कारण मॉडल: Difference between revisions
No edit summary |
|||
(5 intermediate revisions by 3 users not shown) | |||
Line 157: | Line 157: | ||
:<math>A \rightarrow B \leftarrow C</math> | :<math>A \rightarrow B \leftarrow C</math> | ||
==== नोड प्रकार ==== | ==== नोड प्रकार ==== | ||
Line 247: | Line 247: | ||
एक करणीय प्रारूप में Y पर X के करणीय प्रभाव का विश्लेषण करने के लिए सभी कन्फ़ाउंडर चर को संबोधित किया जाना चाहिए । कन्फ़्यूडर के समुच्चय की पहचान करने के लिए, (1) एक्स और वाई के बीच प्रत्येक गैर-करणीय पथ को इस समुच्चय द्वारा अवरुद्ध किया जाना चाहिए; (2) किसी भी करणीय पथ को बाधित किए बिना; और (3) बिना कोई नकली रास्ता बनाए।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=158}} 158]}} | एक करणीय प्रारूप में Y पर X के करणीय प्रभाव का विश्लेषण करने के लिए सभी कन्फ़ाउंडर चर को संबोधित किया जाना चाहिए । कन्फ़्यूडर के समुच्चय की पहचान करने के लिए, (1) एक्स और वाई के बीच प्रत्येक गैर-करणीय पथ को इस समुच्चय द्वारा अवरुद्ध किया जाना चाहिए; (2) किसी भी करणीय पथ को बाधित किए बिना; और (3) बिना कोई नकली रास्ता बनाए।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=158}} 158]}} | ||
'''परिभाषा''': चर X से Y तक एक बैकडोर पथ को X से शुरू होने वाला कोई भी पथ कहा जाता है जिसमें X की ओर | '''परिभाषा''': चर X से Y तक एक बैकडोर पथ को X से शुरू होने वाला कोई भी पथ कहा जाता है जिसमें X की ओर संकेत करने वाला तीर हो। | ||
परिभाषा: एक प्रारूप में चर की एक क्रमबद्ध जोड़ी को देखते हुए, कन्फ़ाउंडर चर Z का एक समुच्चय पिछले दरवाजे के मानदंड को पूरा करता है यदि (1) कोई कन्फ़ाउंडर चर Z, X का वंशज नहीं है और (2) X और Y के बीच सभी बैकडोर पथ कन्फ़ाउंडर्स के समुच्चय द्वारा अवरुद्ध हैं। | परिभाषा: एक प्रारूप में चर की एक क्रमबद्ध जोड़ी को देखते हुए, कन्फ़ाउंडर चर Z का एक समुच्चय पिछले दरवाजे के मानदंड को पूरा करता है यदि (1) कोई कन्फ़ाउंडर चर Z, X का वंशज नहीं है और (2) X और Y के बीच सभी बैकडोर पथ कन्फ़ाउंडर्स के समुच्चय द्वारा अवरुद्ध हैं। | ||
Line 258: | Line 258: | ||
==== फ्रंटडोर समायोजन ==== | ==== फ्रंटडोर समायोजन ==== | ||
यदि अवरुद्ध पथ के सभी | यदि अवरुद्ध पथ के तत्व सभी अनुवेक्ष्य होते हैं, तो बैकडोर पथ की गणना संभव नहीं होती है,परंतु यदि <math>X\to Y</math> से सभी फॉरवर्ड पथ के तत्वों में ऐसे <math>z</math> होते हैं जिनसे कोई खुला पथ <math>z\to Y</math> जुड़ा नहीं होता, तो <math>Z</math>, सभी <math>z</math> का समुच्चय, <math>P(Y|do(X))</math> को माप सकता है। प्रभावी रूप से, कुछ स्थितियों में <math>Z</math> <math>X</math> के लिए प्रोक्सी के रूप में कार्य कर सकता है। | ||
परिभाषा: फ्रंटडोर पथ एक | परिभाषा: एक फ्रंटडोर पथ एक सीधा कारणीय पथ होता है जिसके लिए सभी <math>z\in Z</math> के लिए डेटा उपलब्ध होता है, <math>Z</math> सभी <math>X</math> से <math>Y</math> के लिए निर्देशित पथों को काटता है, <math>Z</math> से <math>Y</math> तक कोई अवरोधित पथ नहीं है, और <math>Z</math> से <math>Y</math> तक सभी बैकडोर पथ <math>X</math> द्वारा ब्लॉक होते हैं।<ref>{{Cite book|title=Causal Inference in Statistics: A Primer|isbn=978-1-119-18684-7|last1=Pearl|first1=Judea|last2=Glymour|first2=Madelyn|first3=Nicholas P|last3=Jewell|date=7 March 2016 }}</ref>निम्नलिखित फ्रंट-डोर पथ के साथ चर पर अनुकूलन द्वारा एकमुक्त अभिव्यक्ति के लिए अभिव्यक्ति में परिवर्तित करता है।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=226}} 226]}} | ||
निम्नलिखित फ्रंट-डोर पथ के साथ चर पर अनुकूलन | |||
:<math>P(Y|do(X)) = \textstyle \sum_{z} \left[\displaystyle P(Z=z|X) \textstyle \sum_{x} \displaystyle P(Y|X=x, Z=z) P(X=x)\right]</math> | :<math>P(Y|do(X)) = \textstyle \sum_{z} \left[\displaystyle P(Z=z|X) \textstyle \sum_{x} \displaystyle P(Y|X=x, Z=z) P(X=x)\right]</math> | ||
यह मानते हुए कि इन अवलोकनीय संभावनाओं के लिए डेटा उपलब्ध है, अंतिम संभाव्यता की गणना किसी प्रयोग के बिना, अन्य भ्रमित पथों के अस्तित्व की परवाह किए बिना और | यह मानते हुए कि इन अवलोकनीय संभावनाओं के लिए डेटा उपलब्ध है, अंतिम संभाव्यता की गणना किसी प्रयोग के बिना, अन्य भ्रमित पथों के अस्तित्व की परवाह किए बिना और फ्रंटडोर समायोजन के बिना की जा सकती है।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=226}} 226]}} | ||
==हस्तक्षेप == | ==हस्तक्षेप == | ||
Line 271: | Line 279: | ||
=== प्रश्न === | === प्रश्न === | ||
प्रश्न एक विशिष्ट प्रारूप पर आधारित प्रश्न पूछे जाते हैं। इनका उत्तर | प्रश्न एक विशिष्ट प्रारूप पर आधारित प्रश्न पूछे जाते हैं। इनका उत्तर सामान्यतः प्रयोग करके दिया जाता है। हस्तक्षेप एक प्रारूप में एक चर के मूल्य को तय करने और परिणाम का अवलोकन करने का रूप लेते हैं। गणितीय रूप से, ऐसे प्रश्न निम्न रूप लेते हैं :<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=8}} 8]}} | ||
:<math>P (\text{floss} \vline do(\text{toothpaste})) </math> | :<math>P (\text{floss} \vline do(\text{toothpaste})) </math> | ||
जहां do संचालक | जहां do संचालक इंगित करता है कि प्रयोग ने टूथपेस्ट की कीमत को स्पष्ट रूप से संशोधित किया है। आरेखित रूप से, यह किसी भी करणीय कारक को रोकता है जो अन्यथा उस चर को प्रभावित करेगा। आरेखीय रूप से, यह प्रयोगात्मक चर की ओर संकेत करने वाले सभी करणीय तीरों को मिटा देता है।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=40}} 40]}} | ||
अधिक जटिल प्रश्न संभव हैं, जिसमें | अधिक जटिल प्रश्न संभव हैं, जिसमें संचालक को कई चर पर लागू किया जाता है । | ||
===गणना करो === | ===गणना करो === | ||
डू कैलकुलस | डू कैलकुलस वह समुच्चय है जिसका उपयोग एक अभिव्यक्ति को दूसरे में परिवर्तित करने के लिए किया जा सकता है, मुख्य उद्देश्य उन अभिव्यक्तियों को परिवर्तित करना है जो डू संचालक को सम्मिलित करते हैं और जिनमें डू संचालक का उल्लेख नहीं होता है। डू संचालक केसम्मिलित होने के बिना विवेकशील डेटा से अभिव्यक्तियों का अनुमान लगाया जा सकता है, जिसमें प्रयोगात्मक हस्तक्षेप की जरूरत नहीं होती, जो कि महंगा, लंबा या नैतिक रूप से गलत उदाहरण के लिए, सब्जेक्ट्स से सिगरेट पीने को कहना हो सकता है। इसका उपयोग इस प्रणाली में प्रत्येक सत्य कथन प्राप्त करने के लिए किया जा सकता है।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=237}} 237]}} एक कलनविधि यह निर्धारित कर सकता है कि, किसी दिए गए प्रारूप के लिए, कोई समाधान समय जटिलता में गणना योग्य है या नहीं।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=238}} 238]}} | ||
==== नियम ==== | ==== नियम ==== | ||
कैलकुलस में | कैलकुलस में डू संचालक से जुड़े सशर्त संभाव्यता अभिव्यक्तियों के परिवर्तन के लिए तीन नियम सम्मिलित हैं। | ||
===== नियम 1 ===== | ===== नियम 1 ===== | ||
Line 304: | Line 312: | ||
उस स्थिति में जहां कोई करणीय पथ X और Y को नहीं जोड़ता है।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=234}} 234]}} {{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=235}} 235]}} | उस स्थिति में जहां कोई करणीय पथ X और Y को नहीं जोड़ता है।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=234}} 234]}} {{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=235}} 235]}} | ||
==== | ==== विस्तारण ==== | ||
नियमों का | नियमों का मतलब यह नहीं है कि किसी भी प्रश्न के डू ऑपरेटर हटा दिए जा सकते हैं। उन मामलों में, यह संभव हो सकता है कि एक ऐसा चर जिस पर हस्तक्षेप हो सकता है उदाहरण के लिए, आहार एक ऐसे चर की जगह पर प्रयोग किया जा सकता है जिस पर हस्तक्षेप नहीं हो सकता है उदाहरण के लिए, रक्त कोलेस्ट्रोल, जिसके बाद वे डू ऑपरेटर हटा दिए जा सकते हैं। उदाहरण: | ||
:<math>P(\text{Heart disease} |do(\text{blood cholesterol})) = P(\text{Heart disease}|do(\text{diet}))</math> | :<math>P(\text{Heart disease} |do(\text{blood cholesterol})) = P(\text{Heart disease}|do(\text{diet}))</math> | ||
Line 316: | Line 324: | ||
=== संभावित परिणाम === | === संभावित परिणाम === | ||
परिभाषा: एक चर Y के लिए संभावित परिणाम वह मान है जो Y ने व्यक्ति के लिए लिया | परिभाषा: एक चर Y के लिए संभावित परिणाम वह मान है जो Y ने व्यक्ति के लिए लिया होगायू, क्या एक्स को मान एक्स सौंपा गया था। गणितीय रूप से:<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=270}} 270]}} | ||
:<math>Y_{X = x}(u)</math> या <math>Y_x(u)</math>. | :<math>Y_{X = x}(u)</math> या <math>Y_x(u)</math>. | ||
Line 325: | Line 333: | ||
===[[कारण अनुमान|करणीय अनुमान]] === | ===[[कारण अनुमान|करणीय अनुमान]] === | ||
करणीय प्रारूप के संदर्भ में, संभावित परिणामों की व्याख्या सांख्यिकीय के अतिरिक्त | करणीय प्रारूप के संदर्भ में, संभावित परिणामों की व्याख्या सांख्यिकीय के अतिरिक्त करणीय के आधार पर की जाती है। | ||
कार्य-करणीय अनुमान का पहला नियम बताता है कि संभावित परिणाम | कार्य-करणीय अनुमान का पहला नियम बताता है कि संभावित परिणाम | ||
Line 337: | Line 345: | ||
=== प्रतितथ्यात्मक आचरण करना === | === प्रतितथ्यात्मक आचरण करना === | ||
करणीय प्रारूप का उपयोग करके प्रतितथ्यात्मक की जांच करने में तीन चरण सम्मिलित | करणीय प्रारूप का उपयोग करके प्रतितथ्यात्मक की जांच करने में तीन चरण सम्मिलित होते हैं।{{sfn|Pearl|2009|p=207}} प्रारूप संबंधों के स्वरूप, रैखिक या अन्यथा की परवाह किए बिना दृष्टिकोण मान्य है। जब प्रारूप संबंध पूरी तरह से निर्दिष्ट होते हैं, तो बिंदु मानों की गणना की जा सकती है। अन्य स्थितियों में एक संभाव्यता-अंतराल विवरण की गणना की जा सकती है, जैसे कि गैर-धूम्रपान करने वाले x में कैंसर की 10-20% संभावना होगी।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=279}} 279]}} | ||
प्रारूप दिया गया: | प्रारूप दिया गया: | ||
Line 346: | Line 354: | ||
==== अपहरण ==== | ==== अपहरण ==== | ||
यू का अनुमान लगाने के लिए [[अपहरणात्मक तर्क | यू का अनुमान लगाने के लिए [[अपहरणात्मक तर्क]] जो सबसे सरल/सबसे संभावित स्पष्टीकरण खोजने के लिए अवलोकन का उपयोग करता है को लागू करें, विशिष्ट अवलोकन पर न देखे गए चर के लिए प्रॉक्सी जो प्रतितथ्यात्मक का समर्थन करता है।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=278}} 278]}} प्रस्तावित साक्ष्य दिए जाने पर आपकी संभावना की गणना करें। | ||
==== अधिनियम ==== | ==== अधिनियम ==== | ||
किसी विशिष्ट अवलोकन के लिए, प्रतितथ्यात्मक (जैसे, m=0) स्थापित करने के लिए | किसी विशिष्ट अवलोकन के लिए, प्रतितथ्यात्मक (जैसे, m=0) स्थापित करने के लिए डू संचालक का उपयोग करें, तदनुसार समीकरणों को संशोधित करें।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=278}} 278]}} | ||
==== भविष्यवाणी ==== | ==== भविष्यवाणी ==== | ||
Line 360: | Line 368: | ||
प्रत्यक्ष और अप्रत्यक्ष (मध्यस्थ) करणीयों को केवल प्रतितथ्यात्मक आचरण के माध्यम से ही पहचाना जा सकता है।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=301}} 301]}} मध्यस्थता को समझने के लिए प्रत्यक्ष करणीय पर हस्तक्षेप करते समय मध्यस्थ को स्थिर रखने की आवश्यकता होती है। प्रारूप में | प्रत्यक्ष और अप्रत्यक्ष (मध्यस्थ) करणीयों को केवल प्रतितथ्यात्मक आचरण के माध्यम से ही पहचाना जा सकता है।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=301}} 301]}} मध्यस्थता को समझने के लिए प्रत्यक्ष करणीय पर हस्तक्षेप करते समय मध्यस्थ को स्थिर रखने की आवश्यकता होती है। प्रारूप में | ||
<math>Y \leftarrow M \leftarrow X \rightarrow Y </math> | <math>Y \leftarrow M \leftarrow X \rightarrow Y </math> | ||
M, Y पर X के प्रभाव की मध्यस्थता करता है, जबकि X का भी Y पर बिना मध्यस्थता के प्रभाव पड़ता है। इस प्रकार M को स्थिर रखा जाता है, जबकि डू (X) की गणना की जाती है। | |||
रैखिक प्रारूप के लिए, अप्रत्यक्ष प्रभाव की गणना एक मध्यस्थ मार्ग के साथ सभी पथ गुणांकों के उत्पाद को लेकर की जा सकती है। कुल अप्रत्यक्ष प्रभाव की गणना व्यक्तिगत अप्रत्यक्ष प्रभावों के योग से की जाती है। रैखिक प्रारूप के लिए मध्यस्थता का संकेत तब दिया जाता है जब मध्यस्थ को सम्मिलित | यदि मध्यस्थ और परिणाम भ्रमित हैं, तो मध्यस्थता भ्रांति में मध्यस्थ पर अनुकूलन सम्मिलित है, जैसा कि वे उपरोक्त प्रारूप में हैं। | ||
रैखिक प्रारूप के लिए, अप्रत्यक्ष प्रभाव की गणना एक मध्यस्थ मार्ग के साथ सभी पथ गुणांकों के उत्पाद को लेकर की जा सकती है। कुल अप्रत्यक्ष प्रभाव की गणना व्यक्तिगत अप्रत्यक्ष प्रभावों के योग से की जाती है। रैखिक प्रारूप के लिए मध्यस्थता का संकेत तब दिया जाता है जब मध्यस्थ को सम्मिलित किए बिना फिट किए गए समीकरण के गुणांक उस समीकरण से काफी भिन्न होते हैं जिसमें मध्यस्थ सम्मिलित होता है।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=324}} 324]}} | |||
==== सीधा प्रभाव ==== | ==== सीधा प्रभाव ==== | ||
ऐसे प्रारूप पर प्रयोगों में, नियंत्रित प्रत्यक्ष प्रभाव (सीडीई) की गणना मध्यस्थ एम ( | ऐसे प्रारूप पर प्रयोगों में, नियंत्रित प्रत्यक्ष प्रभाव (सीडीई) की गणना मध्यस्थ एम (डू (M = 0)) के मूल्य को मजबूर करके और X (डू X = 0), डू (X = 1),के प्रत्येक मान के लिए कुछ विषयों को यादृच्छिक रूप से निर्दिष्ट करके और Y के परिणामी मूल्यों को देखकर की जाती है।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=317}} 317]}} | ||
:<math>CDE(0) = P(Y=1|do(X=1), do(M=0)) - P(Y=1|do(X=0), do(M=0)) </math> | :<math>CDE(0) = P(Y=1|do(X=1), do(M=0)) - P(Y=1|do(X=0), do(M=0)) </math> | ||
मध्यस्थ के प्रत्येक मान की एक संगत | मध्यस्थ के प्रत्येक मान की एक संगत होती है। | ||
यद्यपि | यद्यपि, प्राकृतिक प्रत्यक्ष प्रभाव की गणना करना एक बेहतर प्रयोग है। यह X और Y के बीच के रिश्ते पर हस्तक्षेप करते समय X और एम के बीच के रिश्ते को अछूता छोड़कर निर्धारित किया गया प्रभाव है।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=318}} 318]}} | ||
:<math>NDE = P(Y_{M=M0}=1|do(X=1)) - P(Y_{M=M0}=1|do(X=0)) </math> | :<math>NDE = P(Y_{M=M0}=1|do(X=1)) - P(Y_{M=M0}=1|do(X=0)) </math> | ||
उदाहरण के लिए, हर दूसरे वर्ष से [[दंत स्वास्थिक]] विजिट ( | उदाहरण के लिए, हर दूसरे वर्ष से [[दंत स्वास्थिक]] विजिट (X) में वृद्धि के प्रत्यक्ष प्रभाव पर विचार करें, जो फ्लॉसिंग (M) को प्रोत्साहित करता है। मसूड़े (Y) स्वस्थ हो जाते हैं, या तो हाइजीनिस्ट या फ्लॉसिंग के करणीय होता है प्रयोग यह है कि स्वास्थ्य विशेषज्ञ की यात्रा को छोड़कर फ्लॉसिंग जारी रखी जाए। | ||
==== अप्रत्यक्ष प्रभाव ==== | ==== अप्रत्यक्ष प्रभाव ==== | ||
Line 383: | Line 392: | ||
Y पर X का अप्रत्यक्ष प्रभाव वह वृद्धि है जो हम Y में देखेंगे, जबकि X को स्थिर रखा जाएगा और M को उस मान तक बढ़ाया जाएगा जो M, X में एक इकाई वृद्धि के तहत प्राप्त करेगा।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=328}} 328]}} | Y पर X का अप्रत्यक्ष प्रभाव वह वृद्धि है जो हम Y में देखेंगे, जबकि X को स्थिर रखा जाएगा और M को उस मान तक बढ़ाया जाएगा जो M, X में एक इकाई वृद्धि के तहत प्राप्त करेगा।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=328}} 328]}} | ||
अप्रत्यक्ष प्रभावों को नियंत्रित नहीं किया जा सकता क्योंकि प्रत्यक्ष पथ को किसी अन्य चर स्थिरांक को पकड़कर अक्षम नहीं किया जा सकता है। प्राकृतिक अप्रत्यक्ष प्रभाव (एनआईई) फ्लॉसिंग ( | अप्रत्यक्ष प्रभावों को नियंत्रित नहीं किया जा सकता क्योंकि प्रत्यक्ष पथ को किसी अन्य चर स्थिरांक को पकड़कर अक्षम नहीं किया जा सकता है। प्राकृतिक अप्रत्यक्ष प्रभाव (एनआईई) फ्लॉसिंग (M) से मसूड़ों के स्वास्थ्य (Y) पर प्रभाव है। एनआईई की गणना हाइजिनिस्ट और हाइजीनिस्ट के बिना फ्लॉसिंग की संभावना के बीच अंतर के योग के रूप में की जाती है, या<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=321}} 321]}} | ||
:<math>NIE = \sum_m[P(M=m|X=1)-P(M=m|X=0)] x x P(Y=1|X=0,M=m) </math> | :<math>NIE = \sum_m[P(M=m|X=1)-P(M=m|X=0)] x x P(Y=1|X=0,M=m) </math> | ||
उपरोक्त एनडीई गणना में प्रतितथ्यात्मक सबस्क्रिप्ट सम्मिलित | उपरोक्त एनडीई गणना में प्रतितथ्यात्मक सबस्क्रिप्ट सम्मिलित हैं (<math>Y_{M=M0} </math>). अरेखीय प्रारूप के लिए, प्रतीत होता है स्पष्ट तुल्यता<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=322}} 322]}} | ||
:<math>\mathsf{Total \ effect = Direct \ effect + Indirect \ effect} </math> | :<math>\mathsf{Total \ effect = Direct \ effect + Indirect \ effect} </math> | ||
Line 398: | Line 407: | ||
करणीय प्रारूप डेटासमुच्चय में डेटा को एकीकृत करने के लिए एक वाहन प्रदान करते हैं, जिसे परिवहन के रूप में जाना जाता है, भले ही करणीय प्रारूप (और संबंधित डेटा) भिन्न हों। उदाहरण के लिए, सर्वेक्षण डेटा को यादृच्छिक, नियंत्रित परीक्षण डेटा के साथ विलय किया जा सकता है।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=352}} 352]}}परिवहन बाहरी वैधता के प्रश्न का समाधान प्रदान करता है, कि क्या एक अध्ययन को एक अलग संदर्भ में लागू किया जा सकता है। | करणीय प्रारूप डेटासमुच्चय में डेटा को एकीकृत करने के लिए एक वाहन प्रदान करते हैं, जिसे परिवहन के रूप में जाना जाता है, भले ही करणीय प्रारूप (और संबंधित डेटा) भिन्न हों। उदाहरण के लिए, सर्वेक्षण डेटा को यादृच्छिक, नियंत्रित परीक्षण डेटा के साथ विलय किया जा सकता है।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=352}} 352]}}परिवहन बाहरी वैधता के प्रश्न का समाधान प्रदान करता है, कि क्या एक अध्ययन को एक अलग संदर्भ में लागू किया जा सकता है। | ||
जहां दो प्रारूप सभी प्रासंगिक चर पर मेल खाते हैं और एक प्रारूप का डेटा निष्पक्ष माना जाता है, एक | जहां दो प्रारूप सभी प्रासंगिक चर पर मेल खाते हैं और एक प्रारूप का डेटा निष्पक्ष माना जाता है, एक जनसंख्या के डेटा का उपयोग दूसरे के बारे में निष्कर्ष निकालने के लिए किया जा सकता है। अन्य मामलों में, जहां डेटा को पक्षपाती माना जाता है, पुनर्भारित करने से डेटासमुच्चय को परिवहन की अनुमति मिल सकती है। तीसरे मामले में, अधूरे डेटासमुच्चय से निष्कर्ष निकाला जा सकता है। कुछ मामलों में, बिना मापी गई जनसंख्या के बारे में निष्कर्ष निकालने के लिए कई जनसंख्या के अध्ययन के डेटा को जोड़ा जा सकता है। कुछ स्थितियों में, कई अध्ययनों से अनुमान के संयोजन से निष्कर्ष की सटीकता बढ़ सकती है।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=355}} 355]}} | ||
डू-कैलकुलस परिवहन के लिए एक सामान्य मानदंड प्रदान करता है: एक लक्ष्य चर को डू-ऑपरेशंस की एक श्रृंखला के माध्यम से किसी अन्य अभिव्यक्ति में परिवर्तित किया जा सकता है जिसमें कोई अंतर-उत्पादक चर सम्मिलित | डू-कैलकुलस परिवहन के लिए एक सामान्य मानदंड प्रदान करता है: एक लक्ष्य चर को डू-ऑपरेशंस की एक श्रृंखला के माध्यम से किसी अन्य अभिव्यक्ति में परिवर्तित किया जा सकता है जिसमें कोई अंतर-उत्पादक चर सम्मिलित नहीं होता है ।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=355}} 355]}} एक समान नियम उन अध्ययनों पर लागू होता है जिनमें प्रासंगिक रूप से भिन्न प्रतिभागी होते हैं।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=356}} 356]}} | ||
== बायेसियन नेटवर्क == | == बायेसियन नेटवर्क == | ||
{{Main| | {{Main|मुख्य लेख: बायेसियन नेटवर्क}} | ||
किसी भी करणीय प्रारूप को बायेसियन नेटवर्क के रूप में कार्यान्वित किया जा सकता है। बायेसियन नेटवर्क का उपयोग किसी घटना की व्युत्क्रम संभावना प्रदान करने के लिए किया जा सकता | किसी भी करणीय प्रारूप को बायेसियन नेटवर्क के रूप में कार्यान्वित किया जा सकता है। बायेसियन नेटवर्क का उपयोग किसी घटना की व्युत्क्रम संभावना प्रदान करने के लिए किया जा सकता है। इसके लिए एक सशर्त संभाव्यता तालिका तैयार करने की आवश्यकता होती है, जो सभी संभावित इनपुट और परिणामों को उनकी संबंधित संभावनाओं के साथ दिखाती है।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=119}} 119]}} | ||
उदाहरण के लिए, रोग और परीक्षण | उदाहरण के लिए, रोग और परीक्षण के दो परिवर्तनीय प्रारूप को देखते हुए सशर्त संभाव्यता तालिका इस प्रकार बनती है:<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=117}} 117]}} | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+किसी दिए गए रोग के लिए सकारात्मक परीक्षण की संभावना | ||
! | ! | ||
!colspan="2"| | !colspan="2"|परीक्षण | ||
|- | |- | ||
! | !रोग | ||
! | !सकारात्मक | ||
! | !नकारात्मक | ||
|- | |- | ||
| | |नकारात्मक | ||
|12 | |12 | ||
Line 435: | Line 444: | ||
|- | |- | ||
!सकारात्मक | |||
|73 | |73 | ||
Line 444: | Line 453: | ||
इस तालिका के अनुसार, जब किसी मरीज को यह बीमारी नहीं होती है, तो सकारात्मक परीक्षण की संभावना 12% होती है। | इस तालिका के अनुसार, जब किसी मरीज को यह बीमारी नहीं होती है, तो सकारात्मक परीक्षण की संभावना 12% होती है। | ||
यद्यपि | यद्यपि यह छोटी समस्याओं के लिए सुव्यवस्थित है, जैसे-जैसे चरों की संख्या और उनसे जुड़ी अवस्थाएँ बढ़ती हैं, संभाव्यता तालिकातेजी से बढ़ती है।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=121}} 121]}} | ||
बायेसियन नेटवर्क का उपयोग वायरलेस डेटा त्रुटि सुधार और डीएनए विश्लेषण जैसे अनुप्रयोगों में व्यावसायिक रूप से किया जाता है।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=122}} 122]}} | बायेसियन नेटवर्क का उपयोग वायरलेस डेटा त्रुटि सुधार और डीएनए विश्लेषण जैसे अनुप्रयोगों में व्यावसायिक रूप से किया जाता है।<ref name=":1" />{{rp|[{{google books|plainurl=y|id=9H0dDQAAQBAJ|page=122}} 122]}} | ||
== अपरिवर्तनीय/संदर्भ == | == अपरिवर्तनीय/संदर्भ == | ||
एक अलग तत्वीकरण का अवधारणा कारणिता का अनुभवशीलता के अनुभवों के सन्दर्भ में शामिल होता है। हस्तलिखित अंकों की पहचान करने के मामले में, अंक का आकार अर्थ को नियंत्रित करता है, इसलिए आकार और अर्थ इनवेरिएंट होते हैं। आकार बदलने से अर्थ बदल जाता है। अन्य गुण जैसे, रंग ऐसा नहीं करते हैं। यह अपरिवर्तनीय भिन्न संदर्भों में उत्पन्न डेटा समुच्चय के संबंध में लागू होना चाहिए । संग्रहीत डेटा समुच्चय पर लर्निंग करने के अतिरिक्त, एक पर लर्निंग करने और दूसरे पर परीक्षण करने से अपरिवर्तनीय चर गुणों को अलग करने में मदद मिल सकती है।<ref>{{Cite web|url=https://www.technologyreview.com/s/613502/deep-learning-could-reveal-why-the-world-works-the-way-it-does/|title=गहन अध्ययन से पता चल सकता है कि दुनिया इस तरह क्यों काम करती है|last=Hao|first=Karen|date=May 8, 2019|website=MIT Technology Review|language=en-US|access-date=February 10, 2020}}</ref> | |||
Line 478: | Line 487: | ||
*<ref>{{Citation|publisher=ICLR|title=Learning Representations using Causal Invariance|date=February 2020 |url=https://www.facebook.com/iclr.cc/videos/534780673594799|language=en|access-date=2020-02-10}}</ref> | *<ref>{{Citation|publisher=ICLR|title=Learning Representations using Causal Invariance|date=February 2020 |url=https://www.facebook.com/iclr.cc/videos/534780673594799|language=en|access-date=2020-02-10}}</ref> | ||
{{DEFAULTSORT:Causal Model}} | {{DEFAULTSORT:Causal Model}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page|Causal Model]] | |||
[[Category:Articles with invalid date parameter in template|Causal Model]] | |||
[[Category: | [[Category:CS1 English-language sources (en)|Causal Model]] | ||
[[Category:Created On 24/07/2023]] | [[Category:CS1 errors|Causal Model]] | ||
[[Category:Citation Style 1 templates|M]] | |||
[[Category:Collapse templates|Causal Model]] | |||
[[Category:Created On 24/07/2023|Causal Model]] | |||
[[Category:Lua-based templates|Causal Model]] | |||
[[Category:Machine Translated Page|Causal Model]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Causal Model]] | |||
[[Category:Pages with script errors|Causal Model]] | |||
[[Category:Short description with empty Wikidata description|Causal Model]] | |||
[[Category:Sidebars with styles needing conversion|Causal Model]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready|Causal Model]] | |||
[[Category:Templates based on the Citation/CS1 Lua module|Causal Model]] | |||
[[Category:Templates generating COinS|Cite magazine]] | |||
[[Category:Templates generating microformats|Causal Model]] | |||
[[Category:Templates that add a tracking category|Causal Model]] | |||
[[Category:Templates that are not mobile friendly|Causal Model]] | |||
[[Category:Templates that generate short descriptions|Causal Model]] | |||
[[Category:Templates using TemplateData|Causal Model]] | |||
[[Category:Wikipedia fully protected templates|Cite magazine]] | |||
[[Category:Wikipedia metatemplates|Causal Model]] | |||
[[Category:करणीय संबंध|Causal Model]] | |||
[[Category:कारण आरेख|Causal Model]] | |||
[[Category:वैज्ञानिक मॉडल|Causal Model]] |
Latest revision as of 10:19, 11 August 2023
विज्ञान के दर्शन में, कारणीय प्रारूप या संरचनात्मक कारणीय प्रारूप एक अवधारणात्मक प्रारूप है जो किसी प्रणाली के कारणीय यंत्र का वर्णन करता है। कारणीय प्रारूप स्वतंत्र चर भविष्यवाणी करने के लिए स्पष्ट निर्धारण नियम प्रदान करके अध्ययन योजनाओं को सुधार कर सकता हैं। यह निर्धारण नियम तय करते हैं कि कौन से स्वतंत्र मानकों को सम्मिलित और नियंत्रित करने की आवश्यकता है।
वे यादृच्छिक नियंत्रित परीक्षण जैसे पारंपरिक अध्ययन की आवश्यकता के बिना उपस्थित अवलोकन संबंधी डेटा से कुछ प्रश्नों के उत्तर देने की अनुमति दे सकते हैं। कुछ पारंपरिक अध्ययन नैतिक या व्यावहारिक करणीयों से अनुपयुक्त हैं, जिसका अर्थ है कि करणीय प्रारूप के बिना, कुछ परिकल्पनाओं का परीक्षण नहीं किया जा सकता है।
करणीय प्रारूप बाह्य वैधता के प्रश्न में मदद कर सकते हैं करणीय प्रारूप कई अध्ययनों से डेटा को विलय करने की अनुमति दे सकते हैं उन प्रश्नों का उत्तर देने के लिए जिनका उत्तर किसी भी व्यक्तिगत डेटा समुच्चय द्वारा नहीं दिया जा सकता है।
करणीय प्रारूप का उपयोग विज्ञापन प्रसंस्करण, महामारी विज्ञान और लर्निंग में मिला है।[2]
परिभाषा
कारणीय मॉडलें गणितीय मॉडल होते हैं जो एक व्यक्तिगत प्रणाली या जनसंख्या के भीतर कारणीय संबंधों को प्रदर्शित करते हैं। इन्हें सांख्यिकीय डेटा से कारणीय संबंधों के बारे में निष्कर्ष निकालने में मदद करते हैं। ये हमें कारण के ज्ञान के बारे में काफी कुछ सिखा सकते हैं, और कारणीयता और प्रायभाविकता के बीच संबंध के बारे में भी। इन्हें तर्क के विषयों के लिए भी लागू किया गया है, जैसे पराकृतिय लक्षणों की तार्किकता, निर्णय सिद्धांत, और वास्तविक कारण के विश्लेषण के बारे में।.[3]
— स्टैनफोर्ड इनसाइक्लोपीडिया ऑफ फिलॉसफी
जुडिया पर्ल एक करणीय प्रारूप को एक आदेशित ट्रिपल के रूप में परिभाषित करता है , जहां यू बहिर्जात चर का एक समुच्चय है जिसका मान प्रारूप के बाहर के कारकों द्वारा निर्धारित किया जाता है; वी अंतर्जात चर का एक समुच्चय है जिसका मान प्रारूप के भीतर कारकों द्वारा निर्धारित किया जाता है; और ई संरचनात्मक समीकरण का एक समुच्चय है जो यू और वी में अन्य चर के मूल्यों के एक फलन के रूप में प्रत्येक अंतर्जात चर के मूल्य को व्यक्त करता है।[2]
इतिहास
अरस्तू ने भौतिक, औपचारिक, कुशल और अंतिम करणीयों सहित कार्य-करणीय की वर्गीकरण को परिभाषित किया। ह्यूम ने प्रतितथ्यात्मक सशर्त के पक्ष में अरस्तू की वर्गीकरण को खारिज कर दिया। एक बिंदु पर, उन्होंने इस बात से इनकार किया कि वस्तुओं में ऐसी शक्तियाँ होती हैं जो एक को करणीय और दूसरे को प्रभाव बनाती हैं। बाद में उन्होंने अपनाया कि यदि पहली वस्तु नहीं थी, तो दूसरी कभी अस्तित्व में नहीं थी।
19वीं सदी के अंत में, सांख्यिकी की शाखा का विकसित होना प्रारंभ हुआ। जीवविज्ञानिक अनुगमन, बायोलॉजिकल इनहेरिटेंस जैसे क्षेत्रों के लिए कारणीय नियमों को पहचानने के लिए वर्षों तक का प्रयास करने के बाद, फ्रांसिस गैल्टन ने माध्य की ओर प्रतिगमन की अवधारणा को प्रस्तुत किया, जो बाद में उन्हें गैर-कारणीय संबंध के अवधारणा तक ले गया। प्रत्यक्षवाद के रूप में, कार्ल पियर्सन ने साहचर्य के एक अप्रमाणित विशेष स्थिति के रूप में विज्ञान के अधिकांश भाग से कार्य-करणीय की धारणा को समाप्त कर दिया और साहचर्य गुणांक को साहचर्य के मीट्रिक के रूप में प्रस्तुत किया। उन्होंने लिखा, गति के करणीय के रूप में बल ठीक उसी तरह है जैसे विकास के करणीय के रूप में वृक्ष देवता और वह करणीय आधुनिक विज्ञान के गूढ़ रहस्यों के बीच केवल एक आकर्षण था। पियर्सन ने यूनिवर्सिटी कॉलेज लंदन में बॉयोमेट्रिक्स और बायोमेट्रिक्स लैब की स्थापना की, जो सांख्यिकी के क्षेत्र में विश्व में अग्रणी बन गई।[4]
1908 में जी. एच. हार्डी और विल्हेम वेनबर्ग ने मेंडेलियन वंशानुक्रम को पुनर्जीवित करके, हार्डी-वेनबर्ग सिद्धांत की समस्या को हल किया, जिसके करणीय गैल्टन ने कार्य-करणीय को त्याग दिया था।[4]
1921 में सीवल राइट के पैथ विश्लेषण ने कारणीय मॉडलिंग और कारणीय आरेखों के ऐतिहासिक अज्ञातजनक पूर्वज के रूप में बना। उन्होंने इस दृष्टिकोण को विकसित किया जब उन्हें सूअर के बाल पैटर्न पर अनुवांशिकता, विकास और पर्यावरण के प्रत्यायित्व के अलग-अलग प्रभावों को विश्लेषण करने का प्रयास कर रहे थे। उन्होंने इसके समर्थन में तब हेरेटिकल दावे को समझाया जिसके जरिए ये विश्लेषण सूअर के जन्म वजन, गर्भाशय के समय और बच्चों की संख्या के बीच संबंध को समझा सकते हैं। मुख्य आंकड़ेशीय सांख्यिकियों के इन विचारों के विपरीत विरोध ने इन्हें आगामी 40 वर्षों के लिए अनदेखा किया। इसके अतिरिक्त वैज्ञानिक लोग सहस्त्राधिकारी फिशर के कहने पर ध्यान देते थे। एक अपवाद बारबरा स्टोडर्ड बर्क्स था, एक छात्रा जिसने 1926 में पहली बार माध्यमिक प्रभाव को प्रतिनिधित्व करने के लिए पथ आरेखों का प्रयोग किया और दावा किया कि एक माध्यमिक को स्थिर रखने से त्रुटियाँ आती हैं। प्रायः उन्होंने पथ आरेखों का आविष्कार स्वतंत्र रूप से किया था।[4]: 304
1923 में, जॉर्ज नेमन ने संभावित परिणाम की अवधारणा प्रस्तुत की, परंतु 1990 तक उनके पेपर का पोलिश से अंग्रेजी में अनुवाद नहीं किया गया था।[4]: 271
1958 में डेविड कॉक्स ने चेतावनी दी थी कि एक चर Z के लिए नियंत्रण केवल तभी मान्य है जब यह स्वतंत्र चर से प्रभावित होने की अत्यधिक संभावना नहीं है।[4]: 154
1960 के दशक में, ओटिस डडली डंकन, ह्यूबर्ट एम. ब्लालॉक जूनियर, आर्थर गोल्डबर्गर और अन्य ने पथ विश्लेषण को पुनः खोजा। पथ आरेखों पर ब्लॉक के काम को पढ़ते समय, डंकन को बीस साल पहले विलियम फील्डिंग ओगबर्न का एक व्याख्यान याद आया जिसमें राइट के एक पेपर का उल्लेख किया गया था जिसमें बदले में बर्क्स का उल्लेख किया गया था।[4]: 308
समाजशास्त्रियों ने मूल रूप से करणीय प्रारूप को संरचनात्मक समीकरण प्रारूपिंग कहा था, परंतु एक बार जब यह एक रटी हुई विधि बन गई, तो इसने अपनी उपयोगिता खो दी, जिसके करणीय कुछ चिकित्सकों ने कार्य-करणीय के साथ किसी भी संबंध को अस्वीकार कर दिया। अर्थशास्त्रियों ने पथ विश्लेषण के बीजगणितीय भाग को अपनाया, इसे एक साथ समीकरण प्रारूपिंग कहा। यद्यपि , अर्थशास्त्री अभी भी अपने समीकरणों को करणीयात्मक अर्थ देने से बचते रहे।[4]
अपने पहले पेपर के साठ साल बाद, सैमुअल कार्लिन और अन्य की आलोचना के बाद, राइट ने एक टुकड़ा प्रकाशित किया, जिसमें इसे पुनरावर्तित गया था, जिसमें आपत्ति जताई गई थी कि यह केवल रैखिक संबंधों को संभालता है और डेटा की मजबूत, प्रारूप-मुक्त प्रस्तुतियाँ अधिक खुलासा करने वाली थीं।[4]
1973 में डेविड लुईस (दार्शनिक) ने सहसंबंध को परंतु-करणीय-करणीय से बदलने की वकालत की। उन्होंने मनुष्यों की वैकल्पिक दुनिया की कल्पना करने की क्षमता का उल्लेख किया जिसमें कोई करणीय घटित हुआ या नहीं हुआ, और जिसमें कोई प्रभाव उसके करणीय के बाद ही प्रकट हुआ।[4]: 266 1974 में डोनाल्ड रुबिन ने करणीयात्मक प्रश्न पूछने की भाषा के रूप में संभावित परिणामों की धारणा प्रस्तुत की।[4]: 269
1983 में नैन्सी कार्टराईट ने प्रस्तावित किया कि कोई भी कारक जो किसी प्रभाव के लिए प्रासंगिक रूप से प्रासंगिक है, उसे एकमात्र मार्गदर्शक के रूप में सरल संभाव्यता से आगे बढ़ते हुए वातानुकूलित किया जाना चाहिए।[4]: 48
1986 में बैरन और केनी ने रैखिक समीकरणों की एक प्रणाली में मध्यस्थता का पता लगाने और उसका मूल्यांकन करने के लिए सिद्धांत प्रस्तुत किए। 2014 तक उनका पेपर अब तक का 33वां सबसे अधिक उद्धृत किया गया पेपर था।[4]: 324 उस वर्ष सैंडर ग्रीनलैंड और जेम्स रॉबिन्स ने प्रतितथ्यात्मक पर विचार करके उलझन से निपटने के लिए विनिमयशीलता दृष्टिकोण की शुरुआत की। उन्होंने यह आकलन करने का प्रस्ताव रखा कि यदि उपचार समूह को उपचार नहीं मिला होता तो उनका क्या होता और उस परिणाम की तुलना नियंत्रण समूह से की जाती। यदि वे मेल खाते थे, तो संकरण को अनुपस्थित कहा जाता था।[4]: 154
कार्य-करणीय की सीढ़ी
पर्ल के करणीय मेटाप्रारूपिंग में तीन-स्तरीय अमूर्तता सम्मिलित है जिसे वह कार्य-करणीय की सीढ़ी कहते हैं। निम्नतम स्तर, एसोसिएशन सहसंबंध के रूप में व्यक्त इनपुट डेटा में नियमितता या पैटर्न की अनुभूति पर जोर देता है। मध्य स्तर, हस्तक्षेप (करना), जानबूझकर किए गए कार्यों के प्रभावों की भविष्यवाणी करता है, जिसे करणीय संबंधों के रूप में व्यक्त किया जाता है। उच्चतम स्तर, प्रतितथ्यात्मक सशर्त में दुनिया के सिद्धांत का निर्माण सम्मिलित है जो बताता है कि विशिष्ट कार्यों का विशिष्ट प्रभाव क्यों होता है और ऐसे कार्यों की अनुपस्थिति में क्या होता है।[4]
समिति
एक वस्तु दूसरी वस्तु से जुड़ी होती है यदि एक की अवलोकन करने से दूसरे की अवलोकन की संभावना बदल जाती है। उदाहरण: दांत मंजन खरीदने वाले ग्राहक डेंटल फ्लॉस भी खरीदने की संभावना अधिक होती है। गणितीय रूप से:
एक घटना के दो घटनाओं के संबंध की संभावना भी मापी जा सकती है, जैसे फ्लॉस और टूथपेस्ट दिए गए घटनाओं के संबंध की संभावना। संबंध का मापण दो घटनाओं के बीच संबंध की गणना करके भी किया जा सकता है। संबंधों का कारणांतरण के कोई प्रकार के कारणांतरण के प्रभाव नहीं होते हैं। एक घटना दूसरी की वजह सकती है, उलटे भी सच हो सकता है, या दोनों घटनाएं किसी तिसरी घटना के कारण हो सकती हैं।।[4]
हस्तक्षेप
यह स्तर घटनाओं के बीच विशिष्ट करणीय संबंधों पर जोर देता है। किसी घटना को प्रभावित करने वाली किसी क्रिया को प्रयोगात्मक रूप से निष्पादित करके कार्य-करणीय का मूल्यांकन किया जाता है। उदाहरण: टूथपेस्ट की कीमत दोगुनी होने के बाद, खरीदारी की नई संभावना क्या होगी? इतिहास की जांच करके करणीयता स्थापित नहीं की जा सकती क्योंकि मूल्य परिवर्तन किसी अन्य करणीय से हो सकता है जो स्वयं दूसरी घटना को प्रभावित कर सकता है। गणितीय रूप से:
एक संचालक कहां है जो प्रयोगात्मक हस्तक्षेप का संकेत देता है।[4]संचालक वांछित प्रभाव पैदा करने के लिए आवश्यक दुनिया में न्यूनतम परिवर्तन करने का संकेत देता है, प्रारूप पर एक मिनी-सर्जरी जिसमें वास्तविकता से जितना संभव हो उतना कम बदलाव होता है।[5]
प्रतितथ्यात्मक
उच्चतम स्तर, प्रतितथ्यात्मक, में पिछली घटना के वैकल्पिक संस्करण पर विचार करना सम्मिलित है, या एक ही प्रयोगात्मक इकाई के लिए विभिन्न परिस्थितियों में क्या होगा। उदाहरण के लिए, क्या संभावना है कि, यदि किसी स्टोर ने फ्लॉस की कीमत दोगुनी कर दी होती, तो भी टूथपेस्ट खरीदने वाला खरीदार इसे खरीद लेता?
प्रतितथ्यात्मक बातें किसी करणीय-करणीय संबंध के अस्तित्व का संकेत दे सकती हैं। ऐसे प्रारूप जो प्रतितथ्यात्मक उत्तर दे सकते हैं, सटीक हस्तक्षेप की अनुमति देते हैं जिनके परिणामों की भविष्यवाणी की जा सकती है। चरम सीमा पर, ऐसे प्रारूपों को भौतिक नियमों के रूप में स्वीकार किया जाता है जैसे कि भौतिकी के नियम, उदाहरण के लिए, जड़ता, जो कहता है कि यदि किसी स्थिर वस्तु पर बल नहीं लगाया जाता है, तो वह गति नहीं करेगी।[4]
करणीय-करणीय
कार्य-करणीय बनाम सहसंबंध
सांख्यिकी कई चरों के बीच संबंधों के विश्लेषण के इर्द-गिर्द घूमती है। परंपरागत रूप से, इन रिश्तों को सहसंबंध और निर्भरता के रूप में वर्णित किया जाता है, बिना किसी निहित करणीय संबंधों के संबंध। करणीय प्रारूप करणीय संबंधों की धारणा को जोड़कर इस ढांचे का विस्तार करने का प्रयास करते हैं, जिसमें एक चर में परिवर्तन दूसरों में परिवर्तन का करणीय बनता है।[2]
बीसवीं शताब्दी में कार्य-करणीय की परिभाषाएँ पूर्णतया संभावनाओं/सहयोगों पर निर्भर थीं। एक घटना () के बारे में कहा जाता था कि यह दूसरे का करणीय बनता है यदि इससे दूसरे की संभावना बढ़ जाती है तो गणितीय रूप से इसे इस प्रकार व्यक्त किया जाता है:
- .
ऐसी परिभाषाएँ अपर्याप्त हैं क्योंकि अन्य रिश्ते उदाहरण के लिए, एक सामान्य करणीय और शर्त को पूरा कर सकता है। करणीयता दूसरी सीढ़ी के चरण के लिए प्रासंगिक है। एसोसिएशन पहले कदम पर हैं और बाद वाले को केवल साक्ष्य प्रदान करते हैं।[4]
बाद की परिभाषा में पृष्ठभूमि कारकों पर अनुकूलन द्वारा इस अस्पष्टता को संबोधित करने का प्रयास किया गया। गणितीय रूप से:
- ,
यहाँ पृष्ठभूमि चर का समुच्चय है और एक विशिष्ट संदर्भ में उन चरों के मूल्यों का प्रतिनिधित्व करता है। यद्यपि, पृष्ठभूमि चर का आवश्यक समुच्चय अनिश्चित है (कई समुच्चय संभावना बढ़ा सकते हैं), जब तक संभावना ही एकमात्र मानदंड है.[4]
कार्य-करणीय को परिभाषित करने के अन्य प्रयासों में ग्रेंजर कार्य-करणीय सम्मिलित है, एक सांख्यिकीय परिकल्पना परीक्षण जो कार्य-करणीय का आकलन किसी अन्य समय श्रृंखला के पूर्व मूल्यों का उपयोग करके एक समय श्रृंखला के भविष्य के मूल्यों की भविष्यवाणी करने की क्षमता को मापकर किया जा सकता है।[4]
प्रकार
एक करणीय करणीयता आवश्यक और पर्याप्त करणी आवश्यक, पर्याप्त, अंशदायी या कुछ संयोजन हो सकता है।[6]
आवश्यक
यदि x को y का आवश्यक कारण होने के लिए, y की उपस्थिति को x के पूर्व में होने की संकेत करना चाहिए। यद्यपि, x की उपस्थिति यह नहीं सुझाती है कि y होगा। आवश्यक कारण को "बट-फॉर" कारण भी कहा जाता है, जैसे y न होता यदि x न होता।[4]: 261
पर्याप्त करणीय
यदि x y का पूर्ण कारण होने के लिए, x की उपस्थिति से y के भविष्य में होने की संकेत करना चाहिए। यद्यपि, दूसरे कारण z ने य को स्वतंत्र रूप से पैदा किया हो सकता है। इसलिए y की उपस्थिति x के पूर्व होने को आवश्यक नहीं करती है।[7]
अंशदायी करणीय
x के लिए y का अंशदायी करणीय होने के लिए, x की उपस्थिति से y की संभावना बढ़नी चाहिए। यदि संभावना 100% है, तो इसके अतिरिक्त x को पर्याप्त कहा जाता है। एक अंशदायी करणीय भी आवश्यक हो सकता है.[8]
प्रारूप
करणीय आरेख
करणीय आरेख एक निर्देशित ग्राफ है जो करणीय प्रारूप में चर के बीच कार्य-करणीय संबंध प्रदर्शित करता है। एक करणीय आरेख में चर का एक समुच्चय सम्मिलित होता है। प्रत्येक नोड एक तीर द्वारा एक या अधिक अन्य नोड्स से जुड़ा होता है जिस पर इसका करणीयात्मक प्रभाव होता है। एक तीर का सिरा कार्य-करणीय की दिशा को चित्रित करता है, उदाहरण के लिए, चर को जोड़ने वाला एक तीर और पर तीर के सिरे के साथ में परिवर्तन का संकेत देता है में परिवर्तन का करणीय बनता है पथ करणीय तीरों के बाद दो नोड्स के बीच आरेख का एक ट्रैवर्सल है।[4]
करणीय आरेखों में करणीय लूप आरेख, निर्देशित चक्रीय आरेख और इशिकावा आरेख सम्मिलित हैं।[4]
करणीय आरेख उन मात्रात्मक संभावनाओं से स्वतंत्र होते हैं जो उन्हें सूचित करते हैं। उन संभावनाओं में बदलाव उदाहरण के लिए, तकनीकी सुधार के करणीय, के लिए प्रारूप में बदलाव की आवश्यकता नहीं है।[4]
प्रारूप तत्व
करणीय प्रारूप में विशिष्ट गुणों वाले तत्वों के साथ औपचारिक संरचनाएं होती हैं।[4]
जंक्शन पैटर्न
तीन नोड्स के तीन प्रकार के कनेक्शन रैखिक श्रृंखला, शाखा कांटे और विलय कोलाइडर हैं।[4]
श्रृंखला
शृंखलाएँ एक सीधी रेखा संबंध है जिसमें तीर उस कारण से प्रभाव की ओर संकेत करते हैं। इस प्रारूप में, एक माध्यमिक है जो यह परिवर्तन का माध्यम बनता है जिसे अन्यथा ने पर होने वाले प्रभाव का मध्यस्थ बनाना होता।.[4]: 113
फोर्क्स
फोर्क्स में एक कारण के द्वारा एक से अधिक प्रभाव होते हैं। दो प्रभावों में एक सामान्य कारण होता है। अभिगमित संबंध अपने आप में और के बीच में होता है जो किसी विशेष मान के पर शर्त लगाने से समाप्त किया जा सकता है।[4]: 114
शर्त लगाने से का अर्थ दिया गया है "जबकि B दिया गया है" ।
एक फोर्क्स का विस्तार संकरण है:
इस तरह के प्रारूपों में, का एक सामान्य करणीय है जो और का सामान्य करणीय है इसलिए को "कनफाउंडर" कहा जाता है।[4]: 114
कोलाइडर
कॉलाइडर में, एक परिणाम को कई कारणों का प्रभाव होता है। पर शर्त लगाने से प्रायः और के बीच एक गैर-कारणीय नकारात्मक सम्बंध प्रकट होता है। इस नकारात्मक सम्बंध को कॉलाइडर बायस और "इक्स्प्लेन-अवे" प्रभाव कहा जाता है क्योंकि ने और के बीच संबंध को समझाया। इस सम्बंध को सकारात्मक भी माना जा सकता है जब यहां परिभाषित किया जाता है कि और दोनों के योगदान की आवश्यकता होती है को प्रभावित करने के लिए।
नोड प्रकार
मध्यस्थ
एक माध्यस्थ नोड अन्य कारणों के परिणाम पर प्रभाव डालता है[4]: 113 उदाहरण के लिए, उपरोक्त श्रृंखला उदाहरण में, एक मध्यस्थ है, क्योंकि यह परिणाम पर के पर प्रभाव को संशोधित करता है।
कन्फ़ाउंडर
एक कन्फ़ाउंडर नोड कई परिणामों को प्रभावित करता है, जिससे उनके बीच एक सकारात्मक सहसंबंध बनता है।[4]: 114
वाद्य चर
एक वाद्य चर अनुमान वह है जो:[4]: 246
- परिणाम का एक मार्ग है;
- करणीय चर के लिए कोई अन्य रास्ता नहीं है;
- परिणाम पर कोई सीधा प्रभाव नहीं पड़ता,
प्रतिगमन गुणांक किसी परिणाम पर एक वाद्य चर के करणीय प्रभाव के अनुमान के रूप में काम कर सकते हैं जब तक कि वह प्रभाव भ्रमित न हो। इस तरह, वाद्य चर, भ्रमित डेटा के बिना करणीय कारकों को निर्धारित करने की अनुमति देते हैं।[4]: 249
उदाहरण के लिए, प्रारूप दिया गया:
यह एक वाद्य चर है, क्योंकि इसमें परिणाम का एक मार्ग है और निराधार है, उदाहरण के लिए, द्वारा।
उपरोक्त उदाहरण में, यदि और बाइनरी मान लें, तो यह धारणा नहीं होता है उसे एकरसता कहते हैं.[4]: 253
तकनीक में सुधार एक उपकरण बनाना सम्मिलित है अन्य चर पर अनुकूलन द्वारा ब्लौक करने के लिए रास्ते उपकरण और कन्फ़ाउंडर के बीच और एक एकल उपकरण बनाने के लिए कई चर को संयोजित करना है। : 257
मेंडेलियन यादृच्छिकीकरण
मेंडेलियन रैन्डमाइजेशन की परिभाषा: मेंडेलियन रैन्डमाइजेशन में प्रमाणित की गई जीनों की मापी गई विविधता का उपयोग किया जाता है जिससे अध्ययनात्मक अध्ययनों में एक बदलने योग्य प्रतिसंपर्क पर रोग के कारणीय प्रभाव की जांच की जाती है।[9][10]
क्योंकि जीन जनजातियों में यादृच्छिक रूप से विविध होते हैं, इसलिए एक जीन की उपस्थिति आम तौर पर एक औद्योगिक चिह्नित चरण के रूप में मानी जाती है, जिससे कि अधिकांश स्थितियों में, कारणीयता को एक अध्ययनात्मक अध्ययन पर रिग्रेशन का उपयोग करके मापा जा सकता है।[4]: 255
एसोसिएशन
स्वतंत्रता की शर्तें
स्वतंत्रता की स्थितियाँ यह तय करने के लिए नियम हैं कि क्या दो चर एक दूसरे से स्वतंत्र हैं। चर स्वतंत्र होते हैं यदि एक का मान सीधे दूसरे के मान को प्रभावित नहीं करता है। एकाधिक करणीय प्रारूप स्वतंत्रता की स्थिति साझा कर सकते हैं। उदाहरण के लिए, प्रारूप
और
समान स्वतंत्रता की स्थितियाँ हैं, क्योंकि अनुकूलन चालू है पत्तियाँ और स्वतंत्र। यद्यपि, दोनों प्रारूपों का अर्थ समान नहीं है और इन्हें डेटा के आधार पर गलत ठहराया जा सकता है और अनुकूलन के बाद , तो दोनों प्रारूप गलत हैं। इसके विपरीत, डेटा यह नहीं दिखा सकता कि इन दोनों प्रारूपों में से कौन सा सही है, क्योंकि उनकी स्वतंत्रता की शर्तें समान हैं।
एक चर पर अनुकूलन काल्पनिक प्रयोगों के संचालन के लिए एक तंत्र है। एक चर पर अनुकूलन में वातानुकूलित चर के दिए गए मान के लिए अन्य चर के मूल्यों का विश्लेषण करना सम्मिलित है। पहले उदाहरण में, अनुकूलन चालू है तात्पर्य यह है कि किसी दिए गए मान के लिए अवलोकन के बीच कोई निर्भरता नहीं दिखानी चाहिए और . यदि ऐसी कोई निर्भरता उपस्थित है, तो प्रारूप गलत है। गैर-करणीय प्रारूप ऐसे भेद नहीं कर सकते, क्योंकि वे करणीय संबंधी दावे नहीं करते हैं।[4]: 129–130
कन्फ़ाउंडर/डीकॉनफ़ाउंडर
सहसंबंधी अध्ययन डिजाइन का एक अनिवार्य तत्व अध्ययन के तहत जनसांख्यिकी जैसे चर पर संभावित रूप से भ्रमित करने वाले प्रभावों की पहचान करना है। उन प्रभावों को ख़त्म करने के लिए इन चरों को नियंत्रित किया जाता है। यद्यपि, भ्रमित करने वाले चरों की सही सूची को प्राथमिकता से निर्धारित नहीं किया जा सकता है। इस प्रकार यह संभव है कि एक अध्ययन अप्रासंगिक चर या यहां तक कि अध्ययन के तहत चर को नियंत्रित कर सकता है।[4]: 139
कॉज़ल प्रारूप उपयुक्त भ्रमित करने वाले चर की पहचान करने के लिए एक मजबूत तकनीक प्रदान करते हैं। औपचारिक रूप से, Z एक कन्फ़ाउंडर है यदि Y, X से न गुजरने वाले पथों के माध्यम से Z के साथ जुड़ा हुआ है। इन्हें अक्सर अन्य अध्ययनों के लिए एकत्र किए गए डेटा का उपयोग करके निर्धारित किया जा सकता है। गणितीय रूप से, यदि
इससे पहले, कथित तौर पर कन्फ़ाउंडर की गलत परिभाषाओं में सम्मिलित हैं:[4]: 152
- "X और Y दोनों के साथ संबंधित होने वाला कोई भी चर" है।
- अनविधित (अनधिकृत) व्यक्तियों में Y Z के साथ जुड़ी हुई है।
- गैर-कॉलैप्सिबिलिटी: "क्रूड रिलेटिव रिस्क" और "संभावित कनफाउंडर के समायोजन के बाद के रिलेटिव रिस्क" के बीच एक अंतर।
- महामारी विज्ञान: बड़े पैमाने पर आबादी में X के साथ जुड़ा एक चर और X के संपर्क में नहीं आने वाले लोगों में Y के साथ जुड़ा हुआ है।
प्रारूप में यह देखते हुए उत्तरार्द्ध त्रुटिपूर्ण है:
Z परिभाषा से मेल खाता है, परंतु मध्यस्थ है, संस्थापक नहीं, और परिणाम को नियंत्रित करने का एक उदाहरण है।
प्रारूप में
परंपरागत रूप से, बी को एक कन्फ्यूडर माना जाता था, क्योंकि यह X और Y के साथ जुड़ा हुआ है, परंतु यह करणीय पथ पर नहीं है और न ही यह करणीय पथ पर किसी भी चीज़ का वंशज है। B के लिए नियंत्रण करने से यह कन्फ्यूडर बन जाता है। इसे एम-पूर्वाग्रह के रूप में जाना जाता है।[4]: 161
"बैकडोर समायोजन"
एक करणीय प्रारूप में Y पर X के करणीय प्रभाव का विश्लेषण करने के लिए सभी कन्फ़ाउंडर चर को संबोधित किया जाना चाहिए । कन्फ़्यूडर के समुच्चय की पहचान करने के लिए, (1) एक्स और वाई के बीच प्रत्येक गैर-करणीय पथ को इस समुच्चय द्वारा अवरुद्ध किया जाना चाहिए; (2) किसी भी करणीय पथ को बाधित किए बिना; और (3) बिना कोई नकली रास्ता बनाए।[4]: 158
परिभाषा: चर X से Y तक एक बैकडोर पथ को X से शुरू होने वाला कोई भी पथ कहा जाता है जिसमें X की ओर संकेत करने वाला तीर हो।
परिभाषा: एक प्रारूप में चर की एक क्रमबद्ध जोड़ी को देखते हुए, कन्फ़ाउंडर चर Z का एक समुच्चय पिछले दरवाजे के मानदंड को पूरा करता है यदि (1) कोई कन्फ़ाउंडर चर Z, X का वंशज नहीं है और (2) X और Y के बीच सभी बैकडोर पथ कन्फ़ाउंडर्स के समुच्चय द्वारा अवरुद्ध हैं।
यदि पिछले दरवाजे का मानदंड (X , Y) के लिए संतुष्ट है, तो X और Y को भ्रमित चर के समुच्चय द्वारा डीकॉन्फाउंड किया जाता है। कन्फ़्यूडर के अतिरिक्त किसी अन्य चर के लिए नियंत्रण करना आवश्यक नहीं है।[4]: 158 Y पर X के करणीय प्रभाव के विश्लेषण को ख़ारिज करने के लिए चर Z का एक समुच्चय खोजने के लिए बैकडोर मानदंड एक पर्याप्त परंतु आवश्यक शर्त नहीं है।
जब करणीय प्रारूप वास्तविकता का एक प्रशंसनीय प्रतिनिधित्व है और पिछले दरवाजे की कसौटी संतुष्ट है, तो आंशिक प्रतिगमन गुणांक का उपयोग पथ गुणांक के रूप में किया जा सकता है।[4]: 223 [11]
फ्रंटडोर समायोजन
यदि अवरुद्ध पथ के तत्व सभी अनुवेक्ष्य होते हैं, तो बैकडोर पथ की गणना संभव नहीं होती है,परंतु यदि से सभी फॉरवर्ड पथ के तत्वों में ऐसे होते हैं जिनसे कोई खुला पथ जुड़ा नहीं होता, तो , सभी का समुच्चय, को माप सकता है। प्रभावी रूप से, कुछ स्थितियों में के लिए प्रोक्सी के रूप में कार्य कर सकता है।
परिभाषा: एक फ्रंटडोर पथ एक सीधा कारणीय पथ होता है जिसके लिए सभी के लिए डेटा उपलब्ध होता है, सभी से के लिए निर्देशित पथों को काटता है, से तक कोई अवरोधित पथ नहीं है, और से तक सभी बैकडोर पथ द्वारा ब्लॉक होते हैं।[12]निम्नलिखित फ्रंट-डोर पथ के साथ चर पर अनुकूलन द्वारा एकमुक्त अभिव्यक्ति के लिए अभिव्यक्ति में परिवर्तित करता है।[4]: 226
यह मानते हुए कि इन अवलोकनीय संभावनाओं के लिए डेटा उपलब्ध है, अंतिम संभाव्यता की गणना किसी प्रयोग के बिना, अन्य भ्रमित पथों के अस्तित्व की परवाह किए बिना और फ्रंटडोर समायोजन के बिना की जा सकती है।[4]: 226
हस्तक्षेप
प्रश्न
प्रश्न एक विशिष्ट प्रारूप पर आधारित प्रश्न पूछे जाते हैं। इनका उत्तर सामान्यतः प्रयोग करके दिया जाता है। हस्तक्षेप एक प्रारूप में एक चर के मूल्य को तय करने और परिणाम का अवलोकन करने का रूप लेते हैं। गणितीय रूप से, ऐसे प्रश्न निम्न रूप लेते हैं :[4]: 8
जहां do संचालक इंगित करता है कि प्रयोग ने टूथपेस्ट की कीमत को स्पष्ट रूप से संशोधित किया है। आरेखित रूप से, यह किसी भी करणीय कारक को रोकता है जो अन्यथा उस चर को प्रभावित करेगा। आरेखीय रूप से, यह प्रयोगात्मक चर की ओर संकेत करने वाले सभी करणीय तीरों को मिटा देता है।[4]: 40
अधिक जटिल प्रश्न संभव हैं, जिसमें संचालक को कई चर पर लागू किया जाता है ।
गणना करो
डू कैलकुलस वह समुच्चय है जिसका उपयोग एक अभिव्यक्ति को दूसरे में परिवर्तित करने के लिए किया जा सकता है, मुख्य उद्देश्य उन अभिव्यक्तियों को परिवर्तित करना है जो डू संचालक को सम्मिलित करते हैं और जिनमें डू संचालक का उल्लेख नहीं होता है। डू संचालक केसम्मिलित होने के बिना विवेकशील डेटा से अभिव्यक्तियों का अनुमान लगाया जा सकता है, जिसमें प्रयोगात्मक हस्तक्षेप की जरूरत नहीं होती, जो कि महंगा, लंबा या नैतिक रूप से गलत उदाहरण के लिए, सब्जेक्ट्स से सिगरेट पीने को कहना हो सकता है। इसका उपयोग इस प्रणाली में प्रत्येक सत्य कथन प्राप्त करने के लिए किया जा सकता है।[4]: 237 एक कलनविधि यह निर्धारित कर सकता है कि, किसी दिए गए प्रारूप के लिए, कोई समाधान समय जटिलता में गणना योग्य है या नहीं।[4]: 238
नियम
कैलकुलस में डू संचालक से जुड़े सशर्त संभाव्यता अभिव्यक्तियों के परिवर्तन के लिए तीन नियम सम्मिलित हैं।
नियम 1
नियम 1 टिप्पणियों को जोड़ने या हटाने की अनुमति देता है।[4]: 235
उस स्थिति में जब चर समुच्चय Z, W से Y तक सभी पथों को अवरुद्ध कर देता है और X की ओर जाने वाले सभी तीर हटा दिए गए हैं।[4]: 234
नियम 2
नियम 2 किसी हस्तक्षेप को किसी अवलोकन से बदलने या इसके विपरीत की अनुमति देता है:[4]: 235
उस स्थिति में जब Z #डीकॉन्फाउंडिंग|बैक-डोर मानदंड को पूरा करता है।[4]: 234
नियम 3
नियम 3 हस्तक्षेपों को हटाने या जोड़ने की अनुमति देता है।[4]
उस स्थिति में जहां कोई करणीय पथ X और Y को नहीं जोड़ता है।[4]: 234 : 235
विस्तारण
नियमों का मतलब यह नहीं है कि किसी भी प्रश्न के डू ऑपरेटर हटा दिए जा सकते हैं। उन मामलों में, यह संभव हो सकता है कि एक ऐसा चर जिस पर हस्तक्षेप हो सकता है उदाहरण के लिए, आहार एक ऐसे चर की जगह पर प्रयोग किया जा सकता है जिस पर हस्तक्षेप नहीं हो सकता है उदाहरण के लिए, रक्त कोलेस्ट्रोल, जिसके बाद वे डू ऑपरेटर हटा दिए जा सकते हैं। उदाहरण:
प्रतितथ्यात्मक
प्रतितथ्यात्मक लोग उन संभावनाओं पर विचार करते हैं जो डेटा में नहीं पाई जाती हैं, जैसे कि क्या धूम्रपान न करने वाले को कैंसर हो सकता था यदि वह भारी धूम्रपान करने वाला होता। वे पर्ल की कार्य-करणीय सीढ़ी पर सबसे ऊंचे चरण हैं।
संभावित परिणाम
परिभाषा: एक चर Y के लिए संभावित परिणाम वह मान है जो Y ने व्यक्ति के लिए लिया होगायू, क्या एक्स को मान एक्स सौंपा गया था। गणितीय रूप से:[4]: 270
- या .
संभावित परिणाम को व्यक्ति के स्तर पर परिभाषित किया जाता है।[4]: 270
संभावित परिणामों के लिए पारंपरिक दृष्टिकोण प्रारूप-चालित नहीं बल्कि डेटा-आधारित है, जो करणीय संबंधों को सुलझाने की इसकी क्षमता को सीमित करता है। यह करणीयात्मक प्रश्नों को लुप्त डेटा की समस्या मानता है और यहां तक कि मानक परिदृश्यों के लिए भी गलत उत्तर देता है।[4]: 275
करणीय अनुमान
करणीय प्रारूप के संदर्भ में, संभावित परिणामों की व्याख्या सांख्यिकीय के अतिरिक्त करणीय के आधार पर की जाती है।
कार्य-करणीय अनुमान का पहला नियम बताता है कि संभावित परिणाम
करणीय प्रारूप एम को संशोधित करके (एक्स में तीर हटाकर) और कुछ एक्स के परिणाम की गणना करके गणना की जा सकती है। औपचारिक रूप से:[4]: 280
प्रतितथ्यात्मक आचरण करना
करणीय प्रारूप का उपयोग करके प्रतितथ्यात्मक की जांच करने में तीन चरण सम्मिलित होते हैं।[13] प्रारूप संबंधों के स्वरूप, रैखिक या अन्यथा की परवाह किए बिना दृष्टिकोण मान्य है। जब प्रारूप संबंध पूरी तरह से निर्दिष्ट होते हैं, तो बिंदु मानों की गणना की जा सकती है। अन्य स्थितियों में एक संभाव्यता-अंतराल विवरण की गणना की जा सकती है, जैसे कि गैर-धूम्रपान करने वाले x में कैंसर की 10-20% संभावना होगी।[4]: 279
प्रारूप दिया गया:
प्रतिगमन विश्लेषण या किसी अन्य तकनीक से प्राप्त ए और सी के मूल्यों की गणना के लिए समीकरणों को लागू किया जा सकता है, एक अवलोकन से ज्ञात मूल्यों को प्रतिस्थापित करना और अन्य चर (प्रतितथ्यात्मक) के मूल्य को ठीक करना।[4]: 278
अपहरण
यू का अनुमान लगाने के लिए अपहरणात्मक तर्क जो सबसे सरल/सबसे संभावित स्पष्टीकरण खोजने के लिए अवलोकन का उपयोग करता है को लागू करें, विशिष्ट अवलोकन पर न देखे गए चर के लिए प्रॉक्सी जो प्रतितथ्यात्मक का समर्थन करता है।[4]: 278 प्रस्तावित साक्ष्य दिए जाने पर आपकी संभावना की गणना करें।
अधिनियम
किसी विशिष्ट अवलोकन के लिए, प्रतितथ्यात्मक (जैसे, m=0) स्थापित करने के लिए डू संचालक का उपयोग करें, तदनुसार समीकरणों को संशोधित करें।[4]: 278
भविष्यवाणी
संशोधित समीकरणों का उपयोग करके आउटपुट (y) के मानों की गणना करें।[4]: 278
मध्यस्थता
प्रत्यक्ष और अप्रत्यक्ष (मध्यस्थ) करणीयों को केवल प्रतितथ्यात्मक आचरण के माध्यम से ही पहचाना जा सकता है।[4]: 301 मध्यस्थता को समझने के लिए प्रत्यक्ष करणीय पर हस्तक्षेप करते समय मध्यस्थ को स्थिर रखने की आवश्यकता होती है। प्रारूप में
M, Y पर X के प्रभाव की मध्यस्थता करता है, जबकि X का भी Y पर बिना मध्यस्थता के प्रभाव पड़ता है। इस प्रकार M को स्थिर रखा जाता है, जबकि डू (X) की गणना की जाती है।
यदि मध्यस्थ और परिणाम भ्रमित हैं, तो मध्यस्थता भ्रांति में मध्यस्थ पर अनुकूलन सम्मिलित है, जैसा कि वे उपरोक्त प्रारूप में हैं।
रैखिक प्रारूप के लिए, अप्रत्यक्ष प्रभाव की गणना एक मध्यस्थ मार्ग के साथ सभी पथ गुणांकों के उत्पाद को लेकर की जा सकती है। कुल अप्रत्यक्ष प्रभाव की गणना व्यक्तिगत अप्रत्यक्ष प्रभावों के योग से की जाती है। रैखिक प्रारूप के लिए मध्यस्थता का संकेत तब दिया जाता है जब मध्यस्थ को सम्मिलित किए बिना फिट किए गए समीकरण के गुणांक उस समीकरण से काफी भिन्न होते हैं जिसमें मध्यस्थ सम्मिलित होता है।[4]: 324
सीधा प्रभाव
ऐसे प्रारूप पर प्रयोगों में, नियंत्रित प्रत्यक्ष प्रभाव (सीडीई) की गणना मध्यस्थ एम (डू (M = 0)) के मूल्य को मजबूर करके और X (डू X = 0), डू (X = 1),के प्रत्येक मान के लिए कुछ विषयों को यादृच्छिक रूप से निर्दिष्ट करके और Y के परिणामी मूल्यों को देखकर की जाती है।[4]: 317
मध्यस्थ के प्रत्येक मान की एक संगत होती है।
यद्यपि, प्राकृतिक प्रत्यक्ष प्रभाव की गणना करना एक बेहतर प्रयोग है। यह X और Y के बीच के रिश्ते पर हस्तक्षेप करते समय X और एम के बीच के रिश्ते को अछूता छोड़कर निर्धारित किया गया प्रभाव है।[4]: 318
उदाहरण के लिए, हर दूसरे वर्ष से दंत स्वास्थिक विजिट (X) में वृद्धि के प्रत्यक्ष प्रभाव पर विचार करें, जो फ्लॉसिंग (M) को प्रोत्साहित करता है। मसूड़े (Y) स्वस्थ हो जाते हैं, या तो हाइजीनिस्ट या फ्लॉसिंग के करणीय होता है प्रयोग यह है कि स्वास्थ्य विशेषज्ञ की यात्रा को छोड़कर फ्लॉसिंग जारी रखी जाए।
अप्रत्यक्ष प्रभाव
Y पर X का अप्रत्यक्ष प्रभाव वह वृद्धि है जो हम Y में देखेंगे, जबकि X को स्थिर रखा जाएगा और M को उस मान तक बढ़ाया जाएगा जो M, X में एक इकाई वृद्धि के तहत प्राप्त करेगा।[4]: 328
अप्रत्यक्ष प्रभावों को नियंत्रित नहीं किया जा सकता क्योंकि प्रत्यक्ष पथ को किसी अन्य चर स्थिरांक को पकड़कर अक्षम नहीं किया जा सकता है। प्राकृतिक अप्रत्यक्ष प्रभाव (एनआईई) फ्लॉसिंग (M) से मसूड़ों के स्वास्थ्य (Y) पर प्रभाव है। एनआईई की गणना हाइजिनिस्ट और हाइजीनिस्ट के बिना फ्लॉसिंग की संभावना के बीच अंतर के योग के रूप में की जाती है, या[4]: 321
उपरोक्त एनडीई गणना में प्रतितथ्यात्मक सबस्क्रिप्ट सम्मिलित हैं (). अरेखीय प्रारूप के लिए, प्रतीत होता है स्पष्ट तुल्यता[4]: 322
थ्रेशोल्ड प्रभाव और बाइनरी मान जैसी विसंगतियों के करणीय लागू नहीं होता है। यद्यपि ,
सभी प्रारूप संबंधों (रैखिक और अरेखीय) के लिए काम करता है। यह एनडीई को हस्तक्षेप या प्रतितथ्यात्मक सबस्क्रिप्ट के उपयोग के बिना सीधे अवलोकन डेटा से गणना करने की अनुमति देता है।[4]: 326
परिवहन क्षमता
करणीय प्रारूप डेटासमुच्चय में डेटा को एकीकृत करने के लिए एक वाहन प्रदान करते हैं, जिसे परिवहन के रूप में जाना जाता है, भले ही करणीय प्रारूप (और संबंधित डेटा) भिन्न हों। उदाहरण के लिए, सर्वेक्षण डेटा को यादृच्छिक, नियंत्रित परीक्षण डेटा के साथ विलय किया जा सकता है।[4]: 352 परिवहन बाहरी वैधता के प्रश्न का समाधान प्रदान करता है, कि क्या एक अध्ययन को एक अलग संदर्भ में लागू किया जा सकता है।
जहां दो प्रारूप सभी प्रासंगिक चर पर मेल खाते हैं और एक प्रारूप का डेटा निष्पक्ष माना जाता है, एक जनसंख्या के डेटा का उपयोग दूसरे के बारे में निष्कर्ष निकालने के लिए किया जा सकता है। अन्य मामलों में, जहां डेटा को पक्षपाती माना जाता है, पुनर्भारित करने से डेटासमुच्चय को परिवहन की अनुमति मिल सकती है। तीसरे मामले में, अधूरे डेटासमुच्चय से निष्कर्ष निकाला जा सकता है। कुछ मामलों में, बिना मापी गई जनसंख्या के बारे में निष्कर्ष निकालने के लिए कई जनसंख्या के अध्ययन के डेटा को जोड़ा जा सकता है। कुछ स्थितियों में, कई अध्ययनों से अनुमान के संयोजन से निष्कर्ष की सटीकता बढ़ सकती है।[4]: 355
डू-कैलकुलस परिवहन के लिए एक सामान्य मानदंड प्रदान करता है: एक लक्ष्य चर को डू-ऑपरेशंस की एक श्रृंखला के माध्यम से किसी अन्य अभिव्यक्ति में परिवर्तित किया जा सकता है जिसमें कोई अंतर-उत्पादक चर सम्मिलित नहीं होता है ।[4]: 355 एक समान नियम उन अध्ययनों पर लागू होता है जिनमें प्रासंगिक रूप से भिन्न प्रतिभागी होते हैं।[4]: 356
बायेसियन नेटवर्क
किसी भी करणीय प्रारूप को बायेसियन नेटवर्क के रूप में कार्यान्वित किया जा सकता है। बायेसियन नेटवर्क का उपयोग किसी घटना की व्युत्क्रम संभावना प्रदान करने के लिए किया जा सकता है। इसके लिए एक सशर्त संभाव्यता तालिका तैयार करने की आवश्यकता होती है, जो सभी संभावित इनपुट और परिणामों को उनकी संबंधित संभावनाओं के साथ दिखाती है।[4]: 119
उदाहरण के लिए, रोग और परीक्षण के दो परिवर्तनीय प्रारूप को देखते हुए सशर्त संभाव्यता तालिका इस प्रकार बनती है:[4]: 117
परीक्षण | ||
---|---|---|
रोग | सकारात्मक | नकारात्मक |
नकारात्मक | 12 | 88 |
सकारात्मक | 73 | 27 |
इस तालिका के अनुसार, जब किसी मरीज को यह बीमारी नहीं होती है, तो सकारात्मक परीक्षण की संभावना 12% होती है।
यद्यपि यह छोटी समस्याओं के लिए सुव्यवस्थित है, जैसे-जैसे चरों की संख्या और उनसे जुड़ी अवस्थाएँ बढ़ती हैं, संभाव्यता तालिकातेजी से बढ़ती है।[4]: 121
बायेसियन नेटवर्क का उपयोग वायरलेस डेटा त्रुटि सुधार और डीएनए विश्लेषण जैसे अनुप्रयोगों में व्यावसायिक रूप से किया जाता है।[4]: 122
अपरिवर्तनीय/संदर्भ
एक अलग तत्वीकरण का अवधारणा कारणिता का अनुभवशीलता के अनुभवों के सन्दर्भ में शामिल होता है। हस्तलिखित अंकों की पहचान करने के मामले में, अंक का आकार अर्थ को नियंत्रित करता है, इसलिए आकार और अर्थ इनवेरिएंट होते हैं। आकार बदलने से अर्थ बदल जाता है। अन्य गुण जैसे, रंग ऐसा नहीं करते हैं। यह अपरिवर्तनीय भिन्न संदर्भों में उत्पन्न डेटा समुच्चय के संबंध में लागू होना चाहिए । संग्रहीत डेटा समुच्चय पर लर्निंग करने के अतिरिक्त, एक पर लर्निंग करने और दूसरे पर परीक्षण करने से अपरिवर्तनीय चर गुणों को अलग करने में मदद मिल सकती है।[14]
यह भी देखें
- बायेसियन नेटवर्क#कॉज़ल नेटवर्क - एक बायेसियन नेटवर्क जिसकी स्पष्ट आवश्यकता है कि संबंध करणीयात्मक हों
- संरचनात्मक समीकरण प्रारूपिंग - करणीय संबंधों के परीक्षण और अनुमान के लिए एक सांख्यिकीय तकनीक
- पथ विश्लेषण (सांख्यिकी)
- बायेसियन नेटवर्क
- करणीय मानचित्र
- गतिशील करणीय प्रारूपिंग
संदर्भ
- ↑ Karl Friston (Feb 2009). "कार्यात्मक चुंबकीय अनुनाद इमेजिंग में कारण मॉडलिंग और मस्तिष्क कनेक्टिविटी". PLOS Biology. 7 (2): e1000033. doi:10.1371/journal.pbio.1000033. PMC 2642881. PMID 19226186.
- ↑ 2.0 2.1 2.2 Pearl 2009.
- ↑ Hitchcock, Christopher (2018), "Causal Models", in Zalta, Edward N. (ed.), The Stanford Encyclopedia of Philosophy (Fall 2018 ed.), Metaphysics Research Lab, Stanford University, retrieved 2018-09-08
- ↑ 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 4.22 4.23 4.24 4.25 4.26 4.27 4.28 4.29 4.30 4.31 4.32 4.33 4.34 4.35 4.36 4.37 4.38 4.39 4.40 4.41 4.42 4.43 4.44 4.45 4.46 4.47 4.48 4.49 4.50 4.51 4.52 4.53 4.54 4.55 4.56 4.57 4.58 4.59 4.60 4.61 4.62 4.63 4.64 4.65 4.66 4.67 4.68 4.69 4.70 4.71 4.72 4.73 4.74 4.75 4.76 4.77 4.78 4.79 4.80 Pearl, Judea; Mackenzie, Dana (2018-05-15). The Book of Why: The New Science of Cause and Effect (in English). Basic Books. ISBN 9780465097616.
- ↑ Pearl, Judea (29 Oct 2019). "कारणात्मक एवं प्रतितथ्यात्मक अनुमान" (PDF). Retrieved 14 December 2020.
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ Epp, Susanna S. (2004). अनुप्रयोगों के साथ पृथक गणित (in English). Thomson-Brooks/Cole. pp. 25–26. ISBN 9780534359454.
- ↑ "कारणात्मक तर्क". www.istarassessment.org. Retrieved 2 March 2016.
- ↑ Riegelman, R. (1979). "Contributory cause: Unnecessary and insufficient". Postgraduate Medicine. 66 (2): 177–179. doi:10.1080/00325481.1979.11715231. PMID 450828.
- ↑ Katan MB (March 1986). "एपोलिपोप्रोटीन ई आइसोफॉर्म, सीरम कोलेस्ट्रॉल, और कैंसर". Lancet. 1 (8479): 507–8. doi:10.1016/s0140-6736(86)92972-7. PMID 2869248. S2CID 38327985.
- ↑ Smith, George Davey; Ebrahim, Shah (2008). Mendelian Randomization: Genetic Variants as Instruments for Strengthening Causal Inference in Observational Studies (in English). National Academies Press (US).
- ↑ Pearl 2009, chapter 3-3 Controlling Confounding Bias.
- ↑ Pearl, Judea; Glymour, Madelyn; Jewell, Nicholas P (7 March 2016). Causal Inference in Statistics: A Primer. ISBN 978-1-119-18684-7.
- ↑ Pearl 2009, p. 207.
- ↑ Hao, Karen (May 8, 2019). "गहन अध्ययन से पता चल सकता है कि दुनिया इस तरह क्यों काम करती है". MIT Technology Review (in English). Retrieved February 10, 2020.
स्रोत
- Pearl, Judea (2009-09-14). करणीय संबंध (in English). Cambridge University Press. ISBN 9781139643986.
बाहरी संबंध
- Pearl, Judea (2010-02-26). "An Introduction to Causal Inference". The International Journal of Biostatistics. 6 (2): Article 7. doi:10.2202/1557-4679.1203. ISSN 1557-4679. PMC 2836213. PMID 20305706.
- Causal modeling at PhilPapers
- Falk, Dan (2019-03-17). "AI Algorithms Are Now Shockingly Good at Doing Science". Wired. ISSN 1059-1028. Retrieved 2019-03-20.
- Maudlin, Tim (2019-08-30). "The Why of the World". Boston Review (in English). Retrieved 2019-09-09.
- Hartnett, Kevin (15 May 2018). "To Build Truly Intelligent Machines, Teach Them Cause and Effect". Quanta Magazine. Retrieved 2019-09-19.
- [1]
- ↑ Learning Representations using Causal Invariance (in English), ICLR, February 2020, retrieved 2020-02-10