लॉगरैंक परीक्षण: Difference between revisions
(Created page with "{{Short description|Hypothesis test to compare the survival distributions of two samples}} लॉगरैंक परीक्षण, या लॉग-रैंक परी...") |
(→संदर्भ) |
||
(8 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Hypothesis test to compare the survival distributions of two samples}} | {{Short description|Hypothesis test to compare the survival distributions of two samples}} | ||
लॉगरैंक परीक्षण | '''लॉगरैंक परीक्षण''' दो प्रारूप के [[उत्तरजीविता विश्लेषण|अनुमानक विश्लेषण]] वितरण की तुलना करने के लिए [[परिकल्पना परीक्षण]] है। यह अपैरामीट्रिक परीक्षण है और जब डेटा उत्तम रूप से [[सेंसरिंग (सांख्यिकी)]] किया गया हो तो इसका उपयोग करना उचित है (तकनीकी रूप से, सेंसरिंग गैर-जानकारीपूर्ण होनी चाहिए)। नियंत्रण उपचार की तुलना में नए उपचार की प्रभावकारिता स्थापित करने के लिए नैदानिक परीक्षणों में इसका व्यापक रूप से उपयोग किया जाता है जब माप घटना का समय होता है (जैसे कि प्रारंभिक उपचार से हार्ट अटैक पड़ने तक का समय)। परीक्षण को कभी-कभी मेंटल-कॉक्स परीक्षण भी कहा जाता है। लॉगरैंक परीक्षण को समय-स्तरीकृत कोचरन-मेंटल-हेन्सज़ेल सांख्यिकी परीक्षण के रूप में भी देखा जा सकता है। | ||
परीक्षण सबसे | परीक्षण सबसे पूर्व [[नाथन मेंटल]] द्वारा प्रस्तावित की गई थी और[[ रिचर्ड द फिफ्थ ]]और [[जूलियन पेटो]] द्वारा इसे लॉगरैंक परीक्षण नाम दिया गया था।<ref name=Mantel1966>{{cite journal | ||
| author = Mantel, Nathan |author-link=Nathan Mantel | | author = Mantel, Nathan |author-link=Nathan Mantel | ||
| year = 1966 | | year = 1966 | ||
Line 30: | Line 30: | ||
}}</ref> | }}</ref> | ||
== परिभाषा == | |||
लॉगरैंक परीक्षण आँकड़ा प्रत्येक देखे गए घटना समय पर दो समूहों आशंकाप्रद फलनों के अनुमानों की तुलना करता है। इसका निर्माण प्रत्येक देखे गए घटना समय पर किसी समूह में देखी गई और अपेक्षित घटनाओं की संख्या की गणना करके और तत्पश्चात उन सभी समय बिंदुओं पर समग्र सारांश प्राप्त करने के लिए उन्हें जोड़कर किया जाता है जहां कोई घटना होती है। | |||
रोगियों के दो समूहों पर विचार करें, उदाहरण के लिए, उपचार के प्रति नियंत्रण होना। मान लीजिये <math>1, \ldots, J</math> किसी भी समूह में देखी गई घटनाओं का भिन्न-भिन्न समय होना चाहिए। मान लीजिये <math>N_{1,j}</math> और <math>N_{2,j}</math> अवधि के प्रारंभ में विषयों की संख्या (जिनका अभी तक कोई फलनक्रम नहीं हुआ है या सेंसर नहीं किया गया है)। <math>j</math> क्रमशः समूहों में मान लीजिये <math>O_{1,j}</math> और <math>O_{2,j}</math> समय-समय पर समूहों में देखी गई घटनाओं की संख्या प्रदर्शित करता है। अंत में, <math>j</math> द्वारा <math>N_j = N_{1,j} + N_{2,j}</math> और <math>O_j = O_{1,j} + O_{2,j}</math> परिभाषित किया गया है। | |||
[[शून्य परिकल्पना]] यह है कि दोनों समूहों के हजार्ड फलन <math> H_0 : h_1(t) = h_2(t)</math> समान हैं, अत:, <math>H_0</math> के अंतर्गत, प्रत्येक समूह के लिए <math>i = 1, 2</math>, <math>O_{i,j}</math> पैरामीटरों के साथ [[हाइपरज्यामितीय वितरण]] का अनुसरण करता है, <math>N_j</math>, <math>N_{i,j}</math>, <math>O_j</math> इस वितरण का अपेक्षित मान <math>E_{i,j} = O_j \frac{N_{i,j}}{N_j}</math> और विचरण <math>V_{i,j} = E_{i,j} \left( \frac{N_j - O_j}{N_j} \right) \left( \frac{N_j - N_{i,j}}{N_j - 1} \right)</math>है। | |||
सभी के लिए <math>j = 1, \ldots, J</math>, लॉगरैंक <math>O_{i,j}</math> आँकड़ा तुलना करता है इसकी अपेक्षा के अनुरूप <math>E_{i,j}</math> अंतर्गत <math>H_0</math> इसे इस प्रकार परिभाषित किया गया है: | |||
:<math>Z_i = \frac {\sum_{j=1}^J (O_{i,j} - E_{i,j})} {\sqrt {\sum_{j=1}^J V_{i,j}}}\ \xrightarrow{d}\ \mathcal N(0,1)</math> (<math>i=1</math> या <math>2</math>) | |||
केंद्रीय सीमा प्रमेय द्वारा, प्रत्येक का वितरण <math>Z_i</math> मानक सामान्य वितरण के रूप में अभिसरण करता है <math>J</math> अनंत तक पहुंचता है और इसलिए पर्याप्त रूप से बड़े मानक सामान्य वितरण द्वारा इसका अनुमान लगाया जा सकता है <math>J</math> इस मात्रा को पूर्व चार क्षणों के युग्मन के साथ पियर्सन प्रकार I या II (बीटा) वितरण के समान उत्तम अनुमान प्राप्त किया जा सकता है, जैसा कि पेटो और पेटो पेपर के परिशिष्ट B में वर्णित है।<ref name=Peto1972 /> | |||
== स्पर्शोन्मुख वितरण == | |||
यदि दोनों समूहों का अनुमानक फलन समान है, तो लॉगरैंक आँकड़ा लगभग मानक सामान्य है। स्तर <math>\alpha</math> यदि परीक्षण शून्य परिकल्पना को अस्वीकार कर देगा <math>Z>z_\alpha</math> जहाँ <math>z_\alpha</math> ऊपरी है <math>\alpha</math> मानक सामान्य वितरण की अल्फा मात्रा <math>\lambda</math>, हैं <math>n</math> कुल विषय, <math>d</math> यह संभावना है कि किसी भी समूह के किसी विषय में अंततः घटना होगी (जिससे <math>nd</math> विश्लेषण के समय घटनाओं की अपेक्षित संख्या है), और प्रत्येक समूह में यादृच्छिक विषयों का अनुपात 50% है, तो लॉगरैंक आँकड़ा माध्य के साथ लगभग सामान्य है <math> (\log{\lambda}) \, \sqrt {\frac {n \, d} {4}} </math> और विचरण 1<ref>{{cite journal | last=Schoenfeld | first=D | year=1981 | title=उत्तरजीविता वितरण की तुलना के लिए गैरपैरामीट्रिक परीक्षणों के स्पर्शोन्मुख गुण| journal=Biometrika | volume=68 | issue=1 | pages=316–319 | jstor=2335833 | doi=10.1093/biomet/68.1.316}}</ref> की ओर स्तर के लिए शक्ति के साथ <math>\alpha</math> परीक्षण <math>1-\beta</math>, आवश्यक प्रारूप आकार <math> n = \frac {4 \, (z_\alpha + z_\beta)^2 } {d\log^2{\lambda}}</math> है, जहाँ <math>z_\alpha</math> और <math>z_\beta</math> मानक सामान्य वितरण की मात्राएँ हैं। | |||
==स्पर्शोन्मुख वितरण== | |||
यदि दोनों समूहों का | |||
<math> n = \frac {4 \, (z_\alpha + z_\beta)^2 } {d\log^2{\lambda}}</math> | |||
==संयुक्त वितरण== | ==संयुक्त वितरण== | ||
कल्पना करना <math> Z_1 </math> और <math> Z_2 </math> एक ही अध्ययन में दो | कल्पना करना <math> Z_1 </math> और <math> Z_2 </math> एक ही अध्ययन में दो भिन्न-भिन्न समय बिंदुओं पर लॉगरैंक आँकड़े हैं (<math> Z_1 </math> पूर्व)। फिर से, मान लीजिये कि दोनों समूहों के फलन के समानुपाती हैं <math>\lambda</math>, <math> d_1 </math> और <math> d_2 </math> संभावनाएँ हैं कि विषय में दो समय बिंदुओं <math> d_1 \leq d_2 </math> पर घटना होगी, <math> Z_1 </math> और <math> Z_2 </math> माध्य के साथ लगभग द्विचर सामान्य हैं <math> \log{\lambda} \, \sqrt {\frac {n \, d_1} {4}} </math> और <math> \log{\lambda} \, \sqrt {\frac {n \, d_2} {4}} </math> और सहसंबंध <math>\sqrt {\frac {d_1} {d_2}} </math> जब [[डेटा निगरानी समिति|डेटा निरीक्षण समिति]] द्वारा अध्ययन के अंदर डेटा का कई बार परीक्षण किया जाता है, तो त्रुटि दर को उत्तम रूप से बनाए रखने के लिए संयुक्त वितरण से जुड़ी गणना की आवश्यकता होती है। | ||
==अन्य आँकड़ों से संबंध== | ==अन्य आँकड़ों से संबंध== | ||
*लॉगरैंक आँकड़ा दो समूहों की तुलना करने वाले आनुपातिक | *लॉगरैंक आँकड़ा दो समूहों की तुलना करने वाले कॉक्स आनुपातिक मॉडल के लिए [[स्कोर परीक्षण]] के रूप में प्राप्त किया जा सकता है। इसलिए यह उस मॉडल पर आधारित संभावना अनुपात परीक्षण आँकड़ों के समानुपाती है। | ||
*लॉगरैंक आँकड़ा आनुपातिक | *लॉगरैंक आँकड़ा आनुपातिक विकल्प के साथ वितरण के किसी भी सदस्य के लिए संभावना अनुपात परीक्षण आँकड़ा के समान है। उदाहरण के लिए, यदि दो प्रारूप के डेटा में घातीय वितरण है। | ||
* | *यदि <math> Z </math> लॉगरैंक आँकड़ा है, <math> D </math> देखी गई घटनाओं की संख्या है, और <math>\hat {\lambda} </math> के अनुपात का अनुमान <math> \log{\hat {\lambda}} \approx Z \, \sqrt{4/D} </math> है, यह संबंध तब उपयोगी होता है जब दो मात्राएँ ज्ञात हों (उदाहरण के लिए किसी प्रकाशित लेख से), किंतु तीसरी की आवश्यकता होती है। | ||
*जब टिप्पणियों को सेंसर किया जाता है तो लॉगरैंक आँकड़े का उपयोग किया जा सकता है। यदि डेटा में सेंसर की गई टिप्पणियाँ | *जब टिप्पणियों को सेंसर किया जाता है तो लॉगरैंक आँकड़े का उपयोग किया जा सकता है। यदि डेटा में सेंसर की गई टिप्पणियाँ उपस्थित नहीं हैं तो [[विलकॉक्सन रैंक योग परीक्षण]] उपयुक्त है। | ||
* लॉगरैंक आँकड़ा सभी गणनाओं को समान महत्व देता है, | * लॉगरैंक आँकड़ा सभी गणनाओं को समान महत्व देता है, संभवता कोई भी घटना घटित होने का समय कुछ भी हो। बड़ी संख्या में अवलोकन होने पर पेटो लॉगरैंक परीक्षण आँकड़े पूर्व की घटनाओं को अधिक महत्व देते हैं। | ||
==धारणाओं का परीक्षण करना== | |||
लॉगरैंक परीक्षण कपलान-मायर अनुमानक के समान मान्यताओं पर आधारित है- अर्थात्, सेंसरिंग पूर्वानुमान से असंबंधित है, अध्ययन में शीघ्र और देर से भर्ती किए गए विषयों के लिए जीवित रहने की संभावनाएं समान हैं, और घटनाएँ निर्दिष्ट समय पर हुईं। इन धारणाओं से विचलन सबसे अधिक महत्त्व रखते है यदि वे तुलना किए जा रहे समूहों में भिन्न-भिन्न विधियों से संतुष्ट हों, उदाहरण के लिए यदि समूह में दूसरे की तुलना में सेंसरिंग की अधिक संभावना है।<ref>{{Cite journal | year = 2004 | pages = 1073 | pmid = 15117797 | pmc = 403858 | doi = 10.1136/bmj.328.7447.1073 | issue = 7447 | volume = 328 | last2 = Altman | first1 = J. M. | first2 = D. G. | author-link1=Martin Bland| title = लॉगरैंक परीक्षण| journal = BMJ | last1 = Bland| author-link2=Doug Altman}}</ref> | |||
==यह भी देखें== | == यह भी देखें == | ||
{{Portal|Mathematics}} | {{Portal|Mathematics}} | ||
*कपलान-मेयर अनुमानक | *कपलान-मेयर अनुमानक | ||
*[[खतरे का अनुपात]] | *[[खतरे का अनुपात|हजार्ड का अनुपात]] | ||
==संदर्भ== | ==संदर्भ== | ||
{{Reflist}} | {{Reflist}} | ||
[[Category:Collapse templates|Logrank Test]] | |||
[[Category:Created On 07/07/2023|Logrank Test]] | |||
[[Category:Lua-based templates|Logrank Test]] | |||
[[Category:Machine Translated Page|Logrank Test]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Logrank Test]] | |||
[[Category: | [[Category:Pages with empty portal template|Logrank Test]] | ||
[[Category: | [[Category:Pages with script errors|Logrank Test]] | ||
[[Category:Portal-inline template with redlinked portals|Logrank Test]] | |||
[[Category:Portal templates with redlinked portals|Logrank Test]] | |||
[[Category:Short description with empty Wikidata description|Logrank Test]] | |||
[[Category:Sidebars with styles needing conversion|Logrank Test]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready|Logrank Test]] | |||
[[Category:Templates generating microformats|Logrank Test]] | |||
[[Category:Templates that add a tracking category|Logrank Test]] | |||
[[Category:Templates that are not mobile friendly|Logrank Test]] | |||
[[Category:Templates that generate short descriptions|Logrank Test]] | |||
[[Category:Templates using TemplateData|Logrank Test]] | |||
[[Category:Wikipedia metatemplates|Logrank Test]] | |||
[[Category:उत्तरजीविता विश्लेषण|Logrank Test]] | |||
[[Category:सांख्यिकीय परीक्षण|Logrank Test]] |
Latest revision as of 11:59, 1 November 2023
लॉगरैंक परीक्षण दो प्रारूप के अनुमानक विश्लेषण वितरण की तुलना करने के लिए परिकल्पना परीक्षण है। यह अपैरामीट्रिक परीक्षण है और जब डेटा उत्तम रूप से सेंसरिंग (सांख्यिकी) किया गया हो तो इसका उपयोग करना उचित है (तकनीकी रूप से, सेंसरिंग गैर-जानकारीपूर्ण होनी चाहिए)। नियंत्रण उपचार की तुलना में नए उपचार की प्रभावकारिता स्थापित करने के लिए नैदानिक परीक्षणों में इसका व्यापक रूप से उपयोग किया जाता है जब माप घटना का समय होता है (जैसे कि प्रारंभिक उपचार से हार्ट अटैक पड़ने तक का समय)। परीक्षण को कभी-कभी मेंटल-कॉक्स परीक्षण भी कहा जाता है। लॉगरैंक परीक्षण को समय-स्तरीकृत कोचरन-मेंटल-हेन्सज़ेल सांख्यिकी परीक्षण के रूप में भी देखा जा सकता है।
परीक्षण सबसे पूर्व नाथन मेंटल द्वारा प्रस्तावित की गई थी औररिचर्ड द फिफ्थ और जूलियन पेटो द्वारा इसे लॉगरैंक परीक्षण नाम दिया गया था।[1][2][3]
परिभाषा
लॉगरैंक परीक्षण आँकड़ा प्रत्येक देखे गए घटना समय पर दो समूहों आशंकाप्रद फलनों के अनुमानों की तुलना करता है। इसका निर्माण प्रत्येक देखे गए घटना समय पर किसी समूह में देखी गई और अपेक्षित घटनाओं की संख्या की गणना करके और तत्पश्चात उन सभी समय बिंदुओं पर समग्र सारांश प्राप्त करने के लिए उन्हें जोड़कर किया जाता है जहां कोई घटना होती है।
रोगियों के दो समूहों पर विचार करें, उदाहरण के लिए, उपचार के प्रति नियंत्रण होना। मान लीजिये किसी भी समूह में देखी गई घटनाओं का भिन्न-भिन्न समय होना चाहिए। मान लीजिये और अवधि के प्रारंभ में विषयों की संख्या (जिनका अभी तक कोई फलनक्रम नहीं हुआ है या सेंसर नहीं किया गया है)। क्रमशः समूहों में मान लीजिये और समय-समय पर समूहों में देखी गई घटनाओं की संख्या प्रदर्शित करता है। अंत में, द्वारा और परिभाषित किया गया है।
शून्य परिकल्पना यह है कि दोनों समूहों के हजार्ड फलन समान हैं, अत:, के अंतर्गत, प्रत्येक समूह के लिए , पैरामीटरों के साथ हाइपरज्यामितीय वितरण का अनुसरण करता है, , , इस वितरण का अपेक्षित मान और विचरण है।
सभी के लिए , लॉगरैंक आँकड़ा तुलना करता है इसकी अपेक्षा के अनुरूप अंतर्गत इसे इस प्रकार परिभाषित किया गया है:
- ( या )
केंद्रीय सीमा प्रमेय द्वारा, प्रत्येक का वितरण मानक सामान्य वितरण के रूप में अभिसरण करता है अनंत तक पहुंचता है और इसलिए पर्याप्त रूप से बड़े मानक सामान्य वितरण द्वारा इसका अनुमान लगाया जा सकता है इस मात्रा को पूर्व चार क्षणों के युग्मन के साथ पियर्सन प्रकार I या II (बीटा) वितरण के समान उत्तम अनुमान प्राप्त किया जा सकता है, जैसा कि पेटो और पेटो पेपर के परिशिष्ट B में वर्णित है।[2]
स्पर्शोन्मुख वितरण
यदि दोनों समूहों का अनुमानक फलन समान है, तो लॉगरैंक आँकड़ा लगभग मानक सामान्य है। स्तर यदि परीक्षण शून्य परिकल्पना को अस्वीकार कर देगा जहाँ ऊपरी है मानक सामान्य वितरण की अल्फा मात्रा , हैं कुल विषय, यह संभावना है कि किसी भी समूह के किसी विषय में अंततः घटना होगी (जिससे विश्लेषण के समय घटनाओं की अपेक्षित संख्या है), और प्रत्येक समूह में यादृच्छिक विषयों का अनुपात 50% है, तो लॉगरैंक आँकड़ा माध्य के साथ लगभग सामान्य है और विचरण 1[4] की ओर स्तर के लिए शक्ति के साथ परीक्षण , आवश्यक प्रारूप आकार है, जहाँ और मानक सामान्य वितरण की मात्राएँ हैं।
संयुक्त वितरण
कल्पना करना और एक ही अध्ययन में दो भिन्न-भिन्न समय बिंदुओं पर लॉगरैंक आँकड़े हैं ( पूर्व)। फिर से, मान लीजिये कि दोनों समूहों के फलन के समानुपाती हैं , और संभावनाएँ हैं कि विषय में दो समय बिंदुओं पर घटना होगी, और माध्य के साथ लगभग द्विचर सामान्य हैं और और सहसंबंध जब डेटा निरीक्षण समिति द्वारा अध्ययन के अंदर डेटा का कई बार परीक्षण किया जाता है, तो त्रुटि दर को उत्तम रूप से बनाए रखने के लिए संयुक्त वितरण से जुड़ी गणना की आवश्यकता होती है।
अन्य आँकड़ों से संबंध
- लॉगरैंक आँकड़ा दो समूहों की तुलना करने वाले कॉक्स आनुपातिक मॉडल के लिए स्कोर परीक्षण के रूप में प्राप्त किया जा सकता है। इसलिए यह उस मॉडल पर आधारित संभावना अनुपात परीक्षण आँकड़ों के समानुपाती है।
- लॉगरैंक आँकड़ा आनुपातिक विकल्प के साथ वितरण के किसी भी सदस्य के लिए संभावना अनुपात परीक्षण आँकड़ा के समान है। उदाहरण के लिए, यदि दो प्रारूप के डेटा में घातीय वितरण है।
- यदि लॉगरैंक आँकड़ा है, देखी गई घटनाओं की संख्या है, और के अनुपात का अनुमान है, यह संबंध तब उपयोगी होता है जब दो मात्राएँ ज्ञात हों (उदाहरण के लिए किसी प्रकाशित लेख से), किंतु तीसरी की आवश्यकता होती है।
- जब टिप्पणियों को सेंसर किया जाता है तो लॉगरैंक आँकड़े का उपयोग किया जा सकता है। यदि डेटा में सेंसर की गई टिप्पणियाँ उपस्थित नहीं हैं तो विलकॉक्सन रैंक योग परीक्षण उपयुक्त है।
- लॉगरैंक आँकड़ा सभी गणनाओं को समान महत्व देता है, संभवता कोई भी घटना घटित होने का समय कुछ भी हो। बड़ी संख्या में अवलोकन होने पर पेटो लॉगरैंक परीक्षण आँकड़े पूर्व की घटनाओं को अधिक महत्व देते हैं।
धारणाओं का परीक्षण करना
लॉगरैंक परीक्षण कपलान-मायर अनुमानक के समान मान्यताओं पर आधारित है- अर्थात्, सेंसरिंग पूर्वानुमान से असंबंधित है, अध्ययन में शीघ्र और देर से भर्ती किए गए विषयों के लिए जीवित रहने की संभावनाएं समान हैं, और घटनाएँ निर्दिष्ट समय पर हुईं। इन धारणाओं से विचलन सबसे अधिक महत्त्व रखते है यदि वे तुलना किए जा रहे समूहों में भिन्न-भिन्न विधियों से संतुष्ट हों, उदाहरण के लिए यदि समूह में दूसरे की तुलना में सेंसरिंग की अधिक संभावना है।[5]
यह भी देखें
- कपलान-मेयर अनुमानक
- हजार्ड का अनुपात
संदर्भ
- ↑ Mantel, Nathan (1966). "Evaluation of survival data and two new rank order statistics arising in its consideration". Cancer Chemotherapy Reports. 50 (3): 163–70. PMID 5910392.
- ↑ 2.0 2.1 Peto, Richard; Peto, Julian (1972). "Asymptotically Efficient Rank Invariant Test Procedures". Journal of the Royal Statistical Society, Series A. Blackwell Publishing. 135 (2): 185–207. doi:10.2307/2344317. hdl:10338.dmlcz/103602. JSTOR 2344317.
- ↑ Harrington, David (2005). "Linear Rank Tests in Survival Analysis". Encyclopedia of Biostatistics. Wiley Interscience. doi:10.1002/0470011815.b2a11047. ISBN 047084907X.
- ↑ Schoenfeld, D (1981). "उत्तरजीविता वितरण की तुलना के लिए गैरपैरामीट्रिक परीक्षणों के स्पर्शोन्मुख गुण". Biometrika. 68 (1): 316–319. doi:10.1093/biomet/68.1.316. JSTOR 2335833.
- ↑ Bland, J. M.; Altman, D. G. (2004). "लॉगरैंक परीक्षण". BMJ. 328 (7447): 1073. doi:10.1136/bmj.328.7447.1073. PMC 403858. PMID 15117797.