डिरिचलेट सीमा स्थिति: Difference between revisions
No edit summary |
No edit summary |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 23: | Line 23: | ||
उदाहरण के लिए, निम्नलिखित को डिरिचलेट सीमा शर्तें माना जाएगा: | उदाहरण के लिए, निम्नलिखित को डिरिचलेट सीमा शर्तें माना जाएगा: | ||
* [[मैकेनिकल इंजीनियरिंग]] और [[ असैनिक अभियंत्रण | | *[[मैकेनिकल इंजीनियरिंग]] और [[ असैनिक अभियंत्रण |सिविल इंजीनियरिंग]] (यूलर-बर्नौली बीम सिद्धांत) में, जहां बीम का सिरा अंतरिक्ष में निश्चित स्थान पर रखा जाता है। | ||
* ऊष्मा स्थानांतरण में, जहां सतह को निश्चित तापमान पर रखा जाता है। | * ऊष्मा स्थानांतरण में, जहां सतह को निश्चित तापमान पर रखा जाता है। | ||
* [[ इलेक्ट्रोस्टाटिक्स | इलेक्ट्रोस्टाटिक्स]] में, जहां | * [[ इलेक्ट्रोस्टाटिक्स |इलेक्ट्रोस्टाटिक्स]] में, जहां परिपथ का नोड निश्चित वोल्टेज पर रखा जाता है। | ||
* द्रव गतिकी में, चिपचिपे तरल पदार्थों के लिए [[नो-स्लिप स्थिति]] बताती है कि ठोस सीमा पर, तरल पदार्थ की सीमा के सापेक्ष शून्य वेग होगा। | * द्रव गतिकी में, चिपचिपे तरल पदार्थों के लिए [[नो-स्लिप स्थिति]] बताती है कि ठोस सीमा पर, तरल पदार्थ की सीमा के सापेक्ष शून्य वेग होगा। | ||
Line 41: | Line 41: | ||
{{Reflist}} | {{Reflist}} | ||
{{ | {{DEFAULTSORT:Dirichlet Boundary Condition}} | ||
[[Category:Created On 24/07/2023|Dirichlet Boundary Condition]] | |||
[[Category:Lua-based templates|Dirichlet Boundary Condition]] | |||
[[Category:Machine Translated Page|Dirichlet Boundary Condition]] | |||
[[Category:Pages with script errors|Dirichlet Boundary Condition]] | |||
[[Category: | [[Category:Short description with empty Wikidata description|Dirichlet Boundary Condition]] | ||
[[Category: | [[Category:Templates Vigyan Ready|Dirichlet Boundary Condition]] | ||
[[Category:Templates that add a tracking category|Dirichlet Boundary Condition]] | |||
[[Category:Templates that generate short descriptions|Dirichlet Boundary Condition]] | |||
[[Category:Templates using TemplateData|Dirichlet Boundary Condition]] | |||
[[Category:सीमा की स्थिति|Dirichlet Boundary Condition]] |
Latest revision as of 11:32, 11 August 2023
विभेदक समीकरणों के गणितीय अध्ययन में, डिरिचलेट (या प्रथम-प्रकार) सीमा स्थिति एक प्रकार की सीमा स्थिति है, जिसका नाम पीटर गुस्ताव लेज्यून डिरिचलेट (1805-1859) के नाम पर रखा गया है।[1] जब साधारण अंतर समीकरण या आंशिक अंतर समीकरण पर लगाया जाता है, तो यह उन मानों को निर्दिष्ट करता है जिन्हें एक समाधान को डोमेन की सीमा (टोपोलॉजी) के साथ ले जाने की आवश्यकता होती है।
परिमित तत्व विधि (एफईएम) विश्लेषण में, आवश्यक या डिरिचलेट सीमा स्थिति को एक अंतर समीकरण के भारित-अभिन्न रूप से परिभाषित किया जाता है।[2] सीमा अभिव्यक्ति में दिखाई देने वाले वेट फलन w के समान रूप में आश्रित अज्ञात u को प्राथमिक चर कहा जाता है, और इसका विनिर्देश आवश्यक या डिरिचलेट सीमा स्थिति का गठन करता है।
ऐसे समीकरणों का समाधान खोजने के प्रश्न को डिरिक्लेट समस्या के रूप में जाना जाता है। व्यावहारिक विज्ञान में, डिरिचलेट सीमा स्थिति को 'निश्चित सीमा स्थिति' के रूप में भी संदर्भित किया जा सकता है।
उदाहरण
ओडीई
उदाहरण के लिए, साधारण अंतर समीकरण के लिए,
पीडीई
उदाहरण के लिए, आंशिक अंतर समीकरण के लिए,
अनुप्रयोग
उदाहरण के लिए, निम्नलिखित को डिरिचलेट सीमा शर्तें माना जाएगा:
- मैकेनिकल इंजीनियरिंग और सिविल इंजीनियरिंग (यूलर-बर्नौली बीम सिद्धांत) में, जहां बीम का सिरा अंतरिक्ष में निश्चित स्थान पर रखा जाता है।
- ऊष्मा स्थानांतरण में, जहां सतह को निश्चित तापमान पर रखा जाता है।
- इलेक्ट्रोस्टाटिक्स में, जहां परिपथ का नोड निश्चित वोल्टेज पर रखा जाता है।
- द्रव गतिकी में, चिपचिपे तरल पदार्थों के लिए नो-स्लिप स्थिति बताती है कि ठोस सीमा पर, तरल पदार्थ की सीमा के सापेक्ष शून्य वेग होगा।
अन्य सीमा शर्तें
कॉची सीमा स्थिति और मिश्रित सीमा स्थिति सहित कई अन्य सीमा स्थितियाँ संभव हैं। उत्तरार्द्ध डिरिचलेट और न्यूमैन सीमा स्थिति स्थितियों का संयोजन है।
यह भी देखें
- न्यूमैन सीमा स्थिति
- रॉबिन सीमा स्थिति
- द्रव गतिकी में सीमा स्थितियाँ
संदर्भ
- ↑ Cheng, A.; Cheng, D. T. (2005). "सीमा तत्व विधि की विरासत और प्रारंभिक इतिहास". Engineering Analysis with Boundary Elements. 29 (3): 268–302. doi:10.1016/j.enganabound.2004.12.001.
- ↑ Reddy, J. N. (2009). "Second order differential equations in one dimension: Finite element models". परिमित तत्व विधि का परिचय (3rd ed.). Boston: McGraw-Hill. p. 110. ISBN 978-0-07-126761-8.