहचान [8] क्रम पहचान अनुप्रयोगों में, इस उपयोगकर्ता के ध्वनिक वेक्टर का उपयोग करके प्रत्येक वर्ग (प्रत्येक वर्ग बायोमेट्रिक अनुप्रयोगों में उपयोगकर्ता होता है) के लिए कोडबुक का निर्माण किया जाता है। इस प्रकार परीक्षण चरण में प्रशिक्षण चरण में प्राप्त कोडबुक के पूरे सेट के साथ परीक्षण सिग्नल के परिमाणीकरण विरूपण पर कार्य किया जाता है। इस प्रकार कोडबुक जो सबसे छोटी वेक्टर परिमाणीकरण विकृति प्रदान करती है, पहचाने गए उपयोगकर्ता को निरुपित करती है।
क्रम पहचान में वीक्यू का मुख्य लाभ इसका कम कम्प्यूटेशनल बोझ है जब इसकी तुलना गतिशील समय विरूपण (डीटीडब्ल्यू) और हिडेन मार्कोव मॉडल (एचएमएम) जैसी अन्य तकनीकों से की जाती है। डीटीडब्ल्यू और एचएमएम की तुलना में मुख्य दोष यह है कि यह संकेतों (भाषण, हस्ताक्षर इत्यादि) के अस्थायी विकास को ध्यान में नहीं रखता है क्योंकि सभी वेक्टर मिश्रित होते हैं। इस प्रकार इस समस्या को दूर करने के लिए बहु-खंड कोडबुक दृष्टिकोण प्रस्तावित किया गया है।[9] इस प्रकार बहु-खंड दृष्टिकोण में कई खंडों के साथ सिग्नल को मॉडलिंग करना सम्मिलित है (उदाहरण के लिए, प्रारंभिक भाग के लिए कोडबुक, केंद्र के लिए और और अंतिम भाग के लिए अंतिम कोडबुक)।
क्लस्टरिंग एल्गोरिदम के रूप में उपयोग करें
चूँकि VQ निकट के प्रतिरूपों के घनत्व बिंदुओं के रूप में सेंट्रोइड की खोज कर रहा है, इसे सीधे प्रोटोटाइप-आधारित क्लस्टरिंग विधि के रूप में भी उपयोग किया जा सकता है: प्रत्येक सेंट्रोइड को फिर प्रोटोटाइप के साथ जोड़ा जाता है। अपेक्षित चुकता परिमाणीकरण त्रुटि को कम करने का लक्ष्य रखकर [10] और रॉबिन्स-मोनरो नियमो को पूरा करते हुए घटते सीखने के लाभ को प्रस्तुत करते हुए थे, इस प्रकार ठोस किन्तु निश्चित संख्या में प्रोटोटाइप के साथ पूरे डेटा सेट पर कई पुनरावृत्तियों को वृद्धिशील विधि से k-मीन्स क्लस्टरिंग एल्गोरिदम के समाधान में परिवर्तित किया जाता है।
जनरेटिव एडवरसैरियल नेटवर्क (जीएएन)
VQ का उपयोग जेनरेटिव प्रतिकूल नेटवर्क के विभेदक में फीचर प्रतिनिधित्व परत को परिमाणित करने के लिए किया गया है। इस प्रकार फ़ीचर परिमाणीकरण (FQ) तकनीक अंतर्निहित फ़ीचर मिलान करती है।[11] यह जीएएन प्रशिक्षण में सुधार करता है, और विभिन्न लोकप्रिय जीएएन मॉडलों पर उत्तम प्रदर्शन प्रदान करता है: छवि निर्माण के लिए बिगगैन, फेस के संश्लेषण के लिए स्टाइलगैन, और बिना पर्यवेक्षित छवि-से-छवि अनुवाद के लिए U-GAT-IT। का उपयोग किया जाया है
यह भी देखें
- भाषण कोडिंग
- ऑग वॉर्बिस
- वोरोनोई आरेख
- दर-विरूपण फ़ंक्शन
- डेटा क्लस्टरिंग
- वेक्टर परिमाणीकरण सीखना
- सेंट्रोइडल वोरोनोई टेस्सेलेशन
- तंत्रिका गैस, वेक्टर परिमाणीकरण के लिए एक तंत्रिका नेटवर्क जैसी सिस्टम
- छवि विभाजन
- लॉयड का एल्गोरिदम
- लिंडे-बुज़ो-ग्रे एल्गोरिदम|लिंडे, बुज़ो, ग्रे एल्गोरिदम (एलबीजी)
- K- का अर्थ है क्लस्टरिंग
- ऑटोएन्कोडर
- ध्यान लगा के पढ़ना या सीखना
इस लेख का भाग मूल रूप से कंप्यूटिंग का निःशुल्क ऑनलाइन शब्दकोश की कंटेंट पर आधारित था और इसका उपयोग जीएफडीएल के तहत विकिपीडिया:फोल्डॉक लाइसेंस के साथ किया जाता है।
संदर्भ
- ↑ Dana H. Ballard (2000). प्राकृतिक संगणना का परिचय. MIT Press. p. 189. ISBN 978-0-262-02420-4.
- ↑ "Bink video". Book of Wisdom. 2009-12-27. Retrieved 2013-03-16.
- ↑ Valin, JM. (October 2012). वीडियो कोडिंग के लिए पिरामिड वेक्टर परिमाणीकरण. IETF. I-D draft-valin-videocodec-pvq-00. Retrieved 2013-12-17.
- ↑ "Vorbis I Specification". Xiph.org. 2007-03-09. Retrieved 2007-03-09.
- ↑ Burton, D. K.; Shore, J. E.; Buck, J. T. (1983). "वेक्टर परिमाणीकरण का उपयोग करके पृथक शब्द पहचान का सामान्यीकरण". IEEE International Conference on Acoustics Speech and Signal Processing ICASSP. 8: 1021–1024. doi:10.1109/ICASSP.1983.1171915.
- ↑ Soong, F.; A. Rosenberg; L. Rabiner; B. Juang (1985). "स्पीकर रिकग्निशन के लिए एक वेक्टर क्वांटिज़ेशन दृष्टिकोण". IEEE Proceedings International Conference on Acoustics, Speech and Signal Processing ICASSP. 1: 387–390. doi:10.1109/ICASSP.1985.1168412. S2CID 8970593.
- ↑ H. Jegou; M. Douze; C. Schmid (2011). "निकटतम पड़ोसी खोज के लिए उत्पाद परिमाणीकरण" (PDF). IEEE Transactions on Pattern Analysis and Machine Intelligence. 33 (1): 117–128. CiteSeerX 10.1.1.470.8573. doi:10.1109/TPAMI.2010.57. PMID 21088323. S2CID 5850884. Archived (PDF) from the original on 2011-12-17.
- ↑ Faundez-Zanuy, Marcos (2007). "VQ-DTW पर आधारित ऑफ़लाइन और ऑन-लाइन हस्ताक्षर पहचान". Pattern Recognition. 40 (3): 981–992. doi:10.1016/j.patcog.2006.06.007.
- ↑ Faundez-Zanuy, Marcos; Juan Manuel Pascual-Gaspar (2011). "मल्टी-सेक्शन वीक्यू पर आधारित कुशल ऑन-लाइन हस्ताक्षर पहचान". Pattern Analysis and Applications. 14 (1): 37–45. doi:10.1007/s10044-010-0176-8. S2CID 24868914.
- ↑ Gray, R.M. (1984). "वेक्टर परिमाणीकरण". IEEE ASSP Magazine. 1 (2): 4–29. doi:10.1109/massp.1984.1162229.
- ↑ Feature Quantization Improves GAN Training https://arxiv.org/abs/2004.02088